Properties

Label 384.4.d.c.193.3
Level $384$
Weight $4$
Character 384.193
Analytic conductor $22.657$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,4,Mod(193,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.193");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 193.3
Root \(-1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 384.193
Dual form 384.4.d.c.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} -10.4222i q^{5} +6.42221 q^{7} -9.00000 q^{9} -61.6888i q^{11} +64.8444i q^{13} +31.2666 q^{15} -75.6888 q^{17} -10.3112i q^{19} +19.2666i q^{21} -156.844 q^{23} +16.3776 q^{25} -27.0000i q^{27} -53.7998i q^{29} -227.489 q^{31} +185.066 q^{33} -66.9335i q^{35} -10.3112i q^{37} -194.533 q^{39} -70.4441 q^{41} -298.311i q^{43} +93.7998i q^{45} +89.9109 q^{47} -301.755 q^{49} -227.066i q^{51} -388.333i q^{53} -642.934 q^{55} +30.9335 q^{57} -324.000i q^{59} +324.000i q^{61} -57.7998 q^{63} +675.822 q^{65} -920.266i q^{67} -470.533i q^{69} -995.156 q^{71} +362.266 q^{73} +49.1329i q^{75} -396.178i q^{77} +1098.91 q^{79} +81.0000 q^{81} -791.822i q^{83} +788.844i q^{85} +161.400 q^{87} -150.622 q^{89} +416.444i q^{91} -682.466i q^{93} -107.465 q^{95} -1879.15 q^{97} +555.199i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{7} - 36 q^{9} - 48 q^{15} - 72 q^{17} - 512 q^{23} - 396 q^{25} - 160 q^{31} + 48 q^{33} - 432 q^{39} + 872 q^{41} - 448 q^{47} - 284 q^{49} - 3264 q^{55} + 816 q^{57} + 288 q^{63} + 1088 q^{65}+ \cdots - 2440 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) − 10.4222i − 0.932190i −0.884735 0.466095i \(-0.845660\pi\)
0.884735 0.466095i \(-0.154340\pi\)
\(6\) 0 0
\(7\) 6.42221 0.346766 0.173383 0.984854i \(-0.444530\pi\)
0.173383 + 0.984854i \(0.444530\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) − 61.6888i − 1.69090i −0.534056 0.845449i \(-0.679333\pi\)
0.534056 0.845449i \(-0.320667\pi\)
\(12\) 0 0
\(13\) 64.8444i 1.38343i 0.722170 + 0.691716i \(0.243145\pi\)
−0.722170 + 0.691716i \(0.756855\pi\)
\(14\) 0 0
\(15\) 31.2666 0.538200
\(16\) 0 0
\(17\) −75.6888 −1.07984 −0.539919 0.841717i \(-0.681545\pi\)
−0.539919 + 0.841717i \(0.681545\pi\)
\(18\) 0 0
\(19\) − 10.3112i − 0.124502i −0.998061 0.0622512i \(-0.980172\pi\)
0.998061 0.0622512i \(-0.0198280\pi\)
\(20\) 0 0
\(21\) 19.2666i 0.200206i
\(22\) 0 0
\(23\) −156.844 −1.42193 −0.710963 0.703229i \(-0.751741\pi\)
−0.710963 + 0.703229i \(0.751741\pi\)
\(24\) 0 0
\(25\) 16.3776 0.131021
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) − 53.7998i − 0.344496i −0.985054 0.172248i \(-0.944897\pi\)
0.985054 0.172248i \(-0.0551030\pi\)
\(30\) 0 0
\(31\) −227.489 −1.31801 −0.659003 0.752141i \(-0.729021\pi\)
−0.659003 + 0.752141i \(0.729021\pi\)
\(32\) 0 0
\(33\) 185.066 0.976240
\(34\) 0 0
\(35\) − 66.9335i − 0.323252i
\(36\) 0 0
\(37\) − 10.3112i − 0.0458148i −0.999738 0.0229074i \(-0.992708\pi\)
0.999738 0.0229074i \(-0.00729229\pi\)
\(38\) 0 0
\(39\) −194.533 −0.798724
\(40\) 0 0
\(41\) −70.4441 −0.268330 −0.134165 0.990959i \(-0.542835\pi\)
−0.134165 + 0.990959i \(0.542835\pi\)
\(42\) 0 0
\(43\) − 298.311i − 1.05795i −0.848636 0.528977i \(-0.822576\pi\)
0.848636 0.528977i \(-0.177424\pi\)
\(44\) 0 0
\(45\) 93.7998i 0.310730i
\(46\) 0 0
\(47\) 89.9109 0.279039 0.139520 0.990219i \(-0.455444\pi\)
0.139520 + 0.990219i \(0.455444\pi\)
\(48\) 0 0
\(49\) −301.755 −0.879753
\(50\) 0 0
\(51\) − 227.066i − 0.623444i
\(52\) 0 0
\(53\) − 388.333i − 1.00645i −0.864157 0.503223i \(-0.832147\pi\)
0.864157 0.503223i \(-0.167853\pi\)
\(54\) 0 0
\(55\) −642.934 −1.57624
\(56\) 0 0
\(57\) 30.9335 0.0718815
\(58\) 0 0
\(59\) − 324.000i − 0.714936i −0.933925 0.357468i \(-0.883640\pi\)
0.933925 0.357468i \(-0.116360\pi\)
\(60\) 0 0
\(61\) 324.000i 0.680065i 0.940414 + 0.340032i \(0.110438\pi\)
−0.940414 + 0.340032i \(0.889562\pi\)
\(62\) 0 0
\(63\) −57.7998 −0.115589
\(64\) 0 0
\(65\) 675.822 1.28962
\(66\) 0 0
\(67\) − 920.266i − 1.67804i −0.544104 0.839018i \(-0.683130\pi\)
0.544104 0.839018i \(-0.316870\pi\)
\(68\) 0 0
\(69\) − 470.533i − 0.820950i
\(70\) 0 0
\(71\) −995.156 −1.66343 −0.831713 0.555206i \(-0.812639\pi\)
−0.831713 + 0.555206i \(0.812639\pi\)
\(72\) 0 0
\(73\) 362.266 0.580822 0.290411 0.956902i \(-0.406208\pi\)
0.290411 + 0.956902i \(0.406208\pi\)
\(74\) 0 0
\(75\) 49.1329i 0.0756451i
\(76\) 0 0
\(77\) − 396.178i − 0.586347i
