Properties

Label 3840.2.a.bh.1.2
Level $3840$
Weight $2$
Character 3840.1
Self dual yes
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(1,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} +4.82843 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{5} +4.82843 q^{7} +1.00000 q^{9} -0.828427 q^{11} +2.00000 q^{13} -1.00000 q^{15} +5.65685 q^{17} +6.82843 q^{19} -4.82843 q^{21} +1.17157 q^{23} +1.00000 q^{25} -1.00000 q^{27} -6.00000 q^{29} +4.00000 q^{31} +0.828427 q^{33} +4.82843 q^{35} -7.65685 q^{37} -2.00000 q^{39} -3.65685 q^{41} +9.65685 q^{43} +1.00000 q^{45} +5.17157 q^{47} +16.3137 q^{49} -5.65685 q^{51} +9.31371 q^{53} -0.828427 q^{55} -6.82843 q^{57} -14.4853 q^{59} -4.00000 q^{61} +4.82843 q^{63} +2.00000 q^{65} -4.00000 q^{67} -1.17157 q^{69} -5.65685 q^{71} -13.3137 q^{73} -1.00000 q^{75} -4.00000 q^{77} +4.00000 q^{79} +1.00000 q^{81} -2.34315 q^{83} +5.65685 q^{85} +6.00000 q^{87} +0.343146 q^{89} +9.65685 q^{91} -4.00000 q^{93} +6.82843 q^{95} -14.0000 q^{97} -0.828427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{9} + 4 q^{11} + 4 q^{13} - 2 q^{15} + 8 q^{19} - 4 q^{21} + 8 q^{23} + 2 q^{25} - 2 q^{27} - 12 q^{29} + 8 q^{31} - 4 q^{33} + 4 q^{35} - 4 q^{37} - 4 q^{39} + 4 q^{41} + 8 q^{43} + 2 q^{45} + 16 q^{47} + 10 q^{49} - 4 q^{53} + 4 q^{55} - 8 q^{57} - 12 q^{59} - 8 q^{61} + 4 q^{63} + 4 q^{65} - 8 q^{67} - 8 q^{69} - 4 q^{73} - 2 q^{75} - 8 q^{77} + 8 q^{79} + 2 q^{81} - 16 q^{83} + 12 q^{87} + 12 q^{89} + 8 q^{91} - 8 q^{93} + 8 q^{95} - 28 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.82843 1.82497 0.912487 0.409106i \(-0.134159\pi\)
0.912487 + 0.409106i \(0.134159\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.828427 −0.249780 −0.124890 0.992171i \(-0.539858\pi\)
−0.124890 + 0.992171i \(0.539858\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 5.65685 1.37199 0.685994 0.727607i \(-0.259367\pi\)
0.685994 + 0.727607i \(0.259367\pi\)
\(18\) 0 0
\(19\) 6.82843 1.56655 0.783274 0.621676i \(-0.213548\pi\)
0.783274 + 0.621676i \(0.213548\pi\)
\(20\) 0 0
\(21\) −4.82843 −1.05365
\(22\) 0 0
\(23\) 1.17157 0.244290 0.122145 0.992512i \(-0.461023\pi\)
0.122145 + 0.992512i \(0.461023\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0.828427 0.144211
\(34\) 0 0
\(35\) 4.82843 0.816153
\(36\) 0 0
\(37\) −7.65685 −1.25878 −0.629390 0.777090i \(-0.716695\pi\)
−0.629390 + 0.777090i \(0.716695\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −3.65685 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(42\) 0 0
\(43\) 9.65685 1.47266 0.736328 0.676625i \(-0.236558\pi\)
0.736328 + 0.676625i \(0.236558\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 5.17157 0.754351 0.377176 0.926142i \(-0.376895\pi\)
0.377176 + 0.926142i \(0.376895\pi\)
\(48\) 0 0
\(49\) 16.3137 2.33053
\(50\) 0 0
\(51\) −5.65685 −0.792118
\(52\) 0 0
\(53\) 9.31371 1.27934 0.639668 0.768651i \(-0.279072\pi\)
0.639668 + 0.768651i \(0.279072\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) 0 0
\(57\) −6.82843 −0.904447
\(58\) 0 0
\(59\) −14.4853 −1.88582 −0.942912 0.333043i \(-0.891924\pi\)
−0.942912 + 0.333043i \(0.891924\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 4.82843 0.608325
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −1.17157 −0.141041
\(70\) 0 0
\(71\) −5.65685 −0.671345 −0.335673 0.941979i \(-0.608964\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 0 0
\(73\) −13.3137 −1.55825 −0.779126 0.626868i \(-0.784337\pi\)
−0.779126 + 0.626868i \(0.784337\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −2.34315 −0.257194 −0.128597 0.991697i \(-0.541047\pi\)
−0.128597 + 0.991697i \(0.541047\pi\)
\(84\) 0 0
\(85\) 5.65685 0.613572
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 0.343146 0.0363734 0.0181867 0.999835i \(-0.494211\pi\)
0.0181867 + 0.999835i \(0.494211\pi\)
\(90\) 0 0
\(91\) 9.65685 1.01231
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 6.82843 0.700582
