Properties

Label 3840.2.d.x.2689.1
Level 38403840
Weight 22
Character 3840.2689
Analytic conductor 30.66330.663
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(2689,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3840=2835 3840 = 2^{8} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3840.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.662554376230.6625543762
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2689.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 3840.2689
Dual form 3840.2.d.x.2689.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q3+(1.000002.00000i)q52.00000iq7+1.00000q92.00000iq11+6.00000q13+(1.000002.00000i)q152.00000iq172.00000iq214.00000iq23+(3.00000+4.00000i)q25+1.00000q27+8.00000q312.00000iq33+(4.00000+2.00000i)q35+2.00000q37+6.00000q392.00000q414.00000q43+(1.000002.00000i)q458.00000iq47+3.00000q492.00000iq516.00000q53+(4.00000+2.00000i)q55+10.0000iq592.00000iq612.00000iq63+(6.0000012.0000i)q658.00000q674.00000iq69+12.0000q71+4.00000iq73+(3.00000+4.00000i)q754.00000q77+1.00000q81+4.00000q83+(4.00000+2.00000i)q8510.0000q8912.0000iq91+8.00000q93+8.00000iq972.00000iq99+O(q100)q+1.00000 q^{3} +(-1.00000 - 2.00000i) q^{5} -2.00000i q^{7} +1.00000 q^{9} -2.00000i q^{11} +6.00000 q^{13} +(-1.00000 - 2.00000i) q^{15} -2.00000i q^{17} -2.00000i q^{21} -4.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} +1.00000 q^{27} +8.00000 q^{31} -2.00000i q^{33} +(-4.00000 + 2.00000i) q^{35} +2.00000 q^{37} +6.00000 q^{39} -2.00000 q^{41} -4.00000 q^{43} +(-1.00000 - 2.00000i) q^{45} -8.00000i q^{47} +3.00000 q^{49} -2.00000i q^{51} -6.00000 q^{53} +(-4.00000 + 2.00000i) q^{55} +10.0000i q^{59} -2.00000i q^{61} -2.00000i q^{63} +(-6.00000 - 12.0000i) q^{65} -8.00000 q^{67} -4.00000i q^{69} +12.0000 q^{71} +4.00000i q^{73} +(-3.00000 + 4.00000i) q^{75} -4.00000 q^{77} +1.00000 q^{81} +4.00000 q^{83} +(-4.00000 + 2.00000i) q^{85} -10.0000 q^{89} -12.0000i q^{91} +8.00000 q^{93} +8.00000i q^{97} -2.00000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q32q5+2q9+12q132q156q25+2q27+16q318q35+4q37+12q394q418q432q45+6q4912q538q5512q65++16q93+O(q100) 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9} + 12 q^{13} - 2 q^{15} - 6 q^{25} + 2 q^{27} + 16 q^{31} - 8 q^{35} + 4 q^{37} + 12 q^{39} - 4 q^{41} - 8 q^{43} - 2 q^{45} + 6 q^{49} - 12 q^{53} - 8 q^{55} - 12 q^{65}+ \cdots + 16 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3840Z)×\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times.

nn 511511 15371537 25612561 28212821
χ(n)\chi(n) 11 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000 0.577350
44 0 0
55 −1.00000 2.00000i −0.447214 0.894427i
66 0 0
77 2.00000i 0.755929i −0.925820 0.377964i 0.876624π-0.876624\pi
0.925820 0.377964i 0.123376π-0.123376\pi
88 0 0
99 1.00000 0.333333
1010 0 0
1111 2.00000i 0.603023i −0.953463 0.301511i 0.902509π-0.902509\pi
0.953463 0.301511i 0.0974911π-0.0974911\pi
1212 0 0
1313 6.00000 1.66410 0.832050 0.554700i 0.187167π-0.187167\pi
0.832050 + 0.554700i 0.187167π0.187167\pi
1414 0 0
1515 −1.00000 2.00000i −0.258199 0.516398i
1616 0 0
1717 2.00000i 0.485071i −0.970143 0.242536i 0.922021π-0.922021\pi
0.970143 0.242536i 0.0779791π-0.0779791\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 2.00000i 0.436436i
2222 0 0
2323 4.00000i 0.834058i −0.908893 0.417029i 0.863071π-0.863071\pi
0.908893 0.417029i 0.136929π-0.136929\pi
2424 0 0
2525 −3.00000 + 4.00000i −0.600000 + 0.800000i
2626 0 0
2727 1.00000 0.192450
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 8.00000 1.43684 0.718421 0.695608i 0.244865π-0.244865\pi
0.718421 + 0.695608i 0.244865π0.244865\pi