\(78\) 0 0
\(79\) 1098.91 1.56503 0.782513 0.622634i \(-0.213938\pi\)
0.782513 + 0.622634i \(0.213938\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 791.822i − 1.04715i −0.851979 0.523577i \(-0.824597\pi\)
0.851979 0.523577i \(-0.175403\pi\)
\(84\) 0 0
\(85\) 788.844i 1.00661i
\(86\) 0 0
\(87\) 161.400 0.198895
\(88\) 0 0
\(89\) −150.622 −0.179393 −0.0896963 0.995969i \(-0.528590\pi\)
−0.0896963 + 0.995969i \(0.528590\pi\)
\(90\) 0 0
\(91\) 416.444i 0.479728i
\(92\) 0 0
\(93\) − 682.466i − 0.760951i
\(94\) 0 0
\(95\) −107.465 −0.116060
\(96\) 0 0
\(97\) −1879.15 −1.96700 −0.983501 0.180903i \(-0.942098\pi\)
−0.983501 + 0.180903i \(0.942098\pi\)
\(98\) 0 0
\(99\) 555.199i 0.563633i
\(100\) 0 0
\(101\) 1722.51i 1.69699i 0.529202 + 0.848496i \(0.322491\pi\)
−0.529202 + 0.848496i \(0.677509\pi\)
\(102\) 0 0
\(103\) −1908.82 −1.82604 −0.913018 0.407919i \(-0.866255\pi\)
−0.913018 + 0.407919i \(0.866255\pi\)
\(104\) 0 0
\(105\) 200.801 0.186630
\(106\) 0 0
\(107\) − 128.622i − 0.116209i −0.998310 0.0581046i \(-0.981494\pi\)
0.998310 0.0581046i \(-0.0185057\pi\)
\(108\) 0 0
\(109\) 758.267i 0.666320i 0.942870 + 0.333160i \(0.108115\pi\)
−0.942870 + 0.333160i \(0.891885\pi\)
\(110\) 0 0
\(111\) 30.9335 0.0264512
\(112\) 0 0
\(113\) 921.643 0.767265 0.383632 0.923486i \(-0.374673\pi\)
0.383632 + 0.923486i \(0.374673\pi\)
\(114\) 0 0
\(115\) 1634.66i 1.32551i
\(116\) 0 0
\(117\) − 583.600i − 0.461144i
\(118\) 0 0
\(119\) −486.089 −0.374451
\(120\) 0 0
\(121\) −2474.51 −1.85914
\(122\) 0 0
\(123\) − 211.332i − 0.154920i
\(124\) 0 0
\(125\) − 1473.47i − 1.05433i
\(126\) 0 0
\(127\) 1647.22 1.15092 0.575462 0.817828i \(-0.304822\pi\)
0.575462 + 0.817828i \(0.304822\pi\)
\(128\) 0 0
\(129\) 894.934 0.610810
\(130\) 0 0
\(131\) 2000.27i 1.33408i 0.745023 + 0.667038i \(0.232438\pi\)
−0.745023 + 0.667038i \(0.767562\pi\)
\(132\) 0 0
\(133\) − 66.2205i − 0.0431733i
\(134\) 0 0
\(135\) −281.400 −0.179400
\(136\) 0 0
\(137\) 2574.71 1.60564 0.802819 0.596223i \(-0.203333\pi\)
0.802819 + 0.596223i \(0.203333\pi\)
\(138\) 0 0
\(139\) − 1331.29i − 0.812362i −0.913793 0.406181i \(-0.866860\pi\)
0.913793 0.406181i \(-0.133140\pi\)
\(140\) 0 0
\(141\) 269.733i 0.161103i
\(142\) 0 0
\(143\) 4000.18 2.33924
\(144\) 0 0
\(145\) −560.713 −0.321136
\(146\) 0 0
\(147\) − 905.266i − 0.507926i
\(148\) 0 0
\(149\) − 552.377i − 0.303708i −0.988403 0.151854i \(-0.951476\pi\)
0.988403 0.151854i \(-0.0485243\pi\)
\(150\) 0 0
\(151\) 1307.13 0.704456 0.352228 0.935914i \(-0.385424\pi\)
0.352228 + 0.935914i \(0.385424\pi\)
\(152\) 0 0
\(153\) 681.199 0.359946
\(154\) 0 0
\(155\) 2370.93i 1.22863i
\(156\) 0 0
\(157\) 3527.11i 1.79295i 0.443089 + 0.896477i \(0.353882\pi\)
−0.443089 + 0.896477i \(0.646118\pi\)
\(158\) 0 0
\(159\) 1165.00 0.581072
\(160\) 0 0
\(161\) −1007.29 −0.493077
\(162\) 0 0
\(163\) 926.045i 0.444991i 0.974934 + 0.222495i \(0.0714202\pi\)
−0.974934 + 0.222495i \(0.928580\pi\)
\(164\) 0 0
\(165\) − 1928.80i − 0.910042i
\(166\) 0 0
\(167\) 1393.33 0.645624 0.322812 0.946463i \(-0.395372\pi\)
0.322812 + 0.946463i \(0.395372\pi\)
\(168\) 0 0
\(169\) −2007.80 −0.913881
\(170\) 0 0
\(171\) 92.8006i 0.0415008i
\(172\) 0 0
\(173\) − 3311.71i − 1.45540i −0.685894 0.727701i \(-0.740589\pi\)
0.685894 0.727701i \(-0.259411\pi\)
\(174\) 0 0
\(175\) 105.181 0.0454337
\(176\) 0 0
\(177\) 972.000 0.412768
\(178\) 0 0
\(179\) − 323.287i − 0.134992i −0.997720 0.0674961i \(-0.978499\pi\)
0.997720 0.0674961i \(-0.0215010\pi\)
\(180\) 0 0
\(181\) 3066.80i 1.25941i 0.776834 + 0.629705i \(0.216824\pi\)
−0.776834 + 0.629705i \(0.783176\pi\)
\(182\) 0 0
\(183\) −972.000 −0.392636
\(184\) 0 0
\(185\) −107.465 −0.0427081
\(186\) 0 0
\(187\) 4669.15i 1.82589i
\(188\) 0 0
\(189\) − 173.400i − 0.0667352i
\(190\) 0 0
\(191\) 1856.44 0.703286 0.351643 0.936134i \(-0.385623\pi\)
0.351643 + 0.936134i \(0.385623\pi\)
\(192\) 0 0
\(193\) 3008.84 1.12218 0.561091 0.827754i \(-0.310382\pi\)
0.561091 + 0.827754i \(0.310382\pi\)
\(194\) 0 0
\(195\) 2027.47i 0.744563i
\(196\) 0 0
\(197\) − 909.309i − 0.328861i −0.986389 0.164430i \(-0.947421\pi\)
0.986389 0.164430i \(-0.0525786\pi\)
\(198\) 0 0
\(199\) 2780.24 0.990383 0.495191 0.868784i \(-0.335098\pi\)
0.495191 + 0.868784i \(0.335098\pi\)
\(200\) 0 0
\(201\) 2760.80 0.968814
\(202\) 0 0
\(203\) − 345.514i − 0.119460i