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −0.828427 −0.0832601
\(100\) 0 0
\(101\) −17.3137 −1.72278 −0.861389 0.507946i \(-0.830405\pi\)
−0.861389 + 0.507946i \(0.830405\pi\)
\(102\) 0 0
\(103\) 10.4853 1.03315 0.516573 0.856243i \(-0.327208\pi\)
0.516573 + 0.856243i \(0.327208\pi\)
\(104\) 0 0
\(105\) −4.82843 −0.471206
\(106\) 0 0
\(107\) −5.65685 −0.546869 −0.273434 0.961891i \(-0.588160\pi\)
−0.273434 + 0.961891i \(0.588160\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 7.65685 0.726756
\(112\) 0 0
\(113\) 9.65685 0.908440 0.454220 0.890889i \(-0.349918\pi\)
0.454220 + 0.890889i \(0.349918\pi\)
\(114\) 0 0
\(115\) 1.17157 0.109250
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 27.3137 2.50384
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) 3.65685 0.329727
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.828427 −0.0735110 −0.0367555 0.999324i \(-0.511702\pi\)
−0.0367555 + 0.999324i \(0.511702\pi\)
\(128\) 0 0
\(129\) −9.65685 −0.850239
\(130\) 0 0
\(131\) 8.82843 0.771343 0.385672 0.922636i \(-0.373970\pi\)
0.385672 + 0.922636i \(0.373970\pi\)
\(132\) 0 0
\(133\) 32.9706 2.85891
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −17.6569 −1.50853 −0.754263 0.656572i \(-0.772006\pi\)
−0.754263 + 0.656572i \(0.772006\pi\)
\(138\) 0 0
\(139\) 8.48528 0.719712 0.359856 0.933008i \(-0.382826\pi\)
0.359856 + 0.933008i \(0.382826\pi\)
\(140\) 0 0
\(141\) −5.17157 −0.435525
\(142\) 0 0
\(143\) −1.65685 −0.138553
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) −16.3137 −1.34553
\(148\) 0 0
\(149\) −13.3137 −1.09070 −0.545351 0.838208i \(-0.683604\pi\)
−0.545351 + 0.838208i \(0.683604\pi\)
\(150\) 0 0
\(151\) 10.3431 0.841713 0.420857 0.907127i \(-0.361730\pi\)
0.420857 + 0.907127i \(0.361730\pi\)
\(152\) 0 0
\(153\) 5.65685 0.457330
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 7.65685 0.611083 0.305542 0.952179i \(-0.401162\pi\)
0.305542 + 0.952179i \(0.401162\pi\)
\(158\) 0 0
\(159\) −9.31371 −0.738625
\(160\) 0 0
\(161\) 5.65685 0.445823
\(162\) 0 0
\(163\) −12.9706 −1.01593 −0.507966 0.861377i \(-0.669603\pi\)
−0.507966 + 0.861377i \(0.669603\pi\)
\(164\) 0 0
\(165\) 0.828427 0.0644930
\(166\) 0 0
\(167\) 6.82843 0.528400 0.264200 0.964468i \(-0.414892\pi\)
0.264200 + 0.964468i \(0.414892\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 6.82843 0.522183
\(172\) 0 0
\(173\) −1.31371 −0.0998794 −0.0499397 0.998752i \(-0.515903\pi\)
−0.0499397 + 0.998752i \(0.515903\pi\)
\(174\) 0 0
\(175\) 4.82843 0.364995
\(176\) 0 0
\(177\) 14.4853 1.08878
\(178\) 0 0
\(179\) 2.48528 0.185759 0.0928793 0.995677i \(-0.470393\pi\)
0.0928793 + 0.995677i \(0.470393\pi\)
\(180\) 0 0
\(181\) −18.6274 −1.38457 −0.692283 0.721627i \(-0.743395\pi\)
−0.692283 + 0.721627i \(0.743395\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) −7.65685 −0.562943
\(186\) 0 0
\(187\) −4.68629 −0.342696
\(188\) 0 0
\(189\) −4.82843 −0.351216
\(190\) 0 0
\(191\) 11.3137 0.818631 0.409316 0.912393i \(-0.365768\pi\)
0.409316 + 0.912393i \(0.365768\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −25.3137 −1.80353 −0.901764 0.432230i \(-0.857727\pi\)
−0.901764 + 0.432230i \(0.857727\pi\)
\(198\) 0 0
\(199\) −16.9706 −1.20301 −0.601506 0.798869i \(-0.705432\pi\)
−0.601506 + 0.798869i \(0.705432\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) −28.9706 −2.03333
\(204\) 0 0
\(205\) −3.65685 −0.255406
\(206\) 0 0
\(207\) 1.17157 0.0814299
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 16.4853 1.13489 0.567447 0.823410i \(-0.307931\pi\)
0.567447 + 0.823410i \(0.307931\pi\)
\(212\) 0 0
\(213\) 5.65685 0.387601
\(214\) 0 0
\(215\) 9.65685 0.658592
\(216\) 0 0
\(217\) 19.3137 1.31110
\(218\) 0 0
\(219\) 13.3137 0.899657
\(220\) 0 0
\(221\) 11.3137 0.761042
\(222\) 0 0
\(223\) 9.51472 0.637153 0.318576 0.947897i \(-0.396795\pi\)
0.318576 + 0.947897i \(0.396795\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 18.6274 1.23635 0.618173 0.786042i \(-0.287873\pi\)
0.618173 + 0.786042i \(0.287873\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 29.6569 1.94289 0.971443 0.237275i \(-0.0762542\pi\)
0.971443 + 0.237275i \(0.0762542\pi\)
\(234\) 0 0
\(235\) 5.17157 0.337356
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 29.6569 1.91834 0.959171 0.282826i \(-0.0912719\pi\)
0.959171 + 0.282826i \(0.0912719\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 16.3137 1.04224
\(246\) 0 0
\(247\) 13.6569 0.868965
\(248\) 0 0
\(249\) 2.34315 0.148491
\(250\) 0 0
\(251\) −0.142136 −0.00897152 −0.00448576 0.999990i \(-0.501428\pi\)
−0.00448576 + 0.999990i \(0.501428\pi\)
\(252\) 0 0
\(253\) −0.970563 −0.0610188
\(254\) 0 0
\(255\) −5.65685 −0.354246
\(256\) 0 0
\(257\) −9.65685 −0.602378 −0.301189 0.953564i \(-0.597384\pi\)
−0.301189 + 0.953564i \(0.597384\pi\)
\(258\) 0 0
\(259\) −36.9706 −2.29724
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −26.1421 −1.61199 −0.805997 0.591920i \(-0.798370\pi\)
−0.805997 + 0.591920i \(0.798370\pi\)
\(264\) 0 0
\(265\) 9.31371 0.572137
\(266\) 0 0
\(267\) −0.343146 −0.0210002
\(268\) 0 0
\(269\) 5.31371 0.323983 0.161991 0.986792i \(-0.448208\pi\)
0.161991 + 0.986792i \(0.448208\pi\)
\(270\) 0 0
\(271\) 21.6569 1.31556 0.657780 0.753210i \(-0.271496\pi\)
0.657780 + 0.753210i \(0.271496\pi\)
\(272\) 0 0
\(273\) −9.65685 −0.584459
\(274\) 0 0
\(275\) −0.828427 −0.0499560
\(276\) 0 0
\(277\) 27.6569 1.66174 0.830870 0.556467i \(-0.187843\pi\)
0.830870 + 0.556467i \(0.187843\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 12.6274 0.753289 0.376644 0.926358i \(-0.377078\pi\)
0.376644 + 0.926358i \(0.377078\pi\)
\(282\) 0 0
\(283\) −26.6274 −1.58284 −0.791418 0.611276i \(-0.790657\pi\)
−0.791418 + 0.611276i \(0.790657\pi\)
\(284\) 0 0
\(285\) −6.82843 −0.404481
\(286\) 0 0
\(287\) −17.6569 −1.04225
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 0 0
\(293\) 16.6274 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(294\) 0 0
\(295\) −14.4853 −0.843366
\(296\) 0 0
\(297\) 0.828427 0.0480702
\(298\) 0 0
\(299\) 2.34315 0.135508
\(300\) 0 0
\(301\) 46.6274 2.68756
\(302\) 0 0
\(303\) 17.3137 0.994647
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −25.6569 −1.46431 −0.732157 0.681136i \(-0.761486\pi\)
−0.732157 + 0.681136i \(0.761486\pi\)
\(308\) 0 0
\(309\) −10.4853 −0.596487
\(310\) 0 0
\(311\) 2.34315 0.132868 0.0664338 0.997791i \(-0.478838\pi\)
0.0664338 + 0.997791i \(0.478838\pi\)
\(312\) 0 0
\(313\) 1.31371 0.0742552 0.0371276 0.999311i \(-0.488179\pi\)
0.0371276 + 0.999311i \(0.488179\pi\)
\(314\) 0 0
\(315\) 4.82843 0.272051
\(316\) 0 0
\(317\) 5.31371 0.298448 0.149224 0.988803i \(-0.452323\pi\)
0.149224 + 0.988803i \(0.452323\pi\)
\(318\) 0 0
\(319\) 4.97056 0.278298
\(320\) 0 0
\(321\) 5.65685 0.315735
\(322\) 0 0
\(323\) 38.6274 2.14929
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) −12.0000 −0.663602
\(328\) 0 0
\(329\) 24.9706 1.37667
\(330\) 0 0
\(331\) 18.1421 0.997182 0.498591 0.866837i \(-0.333851\pi\)
0.498591 + 0.866837i \(0.333851\pi\)
\(332\) 0 0
\(333\) −7.65685 −0.419593
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −24.6274 −1.34154 −0.670770 0.741665i \(-0.734036\pi\)
−0.670770 + 0.741665i \(0.734036\pi\)
\(338\) 0 0
\(339\) −9.65685 −0.524488
\(340\) 0 0
\(341\) −3.31371 −0.179447
\(342\) 0 0
\(343\) 44.9706 2.42818
\(344\) 0 0
\(345\) −1.17157 −0.0630754
\(346\) 0 0
\(347\) −23.3137 −1.25155 −0.625773 0.780005i \(-0.715216\pi\)
−0.625773 + 0.780005i \(0.715216\pi\)
\(348\) 0 0
\(349\) −4.00000 −0.214115 −0.107058 0.994253i \(-0.534143\pi\)
−0.107058 + 0.994253i \(0.534143\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 10.3431 0.550510 0.275255 0.961371i \(-0.411238\pi\)
0.275255 + 0.961371i \(0.411238\pi\)
\(354\) 0 0
\(355\) −5.65685 −0.300235
\(356\) 0 0