\(204\) 0 0
\(205\) 734.183i 0.250134i
\(206\) 0 0
\(207\) 1411.60 0.473976
\(208\) 0 0
\(209\) −636.085 −0.210521
\(210\) 0 0
\(211\) − 385.511i − 0.125780i −0.998020 0.0628901i \(-0.979968\pi\)
0.998020 0.0628901i \(-0.0200318\pi\)
\(212\) 0 0
\(213\) − 2985.47i − 0.960379i
\(214\) 0 0
\(215\) −3109.06 −0.986215
\(216\) 0 0
\(217\) −1460.98 −0.457040
\(218\) 0 0
\(219\) 1086.80i 0.335338i
\(220\) 0 0
\(221\) − 4908.00i − 1.49388i
\(222\) 0 0
\(223\) 601.975 0.180768 0.0903839 0.995907i \(-0.471191\pi\)
0.0903839 + 0.995907i \(0.471191\pi\)
\(224\) 0 0
\(225\) −147.399 −0.0436737
\(226\) 0 0
\(227\) 185.779i 0.0543199i 0.999631 + 0.0271600i \(0.00864634\pi\)
−0.999631 + 0.0271600i \(0.991354\pi\)
\(228\) 0 0
\(229\) − 1237.11i − 0.356989i −0.983941 0.178495i \(-0.942877\pi\)
0.983941 0.178495i \(-0.0571227\pi\)
\(230\) 0 0
\(231\) 1188.53 0.338527
\(232\) 0 0
\(233\) 217.378 0.0611197 0.0305598 0.999533i \(-0.490271\pi\)
0.0305598 + 0.999533i \(0.490271\pi\)
\(234\) 0 0
\(235\) − 937.070i − 0.260118i
\(236\) 0 0
\(237\) 3296.73i 0.903568i
\(238\) 0 0
\(239\) −6055.99 −1.63904 −0.819518 0.573053i \(-0.805759\pi\)
−0.819518 + 0.573053i \(0.805759\pi\)
\(240\) 0 0
\(241\) −6815.69 −1.82173 −0.910865 0.412705i \(-0.864584\pi\)
−0.910865 + 0.412705i \(0.864584\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 3144.96i 0.820097i
\(246\) 0 0
\(247\) 668.622 0.172241
\(248\) 0 0
\(249\) 2375.47 0.604574
\(250\) 0 0
\(251\) 2448.53i 0.615738i 0.951429 + 0.307869i \(0.0996158\pi\)
−0.951429 + 0.307869i \(0.900384\pi\)
\(252\) 0 0
\(253\) 9675.55i 2.40433i
\(254\) 0 0
\(255\) −2366.53 −0.581169
\(256\) 0 0
\(257\) 2949.55 0.715907 0.357953 0.933739i \(-0.383475\pi\)
0.357953 + 0.933739i \(0.383475\pi\)
\(258\) 0 0
\(259\) − 66.2205i − 0.0158870i
\(260\) 0 0
\(261\) 484.199i 0.114832i
\(262\) 0 0
\(263\) 4831.64 1.13282 0.566410 0.824124i \(-0.308332\pi\)
0.566410 + 0.824124i \(0.308332\pi\)
\(264\) 0 0
\(265\) −4047.29 −0.938199
\(266\) 0 0
\(267\) − 451.867i − 0.103572i
\(268\) 0 0
\(269\) 1093.84i 0.247928i 0.992287 + 0.123964i \(0.0395607\pi\)
−0.992287 + 0.123964i \(0.960439\pi\)
\(270\) 0 0
\(271\) −3079.80 −0.690349 −0.345175 0.938539i \(-0.612180\pi\)
−0.345175 + 0.938539i \(0.612180\pi\)
\(272\) 0 0
\(273\) −1249.33 −0.276971
\(274\) 0 0
\(275\) − 1010.32i − 0.221543i
\(276\) 0 0
\(277\) − 5600.75i − 1.21486i −0.794373 0.607430i \(-0.792200\pi\)
0.794373 0.607430i \(-0.207800\pi\)
\(278\) 0 0
\(279\) 2047.40 0.439335
\(280\) 0 0
\(281\) −203.426 −0.0431864 −0.0215932 0.999767i \(-0.506874\pi\)
−0.0215932 + 0.999767i \(0.506874\pi\)
\(282\) 0 0
\(283\) − 2214.84i − 0.465225i −0.972570 0.232612i \(-0.925273\pi\)
0.972570 0.232612i \(-0.0747273\pi\)
\(284\) 0 0
\(285\) − 322.396i − 0.0670073i
\(286\) 0 0
\(287\) −452.406 −0.0930478
\(288\) 0 0
\(289\) 815.798 0.166049
\(290\) 0 0
\(291\) − 5637.46i − 1.13565i
\(292\) 0 0
\(293\) 5812.37i 1.15892i 0.815002 + 0.579458i \(0.196736\pi\)
−0.815002 + 0.579458i \(0.803264\pi\)
\(294\) 0 0
\(295\) −3376.79 −0.666456
\(296\) 0 0
\(297\) −1665.60 −0.325413
\(298\) 0 0
\(299\) − 10170.5i − 1.96714i
\(300\) 0 0
\(301\) − 1915.82i − 0.366863i
\(302\) 0 0
\(303\) −5167.53 −0.979758
\(304\) 0 0
\(305\) 3376.79 0.633950
\(306\) 0 0
\(307\) − 7337.33i − 1.36405i −0.731329 0.682025i \(-0.761099\pi\)
0.731329 0.682025i \(-0.238901\pi\)
\(308\) 0 0
\(309\) − 5726.46i − 1.05426i
\(310\) 0 0
\(311\) 6575.91 1.19899 0.599494 0.800379i \(-0.295368\pi\)
0.599494 + 0.800379i \(0.295368\pi\)
\(312\) 0 0
\(313\) 1556.67 0.281113 0.140556 0.990073i \(-0.455111\pi\)
0.140556 + 0.990073i \(0.455111\pi\)
\(314\) 0 0
\(315\) 602.402i 0.107751i
\(316\) 0 0
\(317\) − 9457.27i − 1.67562i −0.545959 0.837812i \(-0.683834\pi\)
0.545959 0.837812i \(-0.316166\pi\)
\(318\) 0 0
\(319\) −3318.85 −0.582507
\(320\) 0 0
\(321\) 385.867 0.0670935
\(322\) 0 0
\(323\) 780.441i 0.134442i
\(324\) 0 0
\(325\) 1062.00i 0.181259i
\(326\) 0 0
\(327\) −2274.80 −0.384700
\(328\) 0 0
\(329\) 577.426 0.0967615
\(330\) 0 0
\(331\) − 10907.6i − 1.81129i −0.424032 0.905647i \(-0.639386\pi\)
0.424032 0.905647i \(-0.360614\pi\)
\(332\) 0 0
\(333\) 92.8006i 0.0152716i
\(334\) 0 0
\(335\) −9591.20 −1.56425
\(336\) 0 0
\(337\) 4256.22 0.687986 0.343993 0.938972i \(-0.388220\pi\)
0.343993 + 0.938972i \(0.388220\pi\)
\(338\) 0 0
\(339\) 2764.93i 0.442981i