\(357\) −27.3137 −1.44559
\(358\) 0 0
\(359\) 20.2843 1.07056 0.535281 0.844674i \(-0.320206\pi\)
0.535281 + 0.844674i \(0.320206\pi\)
\(360\) 0 0
\(361\) 27.6274 1.45407
\(362\) 0 0
\(363\) 10.3137 0.541329
\(364\) 0 0
\(365\) −13.3137 −0.696871
\(366\) 0 0
\(367\) 7.17157 0.374353 0.187177 0.982326i \(-0.440066\pi\)
0.187177 + 0.982326i \(0.440066\pi\)
\(368\) 0 0
\(369\) −3.65685 −0.190368
\(370\) 0 0
\(371\) 44.9706 2.33476
\(372\) 0 0
\(373\) 10.9706 0.568034 0.284017 0.958819i \(-0.408333\pi\)
0.284017 + 0.958819i \(0.408333\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −10.8284 −0.556219 −0.278109 0.960549i \(-0.589708\pi\)
−0.278109 + 0.960549i \(0.589708\pi\)
\(380\) 0 0
\(381\) 0.828427 0.0424416
\(382\) 0 0
\(383\) −13.1716 −0.673036 −0.336518 0.941677i \(-0.609249\pi\)
−0.336518 + 0.941677i \(0.609249\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 0 0
\(387\) 9.65685 0.490885
\(388\) 0 0
\(389\) 20.6274 1.04585 0.522926 0.852378i \(-0.324840\pi\)
0.522926 + 0.852378i \(0.324840\pi\)
\(390\) 0 0
\(391\) 6.62742 0.335163
\(392\) 0 0
\(393\) −8.82843 −0.445335
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) 0 0
\(399\) −32.9706 −1.65059
\(400\) 0 0
\(401\) −34.9706 −1.74635 −0.873173 0.487410i \(-0.837942\pi\)
−0.873173 + 0.487410i \(0.837942\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 6.34315 0.314418
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 17.6569 0.870948
\(412\) 0 0
\(413\) −69.9411 −3.44158
\(414\) 0 0
\(415\) −2.34315 −0.115021
\(416\) 0 0
\(417\) −8.48528 −0.415526
\(418\) 0 0
\(419\) −9.51472 −0.464824 −0.232412 0.972617i \(-0.574662\pi\)
−0.232412 + 0.972617i \(0.574662\pi\)
\(420\) 0 0
\(421\) 4.68629 0.228396 0.114198 0.993458i \(-0.463570\pi\)
0.114198 + 0.993458i \(0.463570\pi\)
\(422\) 0 0
\(423\) 5.17157 0.251450
\(424\) 0 0
\(425\) 5.65685 0.274398
\(426\) 0 0
\(427\) −19.3137 −0.934656
\(428\) 0 0
\(429\) 1.65685 0.0799937
\(430\) 0 0
\(431\) −20.2843 −0.977059 −0.488529 0.872547i \(-0.662467\pi\)
−0.488529 + 0.872547i \(0.662467\pi\)
\(432\) 0 0
\(433\) −21.3137 −1.02427 −0.512136 0.858905i \(-0.671146\pi\)
−0.512136 + 0.858905i \(0.671146\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −20.2843 −0.968115 −0.484058 0.875036i \(-0.660838\pi\)
−0.484058 + 0.875036i \(0.660838\pi\)
\(440\) 0 0
\(441\) 16.3137 0.776843
\(442\) 0 0
\(443\) 23.3137 1.10767 0.553834 0.832627i \(-0.313164\pi\)
0.553834 + 0.832627i \(0.313164\pi\)
\(444\) 0 0
\(445\) 0.343146 0.0162667
\(446\) 0 0
\(447\) 13.3137 0.629717
\(448\) 0 0
\(449\) −5.31371 −0.250769 −0.125385 0.992108i \(-0.540017\pi\)
−0.125385 + 0.992108i \(0.540017\pi\)
\(450\) 0 0
\(451\) 3.02944 0.142651
\(452\) 0 0
\(453\) −10.3431 −0.485963
\(454\) 0 0
\(455\) 9.65685 0.452720
\(456\) 0 0
\(457\) −9.31371 −0.435677 −0.217838 0.975985i \(-0.569901\pi\)
−0.217838 + 0.975985i \(0.569901\pi\)
\(458\) 0 0
\(459\) −5.65685 −0.264039
\(460\) 0 0
\(461\) 12.6274 0.588117 0.294059 0.955787i \(-0.404994\pi\)
0.294059 + 0.955787i \(0.404994\pi\)
\(462\) 0 0
\(463\) −18.4853 −0.859084 −0.429542 0.903047i \(-0.641325\pi\)
−0.429542 + 0.903047i \(0.641325\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) −21.6569 −1.00216 −0.501080 0.865401i \(-0.667064\pi\)
−0.501080 + 0.865401i \(0.667064\pi\)
\(468\) 0 0
\(469\) −19.3137 −0.891824
\(470\) 0 0
\(471\) −7.65685 −0.352809
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 6.82843 0.313310
\(476\) 0 0
\(477\) 9.31371 0.426445
\(478\) 0 0
\(479\) 2.34315 0.107061 0.0535305 0.998566i \(-0.482953\pi\)
0.0535305 + 0.998566i \(0.482953\pi\)
\(480\) 0 0
\(481\) −15.3137 −0.698245
\(482\) 0 0
\(483\) −5.65685 −0.257396
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) −34.4853 −1.56268 −0.781339 0.624107i \(-0.785463\pi\)
−0.781339 + 0.624107i \(0.785463\pi\)
\(488\) 0 0
\(489\) 12.9706 0.586549
\(490\) 0 0
\(491\) 7.85786 0.354620 0.177310 0.984155i \(-0.443260\pi\)
0.177310 + 0.984155i \(0.443260\pi\)
\(492\) 0 0
\(493\) −33.9411 −1.52863
\(494\) 0 0
\(495\) −0.828427 −0.0372350
\(496\) 0 0
\(497\) −27.3137 −1.22519
\(498\) 0 0
\(499\) 6.82843 0.305682 0.152841 0.988251i \(-0.451158\pi\)
0.152841 + 0.988251i \(0.451158\pi\)
\(500\) 0 0
\(501\) −6.82843 −0.305072
\(502\) 0 0
\(503\) −25.4558 −1.13502 −0.567510 0.823367i \(-0.692093\pi\)
−0.567510 + 0.823367i \(0.692093\pi\)
\(504\) 0 0
\(505\) −17.3137 −0.770450
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 6.68629 0.296365 0.148182 0.988960i \(-0.452658\pi\)
0.148182 + 0.988960i \(0.452658\pi\)
\(510\) 0 0
\(511\) −64.2843 −2.84377
\(512\) 0 0
\(513\) −6.82843 −0.301482
\(514\) 0 0
\(515\) 10.4853 0.462037
\(516\) 0 0
\(517\) −4.28427 −0.188422
\(518\) 0 0
\(519\) 1.31371 0.0576654
\(520\) 0 0
\(521\) −37.3137 −1.63474 −0.817372 0.576111i \(-0.804570\pi\)
−0.817372 + 0.576111i \(0.804570\pi\)
\(522\) 0 0
\(523\) 7.31371 0.319806 0.159903 0.987133i \(-0.448882\pi\)
0.159903 + 0.987133i \(0.448882\pi\)
\(524\) 0 0
\(525\) −4.82843 −0.210730
\(526\) 0 0
\(527\) 22.6274 0.985666
\(528\) 0 0
\(529\) −21.6274 −0.940322
\(530\) 0 0
\(531\) −14.4853 −0.628608
\(532\) 0 0
\(533\) −7.31371 −0.316792
\(534\) 0 0
\(535\) −5.65685 −0.244567
\(536\) 0 0
\(537\) −2.48528 −0.107248
\(538\) 0 0
\(539\) −13.5147 −0.582120
\(540\) 0 0
\(541\) 37.9411 1.63122 0.815608 0.578605i \(-0.196403\pi\)
0.815608 + 0.578605i \(0.196403\pi\)
\(542\) 0 0
\(543\) 18.6274 0.799379
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −28.9706 −1.23869 −0.619346 0.785118i \(-0.712602\pi\)
−0.619346 + 0.785118i \(0.712602\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) −40.9706 −1.74540
\(552\) 0 0
\(553\) 19.3137 0.821302
\(554\) 0 0
\(555\) 7.65685 0.325015
\(556\) 0 0
\(557\) −2.68629 −0.113822 −0.0569109 0.998379i \(-0.518125\pi\)
−0.0569109 + 0.998379i \(0.518125\pi\)
\(558\) 0 0
\(559\) 19.3137 0.816883
\(560\) 0 0
\(561\) 4.68629 0.197855
\(562\) 0 0
\(563\) −39.3137 −1.65688 −0.828438 0.560081i \(-0.810770\pi\)
−0.828438 + 0.560081i \(0.810770\pi\)
\(564\) 0 0
\(565\) 9.65685 0.406267
\(566\) 0 0
\(567\) 4.82843 0.202775
\(568\) 0 0
\(569\) −15.6569 −0.656369 −0.328185 0.944614i \(-0.606437\pi\)
−0.328185 + 0.944614i \(0.606437\pi\)
\(570\) 0 0
\(571\) 27.5147 1.15146 0.575728 0.817642i \(-0.304719\pi\)
0.575728 + 0.817642i \(0.304719\pi\)
\(572\) 0 0
\(573\) −11.3137 −0.472637
\(574\) 0 0
\(575\) 1.17157 0.0488580
\(576\) 0 0
\(577\) 21.3137 0.887301 0.443651 0.896200i \(-0.353683\pi\)
0.443651 + 0.896200i \(0.353683\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) −11.3137 −0.469372
\(582\) 0 0
\(583\) −7.71573 −0.319553
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) −26.3431 −1.08730 −0.543649 0.839313i \(-0.682958\pi\)
−0.543649 + 0.839313i \(0.682958\pi\)
\(588\) 0 0
\(589\) 27.3137 1.12544
\(590\) 0 0
\(591\) 25.3137 1.04127
\(592\) 0 0
\(593\) −32.2843 −1.32576 −0.662878 0.748727i \(-0.730665\pi\)
−0.662878 + 0.748727i \(0.730665\pi\)
\(594\) 0 0
\(595\) 27.3137 1.11975
\(596\) 0 0
\(597\) 16.9706 0.694559
\(598\) 0 0
\(599\) 21.6569 0.884875 0.442438 0.896799i \(-0.354114\pi\)
0.442438 + 0.896799i \(0.354114\pi\)
\(600\) 0 0
\(601\) 6.00000 0.244745 0.122373 0.992484i \(-0.460950\pi\)
0.122373 + 0.992484i \(0.460950\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) −10.3137 −0.419312
\(606\) 0 0
\(607\) 6.48528 0.263229 0.131615 0.991301i \(-0.457984\pi\)
0.131615 + 0.991301i \(0.457984\pi\)
\(608\) 0 0
\(609\) 28.9706 1.17395
\(610\) 0 0
\(611\) 10.3431 0.418439
\(612\) 0 0
\(613\) 25.3137 1.02241 0.511206 0.859458i \(-0.329199\pi\)
0.511206 + 0.859458i \(0.329199\pi\)
\(614\) 0 0
\(615\) 3.65685 0.147459
\(616\) 0 0
\(617\) 28.2843 1.13868 0.569341 0.822102i \(-0.307198\pi\)
0.569341 + 0.822102i \(0.307198\pi\)
\(618\) 0 0
\(619\) −15.5147 −0.623589 −0.311795 0.950150i \(-0.600930\pi\)