\(340\) 0 0
\(341\) 14033.5i 2.22861i
\(342\) 0 0
\(343\) −4140.75 −0.651835
\(344\) 0 0
\(345\) −4903.99 −0.765282
\(346\) 0 0
\(347\) 4217.07i 0.652403i 0.945300 + 0.326202i \(0.105769\pi\)
−0.945300 + 0.326202i \(0.894231\pi\)
\(348\) 0 0
\(349\) − 2986.57i − 0.458073i −0.973418 0.229037i \(-0.926442\pi\)
0.973418 0.229037i \(-0.0735576\pi\)
\(350\) 0 0
\(351\) 1750.80 0.266241
\(352\) 0 0
\(353\) −8231.42 −1.24112 −0.620558 0.784160i \(-0.713094\pi\)
−0.620558 + 0.784160i \(0.713094\pi\)
\(354\) 0 0
\(355\) 10371.7i 1.55063i
\(356\) 0 0
\(357\) − 1458.27i − 0.216190i
\(358\) 0 0
\(359\) −5857.19 −0.861088 −0.430544 0.902569i \(-0.641678\pi\)
−0.430544 + 0.902569i \(0.641678\pi\)
\(360\) 0 0
\(361\) 6752.68 0.984499
\(362\) 0 0
\(363\) − 7423.53i − 1.07337i
\(364\) 0 0
\(365\) − 3775.61i − 0.541437i
\(366\) 0 0
\(367\) −10715.7 −1.52412 −0.762061 0.647505i \(-0.775812\pi\)
−0.762061 + 0.647505i \(0.775812\pi\)
\(368\) 0 0
\(369\) 633.997 0.0894433
\(370\) 0 0
\(371\) − 2493.95i − 0.349002i
\(372\) 0 0
\(373\) − 1817.52i − 0.252299i −0.992011 0.126149i \(-0.959738\pi\)
0.992011 0.126149i \(-0.0402619\pi\)
\(374\) 0 0
\(375\) 4420.40 0.608716
\(376\) 0 0
\(377\) 3488.62 0.476586
\(378\) 0 0
\(379\) 9789.68i 1.32681i 0.748259 + 0.663407i \(0.230890\pi\)
−0.748259 + 0.663407i \(0.769110\pi\)
\(380\) 0 0
\(381\) 4941.67i 0.664486i
\(382\) 0 0
\(383\) −11502.3 −1.53457 −0.767285 0.641306i \(-0.778393\pi\)
−0.767285 + 0.641306i \(0.778393\pi\)
\(384\) 0 0
\(385\) −4129.05 −0.546587
\(386\) 0 0
\(387\) 2684.80i 0.352651i
\(388\) 0 0
\(389\) − 6.06261i 0 0.000790197i −1.00000 0.000395098i \(-0.999874\pi\)
1.00000 0.000395098i \(-0.000125764\pi\)
\(390\) 0 0
\(391\) 11871.4 1.53545
\(392\) 0 0
\(393\) −6000.80 −0.770230
\(394\) 0 0
\(395\) − 11453.1i − 1.45890i
\(396\) 0 0
\(397\) − 5982.31i − 0.756281i −0.925748 0.378141i \(-0.876564\pi\)
0.925748 0.378141i \(-0.123436\pi\)
\(398\) 0 0
\(399\) 198.662 0.0249261
\(400\) 0 0
\(401\) 10443.6 1.30057 0.650284 0.759691i \(-0.274650\pi\)
0.650284 + 0.759691i \(0.274650\pi\)
\(402\) 0 0
\(403\) − 14751.4i − 1.82337i
\(404\) 0 0
\(405\) − 844.199i − 0.103577i
\(406\) 0 0
\(407\) −636.085 −0.0774682
\(408\) 0 0
\(409\) 8141.01 0.984223 0.492112 0.870532i \(-0.336225\pi\)
0.492112 + 0.870532i \(0.336225\pi\)
\(410\) 0 0
\(411\) 7724.13i 0.927015i
\(412\) 0 0
\(413\) − 2080.79i − 0.247916i
\(414\) 0 0
\(415\) −8252.53 −0.976146
\(416\) 0 0
\(417\) 3993.86 0.469017
\(418\) 0 0
\(419\) − 8716.96i − 1.01635i −0.861253 0.508176i \(-0.830320\pi\)
0.861253 0.508176i \(-0.169680\pi\)
\(420\) 0 0
\(421\) − 13437.5i − 1.55560i −0.628514 0.777798i \(-0.716337\pi\)
0.628514 0.777798i \(-0.283663\pi\)
\(422\) 0 0
\(423\) −809.198 −0.0930131
\(424\) 0 0
\(425\) −1239.60 −0.141482
\(426\) 0 0
\(427\) 2080.79i 0.235824i
\(428\) 0 0
\(429\) 12000.5i 1.35056i
\(430\) 0 0
\(431\) 7343.86 0.820745 0.410373 0.911918i \(-0.365399\pi\)
0.410373 + 0.911918i \(0.365399\pi\)
\(432\) 0 0
\(433\) 4490.80 0.498416 0.249208 0.968450i \(-0.419830\pi\)
0.249208 + 0.968450i \(0.419830\pi\)
\(434\) 0 0
\(435\) − 1682.14i − 0.185408i
\(436\) 0 0
\(437\) 1617.25i 0.177033i
\(438\) 0 0
\(439\) 9437.93 1.02608 0.513038 0.858366i \(-0.328520\pi\)
0.513038 + 0.858366i \(0.328520\pi\)
\(440\) 0 0
\(441\) 2715.80 0.293251
\(442\) 0 0
\(443\) 12668.3i 1.35866i 0.733832 + 0.679331i \(0.237730\pi\)
−0.733832 + 0.679331i \(0.762270\pi\)
\(444\) 0 0
\(445\) 1569.82i 0.167228i
\(446\) 0 0
\(447\) 1657.13 0.175346
\(448\) 0 0
\(449\) −13052.0 −1.37186 −0.685929 0.727669i \(-0.740604\pi\)
−0.685929 + 0.727669i \(0.740604\pi\)
\(450\) 0 0
\(451\) 4345.61i 0.453718i
\(452\) 0 0
\(453\) 3921.40i 0.406718i
\(454\) 0 0
\(455\) 4340.27 0.447197
\(456\) 0 0
\(457\) 1313.64 0.134463 0.0672316 0.997737i \(-0.478583\pi\)
0.0672316 + 0.997737i \(0.478583\pi\)
\(458\) 0 0
\(459\) 2043.60i 0.207815i
\(460\) 0 0
\(461\) − 627.883i − 0.0634347i −0.999497 0.0317174i \(-0.989902\pi\)
0.999497 0.0317174i \(-0.0100976\pi\)
\(462\) 0 0
\(463\) 7315.03 0.734251 0.367126 0.930171i \(-0.380342\pi\)
0.367126 + 0.930171i \(0.380342\pi\)
\(464\) 0 0
\(465\) −7112.80 −0.709351
\(466\) 0 0
\(467\) − 759.997i − 0.0753072i −0.999291 0.0376536i \(-0.988012\pi\)
0.999291 0.0376536i \(-0.0119883\pi\)
\(468\) 0 0
\(469\) − 5910.14i − 0.581886i
\(470\) 0 0
\(471\) −10581.3 −1.03516
\(472\) 0 0
\(473\) −18402.5 −1.78889
\(474\) 0 0
\(475\) − 168.873i − 0.0163125i
\(476\) 0 0
\(477\) 3495.00i 0.335482i
\(478\) 0 0
\(479\) 7403.51 0.706211 0.353106 0.935583i \(-0.385126\pi\)
0.353106 + 0.935583i \(0.385126\pi\)
\(480\) 0 0
\(481\) 668.622 0.0633816
\(482\) 0 0
\(483\) − 3021.86i − 0.284678i
\(484\) 0 0
\(485\) 19584.9i 1.83362i
\(486\) 0 0
\(487\) 3488.11 0.324561 0.162281 0.986745i \(-0.448115\pi\)
0.162281 + 0.986745i \(0.448115\pi\)
\(488\) 0 0
\(489\) −2778.14 −0.256915
\(490\) 0 0
\(491\) 6575.73i 0.604396i 0.953245 + 0.302198i \(0.0977204\pi\)
−0.953245 + 0.302198i \(0.902280\pi\)
\(492\) 0 0
\(493\) 4072.05i 0.372000i
\(494\) 0 0
\(495\) 5786.40 0.525413
\(496\) 0 0
\(497\) −6391.09 −0.576820
\(498\) 0 0
\(499\) 5187.82i 0.465408i 0.972548 + 0.232704i \(0.0747574\pi\)
−0.972548 + 0.232704i \(0.925243\pi\)
\(500\) 0 0
\(501\) 4180.00i 0.372751i
\(502\) 0 0
\(503\) 7248.38 0.642524 0.321262 0.946990i \(-0.395893\pi\)
0.321262 + 0.946990i \(0.395893\pi\)
\(504\) 0 0
\(505\) 17952.4 1.58192
\(506\) 0 0
\(507\) − 6023.39i − 0.527630i
\(508\) 0 0
\(509\) − 6613.44i − 0.575905i −0.957645 0.287952i \(-0.907026\pi\)
0.957645 0.287952i \(-0.0929745\pi\)
\(510\) 0 0
\(511\) 2326.55 0.201410
\(512\) 0 0
\(513\) −278.402 −0.0239605
\(514\) 0 0
\(515\) 19894.1i 1.70221i
\(516\) 0 0
\(517\) − 5546.50i − 0.471827i
\(518\) 0 0
\(519\) 9935.13 0.840277
\(520\) 0 0
\(521\) −20761.3 −1.74581 −0.872906 0.487888i \(-0.837767\pi\)
−0.872906 + 0.487888i \(0.837767\pi\)
\(522\) 0 0
\(523\) − 13494.2i − 1.12822i −0.825698 0.564112i \(-0.809219\pi\)
0.825698 0.564112i \(-0.190781\pi\)
\(524\) 0 0
\(525\) 315.542i 0.0262312i
\(526\) 0 0
\(527\) 17218.3 1.42323
\(528\) 0 0
\(529\) 12433.2 1.02188
\(530\) 0 0
\(531\) 2916.00i 0.238312i
\(532\) 0 0
\(533\) − 4567.91i − 0.371216i
\(534\) 0 0
\(535\) −1340.53 −0.108329
\(536\) 0 0
\(537\) 969.861 0.0779378
\(538\) 0 0
\(539\) 18614.9i 1.48757i
\(540\) 0 0
\(541\) − 2708.58i − 0.215251i −0.994191 0.107626i \(-0.965675\pi\)
0.994191 0.107626i \(-0.0343248\pi\)
\(542\) 0 0
\(543\) −9200.39 −0.727121
\(544\) 0 0
\(545\) 7902.82 0.621137
\(546\) 0 0
\(547\) 15783.5i 1.23373i 0.787068 + 0.616866i \(0.211598\pi\)
−0.787068 + 0.616866i \(0.788402\pi\)
\(548\) 0 0
\(549\) − 2916.00i − 0.226688i
\(550\) 0 0
\(551\) −554.740 −0.0428906
\(552\) 0 0
\(553\) 7057.43 0.542699
\(554\) 0 0
\(555\) − 322.396i − 0.0246575i
\(556\) 0 0
\(557\) − 1892.77i − 0.143984i −0.997405 0.0719922i \(-0.977064\pi\)
0.997405 0.0719922i \(-0.0229357\pi\)
\(558\) 0 0
\(559\) 19343.8 1.46361
\(560\) 0 0
\(561\) −14007.5 −1.05418
\(562\) 0 0
\(563\) 3876.26i 0.290169i 0.989419 + 0.145084i \(0.0463454\pi\)
−0.989419 + 0.145084i \(0.953655\pi\)
\(564\) 0 0
\(565\) − 9605.56i − 0.715237i
\(566\) 0 0
\(567\) 520.199 0.0385296
\(568\) 0 0
\(569\) 14900.9 1.09785 0.548927 0.835870i \(-0.315037\pi\)
0.548927 + 0.835870i \(0.315037\pi\)
\(570\) 0 0
\(571\) 24926.0i 1.82683i 0.407032 + 0.913414i \(0.366564\pi\)
−0.407032 + 0.913414i \(0.633436\pi\)
\(572\) 0 0
\(573\) 5569.33i 0.406042i
\(574\) 0 0
\(575\) −2568.74 −0.186302
\(576\) 0 0
\(577\) 21022.4 1.51677 0.758384 0.651808i \(-0.225989\pi\)
0.758384 + 0.651808i \(0.225989\pi\)
\(578\) 0 0
\(579\) 9026.52i 0.647892i
\(580\) 0 0
\(581\) − 5085.24i − 0.363118i
\(582\) 0 0
\(583\) −23955.8 −1.70180
\(584\) 0 0
\(585\) −6082.40 −0.429874
\(586\) 0 0
\(587\) − 13847.0i − 0.973641i −0.873502 0.486821i \(-0.838157\pi\)
0.873502 0.486821i \(-0.161843\pi\)
\(588\) 0 0
\(589\) 2345.68i 0.164095i
\(590\) 0 0
\(591\) 2727.93 0.189868
\(592\) 0 0
\(593\) −4113.01 −0.284825 −0.142413 0.989807i \(-0.545486\pi\)
−0.142413 + 0.989807i \(0.545486\pi\)
\(594\) 0 0
\(595\) 5066.12i 0.349060i
\(596\) 0 0
\(597\) 8340.73i 0.571798i
\(598\) 0 0
\(599\) −4863.60 −0.331755 −0.165878 0.986146i \(-0.553046\pi\)
−0.165878 + 0.986146i \(0.553046\pi\)
\(600\) 0 0
\(601\) −6827.76 −0.463411 −0.231706 0.972786i \(-0.574431\pi\)
−0.231706 + 0.972786i \(0.574431\pi\)
\(602\) 0 0
\(603\) 8282.39i 0.559345i
\(604\) 0 0
\(605\) 25789.9i 1.73307i
\(606\) 0 0
\(607\) 18178.3 1.21554 0.607770 0.794113i \(-0.292064\pi\)
0.607770 + 0.794113i \(0.292064\pi\)
\(608\) 0 0
\(609\) 1036.54 0.0689700
\(610\) 0 0
\(611\) 5830.22i 0.386032i
\(612\) 0 0
\(613\) − 15687.2i − 1.03360i −0.856105 0.516802i \(-0.827122\pi\)