−0.311795 + 0.950150i \(0.600930\pi\)
\(620\) 0 0
\(621\) −1.17157 −0.0470136
\(622\) 0 0
\(623\) 1.65685 0.0663805
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 5.65685 0.225913
\(628\) 0 0
\(629\) −43.3137 −1.72703
\(630\) 0 0
\(631\) 21.9411 0.873462 0.436731 0.899592i \(-0.356136\pi\)
0.436731 + 0.899592i \(0.356136\pi\)
\(632\) 0 0
\(633\) −16.4853 −0.655231
\(634\) 0 0
\(635\) −0.828427 −0.0328751
\(636\) 0 0
\(637\) 32.6274 1.29275
\(638\) 0 0
\(639\) −5.65685 −0.223782
\(640\) 0 0
\(641\) −18.6863 −0.738064 −0.369032 0.929417i \(-0.620311\pi\)
−0.369032 + 0.929417i \(0.620311\pi\)
\(642\) 0 0
\(643\) −3.02944 −0.119469 −0.0597347 0.998214i \(-0.519025\pi\)
−0.0597347 + 0.998214i \(0.519025\pi\)
\(644\) 0 0
\(645\) −9.65685 −0.380238
\(646\) 0 0
\(647\) −32.4853 −1.27713 −0.638564 0.769569i \(-0.720471\pi\)
−0.638564 + 0.769569i \(0.720471\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −19.3137 −0.756964
\(652\) 0 0
\(653\) −21.3137 −0.834070 −0.417035 0.908890i \(-0.636931\pi\)
−0.417035 + 0.908890i \(0.636931\pi\)
\(654\) 0 0
\(655\) 8.82843 0.344955
\(656\) 0 0
\(657\) −13.3137 −0.519417
\(658\) 0 0
\(659\) 27.1716 1.05845 0.529227 0.848480i \(-0.322482\pi\)
0.529227 + 0.848480i \(0.322482\pi\)
\(660\) 0 0
\(661\) 18.6274 0.724523 0.362261 0.932077i \(-0.382005\pi\)
0.362261 + 0.932077i \(0.382005\pi\)
\(662\) 0 0
\(663\) −11.3137 −0.439388
\(664\) 0 0
\(665\) 32.9706 1.27854
\(666\) 0 0
\(667\) −7.02944 −0.272181
\(668\) 0 0
\(669\) −9.51472 −0.367860
\(670\) 0 0
\(671\) 3.31371 0.127924
\(672\) 0 0
\(673\) 1.31371 0.0506397 0.0253199 0.999679i \(-0.491940\pi\)
0.0253199 + 0.999679i \(0.491940\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −29.3137 −1.12662 −0.563309 0.826247i \(-0.690472\pi\)
−0.563309 + 0.826247i \(0.690472\pi\)
\(678\) 0 0
\(679\) −67.5980 −2.59417
\(680\) 0 0
\(681\) −18.6274 −0.713804
\(682\) 0 0
\(683\) 16.9706 0.649361 0.324680 0.945824i \(-0.394743\pi\)
0.324680 + 0.945824i \(0.394743\pi\)
\(684\) 0 0
\(685\) −17.6569 −0.674634
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) 18.6274 0.709648
\(690\) 0 0
\(691\) −13.4558 −0.511884 −0.255942 0.966692i \(-0.582386\pi\)
−0.255942 + 0.966692i \(0.582386\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) 8.48528 0.321865
\(696\) 0 0
\(697\) −20.6863 −0.783549
\(698\) 0 0
\(699\) −29.6569 −1.12173
\(700\) 0 0
\(701\) 16.6274 0.628009 0.314004 0.949422i \(-0.398329\pi\)
0.314004 + 0.949422i \(0.398329\pi\)
\(702\) 0 0
\(703\) −52.2843 −1.97194
\(704\) 0 0
\(705\) −5.17157 −0.194773
\(706\) 0 0
\(707\) −83.5980 −3.14403
\(708\) 0 0
\(709\) 51.3137 1.92713 0.963563 0.267480i \(-0.0861910\pi\)
0.963563 + 0.267480i \(0.0861910\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 4.68629 0.175503
\(714\) 0 0
\(715\) −1.65685 −0.0619628
\(716\) 0 0
\(717\) −29.6569 −1.10756
\(718\) 0 0
\(719\) −20.6863 −0.771468 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(720\) 0 0
\(721\) 50.6274 1.88546
\(722\) 0 0
\(723\) −6.00000 −0.223142
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 40.8284 1.51424 0.757121 0.653274i \(-0.226605\pi\)
0.757121 + 0.653274i \(0.226605\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 54.6274 2.02047
\(732\) 0 0
\(733\) −30.2843 −1.11858 −0.559288 0.828974i \(-0.688925\pi\)
−0.559288 + 0.828974i \(0.688925\pi\)
\(734\) 0 0
\(735\) −16.3137 −0.601740
\(736\) 0 0
\(737\) 3.31371 0.122062
\(738\) 0 0
\(739\) 5.45584 0.200696 0.100348 0.994952i \(-0.468004\pi\)
0.100348 + 0.994952i \(0.468004\pi\)
\(740\) 0 0
\(741\) −13.6569 −0.501697
\(742\) 0 0
\(743\) −46.1421 −1.69279 −0.846395 0.532555i \(-0.821232\pi\)
−0.846395 + 0.532555i \(0.821232\pi\)
\(744\) 0 0
\(745\) −13.3137 −0.487777
\(746\) 0 0
\(747\) −2.34315 −0.0857312
\(748\) 0 0
\(749\) −27.3137 −0.998021
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0.142136 0.00517971
\(754\) 0 0
\(755\) 10.3431 0.376426
\(756\) 0 0