0.856105 0.516802i \(-0.172878\pi\)
\(614\) 0 0
\(615\) −2202.55 −0.144415
\(616\) 0 0
\(617\) 16420.2 1.07140 0.535700 0.844409i \(-0.320048\pi\)
0.535700 + 0.844409i \(0.320048\pi\)
\(618\) 0 0
\(619\) 5517.78i 0.358285i 0.983823 + 0.179142i \(0.0573322\pi\)
−0.983823 + 0.179142i \(0.942668\pi\)
\(620\) 0 0
\(621\) 4234.80i 0.273650i
\(622\) 0 0
\(623\) −967.328 −0.0622073
\(624\) 0 0
\(625\) −13309.6 −0.851812
\(626\) 0 0
\(627\) − 1908.25i − 0.121544i
\(628\) 0 0
\(629\) 780.441i 0.0494725i
\(630\) 0 0
\(631\) −1559.17 −0.0983670 −0.0491835 0.998790i \(-0.515662\pi\)
−0.0491835 + 0.998790i \(0.515662\pi\)
\(632\) 0 0
\(633\) 1156.53 0.0726193
\(634\) 0 0
\(635\) − 17167.7i − 1.07288i
\(636\) 0 0
\(637\) − 19567.1i − 1.21708i
\(638\) 0 0
\(639\) 8956.40 0.554475
\(640\) 0 0
\(641\) −15188.6 −0.935900 −0.467950 0.883755i \(-0.655007\pi\)
−0.467950 + 0.883755i \(0.655007\pi\)
\(642\) 0 0
\(643\) − 16666.6i − 1.02219i −0.859524 0.511095i \(-0.829240\pi\)
0.859524 0.511095i \(-0.170760\pi\)
\(644\) 0 0
\(645\) − 9327.18i − 0.569391i
\(646\) 0 0
\(647\) −3038.27 −0.184616 −0.0923081 0.995730i \(-0.529424\pi\)
−0.0923081 + 0.995730i \(0.529424\pi\)
\(648\) 0 0
\(649\) −19987.2 −1.20888
\(650\) 0 0
\(651\) − 4382.94i − 0.263872i
\(652\) 0 0
\(653\) − 9078.99i − 0.544086i −0.962285 0.272043i \(-0.912301\pi\)
0.962285 0.272043i \(-0.0876994\pi\)
\(654\) 0 0
\(655\) 20847.2 1.24361
\(656\) 0 0
\(657\) −3260.39 −0.193607
\(658\) 0 0
\(659\) − 16892.0i − 0.998511i −0.866455 0.499255i \(-0.833607\pi\)
0.866455 0.499255i \(-0.166393\pi\)
\(660\) 0 0
\(661\) − 5064.16i − 0.297992i −0.988838 0.148996i \(-0.952396\pi\)
0.988838 0.148996i \(-0.0476042\pi\)
\(662\) 0 0
\(663\) 14724.0 0.862492
\(664\) 0 0
\(665\) −690.164 −0.0402457
\(666\) 0 0
\(667\) 8438.21i 0.489848i
\(668\) 0 0
\(669\) 1805.93i 0.104366i
\(670\) 0 0
\(671\) 19987.2 1.14992
\(672\) 0 0
\(673\) 28625.9 1.63959 0.819797 0.572654i \(-0.194086\pi\)
0.819797 + 0.572654i \(0.194086\pi\)
\(674\) 0 0
\(675\) − 442.196i − 0.0252150i
\(676\) 0 0
\(677\) 16061.2i 0.911791i 0.890033 + 0.455895i \(0.150681\pi\)
−0.890033 + 0.455895i \(0.849319\pi\)
\(678\) 0 0
\(679\) −12068.3 −0.682090
\(680\) 0 0
\(681\) −557.338 −0.0313616
\(682\) 0 0
\(683\) − 7868.09i − 0.440796i −0.975410 0.220398i \(-0.929264\pi\)
0.975410 0.220398i \(-0.0707357\pi\)
\(684\) 0 0
\(685\) − 26834.2i − 1.49676i
\(686\) 0 0
\(687\) 3711.33 0.206108
\(688\) 0 0
\(689\) 25181.2 1.39235
\(690\) 0 0
\(691\) 16886.2i 0.929641i 0.885405 + 0.464820i \(0.153881\pi\)
−0.885405 + 0.464820i \(0.846119\pi\)
\(692\) 0 0
\(693\) 3565.60i 0.195449i
\(694\) 0 0
\(695\) −13874.9 −0.757276
\(696\) 0 0
\(697\) 5331.83 0.289753
\(698\) 0 0
\(699\) 652.133i 0.0352875i
\(700\) 0 0
\(701\) 18293.6i 0.985647i 0.870129 + 0.492824i \(0.164035\pi\)
−0.870129 + 0.492824i \(0.835965\pi\)
\(702\) 0 0
\(703\) −106.320 −0.00570406
\(704\) 0 0
\(705\) 2811.21 0.150179
\(706\) 0 0
\(707\) 11062.3i 0.588460i
\(708\) 0 0
\(709\) 21555.6i 1.14180i 0.821019 + 0.570900i \(0.193406\pi\)
−0.821019 + 0.570900i \(0.806594\pi\)
\(710\) 0 0
\(711\) −9890.19 −0.521675
\(712\) 0 0
\(713\) 35680.3 1.87411
\(714\) 0 0
\(715\) − 41690.6i − 2.18062i
\(716\) 0 0
\(717\) − 18168.0i − 0.946298i
\(718\) 0 0
\(719\) −9059.31 −0.469896 −0.234948 0.972008i \(-0.575492\pi\)
−0.234948 + 0.972008i \(0.575492\pi\)
\(720\) 0 0
\(721\) −12258.8 −0.633208
\(722\) 0 0
\(723\) − 20447.1i − 1.05178i
\(724\) 0 0
\(725\) − 881.115i − 0.0451362i
\(726\) 0 0
\(727\) −7074.83 −0.360923 −0.180462 0.983582i \(-0.557759\pi\)
−0.180462 + 0.983582i \(0.557759\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 22578.8i 1.14242i
\(732\) 0 0
\(733\) − 17095.9i − 0.861459i −0.902481 0.430730i \(-0.858256\pi\)
0.902481 0.430730i \(-0.141744\pi\)
\(734\) 0 0
\(735\) −9434.87 −0.473483
\(736\) 0 0
\(737\) −56770.1 −2.83739
\(738\) 0 0
\(739\) − 28157.4i − 1.40161i −0.713355 0.700803i \(-0.752825\pi\)
0.713355 0.700803i \(-0.247175\pi\)
\(740\) 0 0
\(741\) 2005.87i 0.0994431i
\(742\) 0 0
\(743\) −34033.2 −1.68043 −0.840214 0.542255i \(-0.817571\pi\)
−0.840214 + 0.542255i \(0.817571\pi\)
\(744\) 0 0
\(745\) −5756.99 −0.283114
\(746\) 0 0
\(747\) 7126.40i 0.349051i
\(748\) 0 0
\(749\) − 826.039i − 0.0402975i
\(750\) 0 0
\(751\) −34356.8 −1.66937 −0.834685 0.550728i \(-0.814350\pi\)
−0.834685 + 0.550728i \(0.814350\pi\)
\(752\) 0 0
\(753\) −7345.60 −0.355496
\(754\) 0 0
\(755\) − 13623.2i − 0.656687i
\(756\) 0 0
\(757\) 29464.6i 1.41467i 0.706876 + 0.707337i \(0.250104\pi\)
−0.706876 + 0.707337i \(0.749896\pi\)
\(758\) 0 0
\(759\) −29026.6 −1.38814
\(760\) 0 0
\(761\) −27284.5 −1.29969 −0.649843 0.760069i \(-0.725165\pi\)
−0.649843 + 0.760069i \(0.725165\pi\)
\(762\) 0 0
\(763\) 4869.75i 0.231057i
\(764\) 0 0
\(765\) − 7099.60i − 0.335538i
\(766\) 0 0
\(767\) 21009.6 0.989064
\(768\) 0 0
\(769\) 2320.13 0.108798 0.0543992 0.998519i \(-0.482676\pi\)
0.0543992 + 0.998519i \(0.482676\pi\)
\(770\) 0 0
\(771\) 8848.66i 0.413329i
\(772\) 0 0
\(773\) − 4217.83i − 0.196254i −0.995174 0.0981272i \(-0.968715\pi\)
0.995174 0.0981272i \(-0.0312852\pi\)
\(774\) 0 0
\(775\) −3725.73 −0.172687
\(776\) 0 0
\(777\) 198.662 0.00917238
\(778\) 0 0
\(779\) 726.362i 0.0334077i
\(780\) 0 0
\(781\) 61390.0i 2.81268i
\(782\) 0 0
\(783\) −1452.60 −0.0662983
\(784\) 0 0
\(785\) 36760.3 1.67138
\(786\) 0 0
\(787\) − 11436.3i − 0.517991i −0.965879 0.258995i \(-0.916609\pi\)
0.965879 0.258995i \(-0.0833914\pi\)
\(788\) 0 0
\(789\) 14494.9i 0.654034i
\(790\) 0 0
\(791\) 5918.98 0.266062
\(792\) 0 0
\(793\) −21009.6 −0.940823
\(794\) 0 0
\(795\) − 12141.9i − 0.541670i
\(796\) 0 0
\(797\) − 14102.3i − 0.626761i −0.949628 0.313381i \(-0.898538\pi\)
0.949628 0.313381i \(-0.101462\pi\)
\(798\) 0 0
\(799\) −6805.25 −0.301317
\(800\) 0 0
\(801\) 1355.60 0.0597975
\(802\) 0 0
\(803\) − 22347.8i − 0.982111i
\(804\) 0 0
\(805\) 10498.2i 0.459641i
\(806\) 0 0
\(807\) −3281.52 −0.143141
\(808\) 0 0
\(809\) −18791.3 −0.816647 −0.408323 0.912837i \(-0.633886\pi\)
−0.408323 + 0.912837i \(0.633886\pi\)
\(810\) 0 0
\(811\) 14452.6i 0.625771i 0.949791 + 0.312886i \(0.101296\pi\)
−0.949791 + 0.312886i \(0.898704\pi\)
\(812\) 0 0
\(813\) − 9239.40i − 0.398573i
\(814\) 0 0
\(815\) 9651.43 0.414816
\(816\) 0 0
\(817\) −3075.94 −0.131718
\(818\) 0 0
\(819\) − 3748.00i − 0.159909i
\(820\) 0 0
\(821\) − 27786.1i − 1.18117i −0.806975 0.590585i \(-0.798897\pi\)
0.806975 0.590585i \(-0.201103\pi\)
\(822\) 0 0
\(823\) −39205.8 −1.66055 −0.830273 0.557357i \(-0.811815\pi\)
−0.830273 + 0.557357i \(0.811815\pi\)
\(824\) 0 0
\(825\) 3030.95 0.127908
\(826\) 0 0
\(827\) − 5929.15i − 0.249307i −0.992200 0.124653i \(-0.960218\pi\)
0.992200 0.124653i \(-0.0397819\pi\)
\(828\) 0 0
\(829\) − 1269.44i − 0.0531840i −0.999646 0.0265920i \(-0.991535\pi\)
0.999646 0.0265920i \(-0.00846550\pi\)
\(830\) 0 0
\(831\) 16802.3 0.701400
\(832\) 0 0
\(833\) 22839.5 0.949990
\(834\) 0 0
\(835\) − 14521.6i − 0.601845i
\(836\) 0 0
\(837\) 6142.19i 0.253650i
\(838\) 0 0
\(839\) −17884.1 −0.735910 −0.367955 0.929844i \(-0.619942\pi\)
−0.367955 + 0.929844i \(0.619942\pi\)
\(840\) 0 0
\(841\) 21494.6 0.881323
\(842\) 0 0
\(843\) − 610.278i − 0.0249337i
\(844\) 0 0
\(845\) 20925.7i 0.851911i
\(846\) 0 0
\(847\) −15891.8 −0.644686
\(848\) 0 0
\(849\) 6644.52 0.268598
\(850\) 0 0
\(851\) 1617.25i 0.0651453i
\(852\) 0 0
\(853\) − 16083.4i − 0.645585i −0.946470 0.322793i \(-0.895378\pi\)
0.946470 0.322793i \(-0.104622\pi\)
\(854\) 0 0
\(855\) 967.187 0.0386867
\(856\) 0 0
\(857\) −17203.6 −0.685722 −0.342861 0.939386i \(-0.611396\pi\)
−0.342861 + 0.939386i \(0.611396\pi\)
\(858\) 0 0
\(859\) − 24427.5i − 0.970264i −0.874441 0.485132i \(-0.838772\pi\)
0.874441 0.485132i \(-0.161228\pi\)
\(860\) 0 0
\(861\) − 1357.22i − 0.0537212i
\(862\) 0 0
\(863\) −46584.1 −1.83747 −0.918737 0.394870i \(-0.870790\pi\)
−0.918737 + 0.394870i \(0.870790\pi\)
\(864\) 0 0
\(865\) −34515.3 −1.35671
\(866\) 0 0
\(867\) 2447.39i 0.0958683i
\(868\) 0 0
\(869\) − 67790.5i − 2.64630i
\(870\) 0 0
\(871\) 59674.1 2.32145
\(872\) 0 0
\(873\) 16912.4 0.655667
\(874\) 0 0
\(875\) − 9462.91i − 0.365605i
\(876\) 0 0
\(877\) − 7402.05i − 0.285005i −0.989794 0.142503i \(-0.954485\pi\)
0.989794 0.142503i \(-0.0455149\pi\)
\(878\) 0 0
\(879\) −17437.1 −0.669101
\(880\) 0 0
\(881\) 12044.7 0.460608 0.230304 0.973119i \(-0.426028\pi\)
0.230304 + 0.973119i \(0.426028\pi\)
\(882\) 0 0
\(883\) 7150.02i 0.272500i 0.990674 + 0.136250i \(0.0435050\pi\)
−0.990674 + 0.136250i \(0.956495\pi\)
\(884\) 0 0
\(885\) − 10130.4i − 0.384779i
\(886\) 0 0
\(887\) −21897.6 −0.828916 −0.414458 0.910068i \(-0.636029\pi\)
−0.414458 + 0.910068i \(0.636029\pi\)