\(757\) −9.02944 −0.328180 −0.164090 0.986445i \(-0.552469\pi\)
−0.164090 + 0.986445i \(0.552469\pi\)
\(758\) 0 0
\(759\) 0.970563 0.0352292
\(760\) 0 0
\(761\) −16.6274 −0.602743 −0.301372 0.953507i \(-0.597444\pi\)
−0.301372 + 0.953507i \(0.597444\pi\)
\(762\) 0 0
\(763\) 57.9411 2.09761
\(764\) 0 0
\(765\) 5.65685 0.204524
\(766\) 0 0
\(767\) −28.9706 −1.04607
\(768\) 0 0
\(769\) −33.3137 −1.20132 −0.600662 0.799503i \(-0.705096\pi\)
−0.600662 + 0.799503i \(0.705096\pi\)
\(770\) 0 0
\(771\) 9.65685 0.347783
\(772\) 0 0
\(773\) −18.6863 −0.672099 −0.336050 0.941844i \(-0.609091\pi\)
−0.336050 + 0.941844i \(0.609091\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 36.9706 1.32631
\(778\) 0 0
\(779\) −24.9706 −0.894663
\(780\) 0 0
\(781\) 4.68629 0.167689
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 7.65685 0.273285
\(786\) 0 0
\(787\) 41.2548 1.47058 0.735288 0.677755i \(-0.237047\pi\)
0.735288 + 0.677755i \(0.237047\pi\)
\(788\) 0 0
\(789\) 26.1421 0.930685
\(790\) 0 0
\(791\) 46.6274 1.65788
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) −9.31371 −0.330323
\(796\) 0 0
\(797\) 29.3137 1.03834 0.519172 0.854670i \(-0.326240\pi\)
0.519172 + 0.854670i \(0.326240\pi\)
\(798\) 0 0
\(799\) 29.2548 1.03496
\(800\) 0 0
\(801\) 0.343146 0.0121245
\(802\) 0 0
\(803\) 11.0294 0.389220
\(804\) 0 0
\(805\) 5.65685 0.199378
\(806\) 0 0
\(807\) −5.31371 −0.187051
\(808\) 0 0
\(809\) −25.3137 −0.889983 −0.444991 0.895535i \(-0.646793\pi\)
−0.444991 + 0.895535i \(0.646793\pi\)
\(810\) 0 0
\(811\) 15.5147 0.544795 0.272398 0.962185i \(-0.412183\pi\)
0.272398 + 0.962185i \(0.412183\pi\)
\(812\) 0 0
\(813\) −21.6569 −0.759539
\(814\) 0 0
\(815\) −12.9706 −0.454339
\(816\) 0 0
\(817\) 65.9411 2.30699
\(818\) 0 0
\(819\) 9.65685 0.337438
\(820\) 0 0
\(821\) −33.3137 −1.16266 −0.581328 0.813669i \(-0.697467\pi\)
−0.581328 + 0.813669i \(0.697467\pi\)
\(822\) 0 0
\(823\) 21.1127 0.735942 0.367971 0.929837i \(-0.380052\pi\)
0.367971 + 0.929837i \(0.380052\pi\)
\(824\) 0 0
\(825\) 0.828427 0.0288421
\(826\) 0 0
\(827\) −42.6274 −1.48230 −0.741150 0.671339i \(-0.765719\pi\)
−0.741150 + 0.671339i \(0.765719\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) −27.6569 −0.959406
\(832\) 0 0
\(833\) 92.2843 3.19746
\(834\) 0 0
\(835\) 6.82843 0.236307
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −7.02944 −0.242683 −0.121342 0.992611i \(-0.538720\pi\)
−0.121342 + 0.992611i \(0.538720\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −12.6274 −0.434911
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) −49.7990 −1.71111
\(848\) 0 0
\(849\) 26.6274 0.913851
\(850\) 0 0
\(851\) −8.97056 −0.307507
\(852\) 0 0
\(853\) −37.3137 −1.27760 −0.638799 0.769374i \(-0.720568\pi\)
−0.638799 + 0.769374i \(0.720568\pi\)
\(854\) 0 0
\(855\) 6.82843 0.233527
\(856\) 0 0
\(857\) −4.28427 −0.146348 −0.0731740 0.997319i \(-0.523313\pi\)
−0.0731740 + 0.997319i \(0.523313\pi\)
\(858\) 0 0
\(859\) −44.7696 −1.52752 −0.763759 0.645502i \(-0.776648\pi\)
−0.763759 + 0.645502i \(0.776648\pi\)
\(860\) 0 0
\(861\) 17.6569 0.601744
\(862\) 0 0
\(863\) −9.17157 −0.312204 −0.156102 0.987741i \(-0.549893\pi\)
−0.156102 + 0.987741i \(0.549893\pi\)
\(864\) 0 0
\(865\) −1.31371 −0.0446674
\(866\) 0 0
\(867\) −15.0000 −0.509427
\(868\) 0 0
\(869\) −3.31371 −0.112410
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 4.82843 0.163231
\(876\) 0 0
\(877\) −16.3431 −0.551869 −0.275934 0.961176i \(-0.588987\pi\)
−0.275934 + 0.961176i \(0.588987\pi\)
\(878\) 0 0
\(879\) −16.6274 −0.560829
\(880\) 0 0
\(881\) 46.9706 1.58248 0.791239 0.611507i \(-0.209436\pi\)
0.791239 + 0.611507i \(0.209436\pi\)
\(882\) 0 0
\(883\) −22.3431 −0.751907 −0.375953 0.926639i \(-0.622685\pi\)
−0.375953 + 0.926639i \(0.622685\pi\)
\(884\) 0 0
\(885\) 14.4853 0.486917
\(886\) 0 0
\(887\) −47.7990 −1.60493 −0.802467 0.596697i \(-0.796479\pi\)