\(888\) 0 0
\(889\) 10578.8 0.399102
\(890\) 0 0
\(891\) − 4996.79i − 0.187878i
\(892\) 0 0
\(893\) − 927.087i − 0.0347411i
\(894\) 0 0
\(895\) −3369.36 −0.125838
\(896\) 0 0
\(897\) 30511.4 1.13573
\(898\) 0 0
\(899\) 12238.9i 0.454047i
\(900\) 0 0
\(901\) 29392.5i 1.08680i
\(902\) 0 0
\(903\) 5747.45 0.211808
\(904\) 0 0
\(905\) 31962.8 1.17401
\(906\) 0 0
\(907\) 800.885i 0.0293197i 0.999893 + 0.0146598i \(0.00466654\pi\)
−0.999893 + 0.0146598i \(0.995333\pi\)
\(908\) 0 0
\(909\) − 15502.6i − 0.565664i
\(910\) 0 0
\(911\) −26742.9 −0.972593 −0.486296 0.873794i \(-0.661652\pi\)
−0.486296 + 0.873794i \(0.661652\pi\)
\(912\) 0 0
\(913\) −48846.5 −1.77063
\(914\) 0 0
\(915\) 10130.4i 0.366011i
\(916\) 0 0
\(917\) 12846.1i 0.462613i
\(918\) 0 0
\(919\) 3744.72 0.134414 0.0672072 0.997739i \(-0.478591\pi\)
0.0672072 + 0.997739i \(0.478591\pi\)
\(920\) 0 0
\(921\) 22012.0 0.787535
\(922\) 0 0
\(923\) − 64530.3i − 2.30124i
\(924\) 0 0
\(925\) − 168.873i − 0.00600271i
\(926\) 0 0
\(927\) 17179.4 0.608679
\(928\) 0 0
\(929\) −25667.3 −0.906477 −0.453238 0.891389i \(-0.649731\pi\)
−0.453238 + 0.891389i \(0.649731\pi\)
\(930\) 0 0
\(931\) 3111.45i 0.109531i
\(932\) 0 0
\(933\) 19727.7i 0.692236i
\(934\) 0 0
\(935\) 48662.9 1.70208
\(936\) 0 0
\(937\) −17978.7 −0.626829 −0.313414 0.949616i \(-0.601473\pi\)
−0.313414 + 0.949616i \(0.601473\pi\)
\(938\) 0 0
\(939\) 4670.01i 0.162300i
\(940\) 0 0
\(941\) 8120.01i 0.281302i 0.990059 + 0.140651i \(0.0449195\pi\)
−0.990059 + 0.140651i \(0.955081\pi\)
\(942\) 0 0
\(943\) 11048.8 0.381545
\(944\) 0 0
\(945\) −1807.21 −0.0622099
\(946\) 0 0
\(947\) 7930.95i 0.272145i 0.990699 + 0.136072i \(0.0434480\pi\)
−0.990699 + 0.136072i \(0.956552\pi\)
\(948\) 0 0
\(949\) 23490.9i 0.803527i
\(950\) 0 0
\(951\) 28371.8 0.967422
\(952\) 0 0
\(953\) −29833.3 −1.01406 −0.507028 0.861930i \(-0.669256\pi\)
−0.507028 + 0.861930i \(0.669256\pi\)
\(954\) 0 0
\(955\) − 19348.2i − 0.655596i
\(956\) 0 0
\(957\) − 9956.55i − 0.336311i
\(958\) 0 0
\(959\) 16535.3 0.556781
\(960\) 0 0
\(961\) 21960.1 0.737139
\(962\) 0 0
\(963\) 1157.60i 0.0387364i
\(964\) 0 0
\(965\) − 31358.7i − 1.04609i
\(966\) 0 0
\(967\) −7650.56 −0.254421 −0.127211 0.991876i \(-0.540602\pi\)
−0.127211 + 0.991876i \(0.540602\pi\)
\(968\) 0 0
\(969\) −2341.32 −0.0776204
\(970\) 0 0
\(971\) 5634.51i 0.186220i 0.995656 + 0.0931102i \(0.0296809\pi\)
−0.995656 + 0.0931102i \(0.970319\pi\)
\(972\) 0 0
\(973\) − 8549.80i − 0.281700i
\(974\) 0 0
\(975\) −3186.00 −0.104650
\(976\) 0 0
\(977\) 43983.5 1.44028 0.720142 0.693827i \(-0.244077\pi\)
0.720142 + 0.693827i \(0.244077\pi\)
\(978\) 0 0
\(979\) 9291.72i 0.303335i
\(980\) 0 0
\(981\) − 6824.41i − 0.222107i
\(982\) 0 0
\(983\) 7759.30 0.251763 0.125882 0.992045i \(-0.459824\pi\)
0.125882 + 0.992045i \(0.459824\pi\)
\(984\) 0 0
\(985\) −9477.00 −0.306561
\(986\) 0 0
\(987\) 1732.28i 0.0558653i
\(988\) 0 0
\(989\) 46788.4i 1.50433i
\(990\) 0 0
\(991\) 10114.8 0.324226 0.162113 0.986772i \(-0.448169\pi\)
0.162113 + 0.986772i \(0.448169\pi\)
\(992\) 0 0
\(993\) 32722.9 1.04575
\(994\) 0 0
\(995\) − 28976.3i − 0.923225i
\(996\) 0 0
\(997\) 43842.2i 1.39267i 0.717715 + 0.696337i \(0.245188\pi\)
−0.717715 + 0.696337i \(0.754812\pi\)
\(998\) 0 0
\(999\) −278.402 −0.00881706
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.d.c.193.3 yes 4
3.2 odd 2 1152.4.d.i.577.3 4
4.3 odd 2 384.4.d.e.193.1 yes 4
8.3 odd 2 384.4.d.e.193.4 yes 4
8.5 even 2 inner 384.4.d.c.193.2 4
12.11 even 2 1152.4.d.o.577.3 4
16.3 odd 4 768.4.a.p.1.1 2
16.5 even 4 768.4.a.k.1.2 2
16.11 odd 4 768.4.a.e.1.2 2
16.13 even 4 768.4.a.j.1.1 2
24.5 odd 2 1152.4.d.i.577.2 4
24.11 even 2 1152.4.d.o.577.2 4
48.5 odd 4 2304.4.a.bq.1.1 2
48.11 even 4 2304.4.a.bp.1.1 2
48.29 odd 4 2304.4.a.t.1.2 2
48.35 even 4 2304.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.d.c.193.2 4 8.5 even 2 inner
384.4.d.c.193.3 yes 4 1.1 even 1 trivial
384.4.d.e.193.1 yes 4 4.3 odd 2
384.4.d.e.193.4 yes 4 8.3 odd 2
768.4.a.e.1.2 2 16.11 odd 4
768.4.a.j.1.1 2 16.13 even 4
768.4.a.k.1.2 2 16.5 even 4
768.4.a.p.1.1 2 16.3 odd 4
1152.4.d.i.577.2 4 24.5 odd 2
1152.4.d.i.577.3 4 3.2 odd 2
1152.4.d.o.577.2 4 24.11 even 2
1152.4.d.o.577.3 4 12.11 even 2
2304.4.a.s.1.2 2 48.35 even 4
2304.4.a.t.1.2 2 48.29 odd 4
2304.4.a.bp.1.1 2 48.11 even 4
2304.4.a.bq.1.1 2 48.5 odd 4