−0.802467 + 0.596697i \(0.796479\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) −0.828427 −0.0277534
\(892\) 0 0
\(893\) 35.3137 1.18173
\(894\) 0 0
\(895\) 2.48528 0.0830738
\(896\) 0 0
\(897\) −2.34315 −0.0782354
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 52.6863 1.75523
\(902\) 0 0
\(903\) −46.6274 −1.55166
\(904\) 0 0
\(905\) −18.6274 −0.619196
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) −17.3137 −0.574259
\(910\) 0 0
\(911\) −42.3431 −1.40289 −0.701446 0.712723i \(-0.747462\pi\)
−0.701446 + 0.712723i \(0.747462\pi\)
\(912\) 0 0
\(913\) 1.94113 0.0642419
\(914\) 0 0
\(915\) 4.00000 0.132236
\(916\) 0 0
\(917\) 42.6274 1.40768
\(918\) 0 0
\(919\) −37.9411 −1.25156 −0.625781 0.779999i \(-0.715220\pi\)
−0.625781 + 0.779999i \(0.715220\pi\)
\(920\) 0 0
\(921\) 25.6569 0.845422
\(922\) 0 0
\(923\) −11.3137 −0.372395
\(924\) 0 0
\(925\) −7.65685 −0.251756
\(926\) 0 0
\(927\) 10.4853 0.344382
\(928\) 0 0
\(929\) 12.6274 0.414292 0.207146 0.978310i \(-0.433582\pi\)
0.207146 + 0.978310i \(0.433582\pi\)
\(930\) 0 0
\(931\) 111.397 3.65089
\(932\) 0 0
\(933\) −2.34315 −0.0767111
\(934\) 0 0
\(935\) −4.68629 −0.153258
\(936\) 0 0
\(937\) −31.9411 −1.04347 −0.521736 0.853107i \(-0.674715\pi\)
−0.521736 + 0.853107i \(0.674715\pi\)
\(938\) 0 0
\(939\) −1.31371 −0.0428713
\(940\) 0 0
\(941\) 17.3137 0.564411 0.282205 0.959354i \(-0.408934\pi\)
0.282205 + 0.959354i \(0.408934\pi\)
\(942\) 0 0
\(943\) −4.28427 −0.139515
\(944\) 0 0
\(945\) −4.82843 −0.157069
\(946\) 0 0
\(947\) −5.37258 −0.174585 −0.0872927 0.996183i \(-0.527822\pi\)
−0.0872927 + 0.996183i \(0.527822\pi\)
\(948\) 0 0
\(949\) −26.6274 −0.864363
\(950\) 0 0
\(951\) −5.31371 −0.172309
\(952\) 0 0
\(953\) 49.6569 1.60854 0.804272 0.594262i \(-0.202556\pi\)
0.804272 + 0.594262i \(0.202556\pi\)
\(954\) 0 0
\(955\) 11.3137 0.366103
\(956\) 0 0
\(957\) −4.97056 −0.160675
\(958\) 0 0
\(959\) −85.2548 −2.75302
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −5.65685 −0.182290
\(964\) 0 0
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) −30.4853 −0.980341 −0.490170 0.871627i \(-0.663065\pi\)
−0.490170 + 0.871627i \(0.663065\pi\)
\(968\) 0 0
\(969\) −38.6274 −1.24089
\(970\) 0 0
\(971\) 48.4264 1.55408 0.777039 0.629453i \(-0.216721\pi\)
0.777039 + 0.629453i \(0.216721\pi\)
\(972\) 0 0
\(973\) 40.9706 1.31346
\(974\) 0 0
\(975\) −2.00000 −0.0640513
\(976\) 0 0
\(977\) −7.02944 −0.224892 −0.112446 0.993658i \(-0.535868\pi\)
−0.112446 + 0.993658i \(0.535868\pi\)
\(978\) 0 0
\(979\) −0.284271 −0.00908535
\(980\) 0 0
\(981\) 12.0000 0.383131
\(982\) 0 0
\(983\) 32.4853 1.03612 0.518060 0.855344i \(-0.326654\pi\)
0.518060 + 0.855344i \(0.326654\pi\)
\(984\) 0 0
\(985\) −25.3137 −0.806562
\(986\) 0 0
\(987\) −24.9706 −0.794822
\(988\) 0 0
\(989\) 11.3137 0.359755
\(990\) 0 0
\(991\) 7.02944 0.223297 0.111649 0.993748i \(-0.464387\pi\)
0.111649 + 0.993748i \(0.464387\pi\)
\(992\) 0 0
\(993\) −18.1421 −0.575723
\(994\) 0 0
\(995\) −16.9706 −0.538003
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) 0 0
\(999\) 7.65685 0.242252
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.a.bh.1.2 2
4.3 odd 2 3840.2.a.bl.1.1 2
8.3 odd 2 3840.2.a.bc.1.1 2
8.5 even 2 3840.2.a.bk.1.2 2
16.3 odd 4 1920.2.k.l.961.4 yes 4
16.5 even 4 1920.2.k.i.961.3 yes 4
16.11 odd 4 1920.2.k.l.961.2 yes 4
16.13 even 4 1920.2.k.i.961.1 4
48.5 odd 4 5760.2.k.n.2881.1 4
48.11 even 4 5760.2.k.w.2881.2 4
48.29 odd 4 5760.2.k.n.2881.3 4
48.35 even 4 5760.2.k.w.2881.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.i.961.1 4 16.13 even 4
1920.2.k.i.961.3 yes 4 16.5 even 4
1920.2.k.l.961.2 yes 4 16.11 odd 4
1920.2.k.l.961.4 yes 4 16.3 odd 4
3840.2.a.bc.1.1 2 8.3 odd 2
3840.2.a.bh.1.2 2 1.1 even 1 trivial
3840.2.a.bk.1.2 2 8.5 even 2
3840.2.a.bl.1.1 2 4.3 odd 2
5760.2.k.n.2881.1 4 48.5 odd 4
5760.2.k.n.2881.3 4 48.29 odd 4
5760.2.k.w.2881.2 4 48.11 even 4
5760.2.k.w.2881.4 4 48.35 even 4