3232 0 0
3333 2.00000i 0.348155i
3434 0 0
3535 −4.00000 + 2.00000i −0.676123 + 0.338062i
3636 0 0
3737 2.00000 0.328798 0.164399 0.986394i 0.447432π-0.447432\pi
0.164399 + 0.986394i 0.447432π0.447432\pi
3838 0 0
3939 6.00000 0.960769
4040 0 0
4141 −2.00000 −0.312348 −0.156174 0.987730i 0.549916π-0.549916\pi
−0.156174 + 0.987730i 0.549916π0.549916\pi
4242 0 0
4343 −4.00000 −0.609994 −0.304997 0.952353i 0.598656π-0.598656\pi
−0.304997 + 0.952353i 0.598656π0.598656\pi
4444 0 0
4545 −1.00000 2.00000i −0.149071 0.298142i
4646 0 0
4747 8.00000i 1.16692i −0.812142 0.583460i 0.801699π-0.801699\pi
0.812142 0.583460i 0.198301π-0.198301\pi
4848 0 0
4949 3.00000 0.428571
5050 0 0
5151 2.00000i 0.280056i
5252 0 0
5353 −6.00000 −0.824163 −0.412082 0.911147i 0.635198π-0.635198\pi
−0.412082 + 0.911147i 0.635198π0.635198\pi
5454 0 0
5555 −4.00000 + 2.00000i −0.539360 + 0.269680i
5656 0 0
5757 0 0
5858 0 0
5959 10.0000i 1.30189i 0.759125 + 0.650945i 0.225627π0.225627\pi
−0.759125 + 0.650945i 0.774373π0.774373\pi
6060 0 0
6161 2.00000i 0.256074i −0.991769 0.128037i 0.959132π-0.959132\pi
0.991769 0.128037i 0.0408676π-0.0408676\pi
6262 0 0
6363 2.00000i 0.251976i
6464 0 0
6565 −6.00000 12.0000i −0.744208 1.48842i
6666 0 0
6767 −8.00000 −0.977356 −0.488678 0.872464i 0.662521π-0.662521\pi
−0.488678 + 0.872464i 0.662521π0.662521\pi
6868 0 0
6969 4.00000i 0.481543i
7070 0 0
7171 12.0000 1.42414 0.712069 0.702109i 0.247758π-0.247758\pi
0.712069 + 0.702109i 0.247758π0.247758\pi
7272 0 0
7373 4.00000i 0.468165i 0.972217 + 0.234082i 0.0752085π0.0752085\pi
−0.972217 + 0.234082i 0.924791π0.924791\pi
7474 0 0
7575 −3.00000 + 4.00000i −0.346410 + 0.461880i
7676 0 0
7777 −4.00000 −0.455842
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 4.00000 0.439057 0.219529 0.975606i 0.429548π-0.429548\pi
0.219529 + 0.975606i 0.429548π0.429548\pi
8484 0 0
8585 −4.00000 + 2.00000i −0.433861 + 0.216930i
8686 0 0
8787 0 0
8888 0 0
8989 −10.0000 −1.06000 −0.529999 0.847998i 0.677808π-0.677808\pi
−0.529999 + 0.847998i 0.677808π0.677808\pi
9090 0 0
9191 12.0000i 1.25794i
9292 0 0
9393 8.00000 0.829561
9494 0 0
9595 0 0
9696 0 0
9797 8.00000i 0.812277i 0.913812 + 0.406138i 0.133125π0.133125\pi
−0.913812 + 0.406138i 0.866875π0.866875\pi
9898 0 0
9999 2.00000i 0.201008i
100100 0 0
101101 8.00000i 0.796030i −0.917379 0.398015i 0.869699π-0.869699\pi
0.917379 0.398015i 0.130301π-0.130301\pi
102102 0 0
103103 14.0000i 1.37946i −0.724066 0.689730i 0.757729π-0.757729\pi
0.724066 0.689730i 0.242271π-0.242271\pi
104104 0 0
105105 −4.00000 + 2.00000i −0.390360 + 0.195180i
106106 0 0
107107 −12.0000 −1.16008 −0.580042 0.814587i 0.696964π-0.696964\pi
−0.580042 + 0.814587i 0.696964π0.696964\pi
108108 0 0
109109 10.0000i 0.957826i 0.877862 + 0.478913i 0.158969π0.158969\pi
−0.877862 + 0.478913i 0.841031π0.841031\pi
110110 0 0
111111 2.00000 0.189832
112112 0 0
113113 6.00000i 0.564433i 0.959351 + 0.282216i 0.0910696π0.0910696\pi
−0.959351 + 0.282216i 0.908930π0.908930\pi
114114 0 0
115115 −8.00000 + 4.00000i −0.746004 + 0.373002i
116116 0 0
117117 6.00000 0.554700
118118 0 0
119119 −4.00000 −0.366679
120120 0 0
121121 7.00000 0.636364
122122 0 0
123123 −2.00000 −0.180334
124124 0 0
125125 11.0000 + 2.00000i 0.983870 + 0.178885i
126126 0 0
127127 2.00000i 0.177471i 0.996055 + 0.0887357i 0.0282826π0.0282826\pi
−0.996055 + 0.0887357i 0.971717π0.971717\pi
128128 0 0
129129 −4.00000 −0.352180
130130 0 0
131131 18.0000i 1.57267i −0.617802 0.786334i 0.711977π-0.711977\pi
0.617802 0.786334i 0.288023π-0.288023\pi
132132 0 0
133133 0 0
134134 0 0
135135 −1.00000 2.00000i −0.0860663 0.172133i
136136 0 0
137137 18.0000i 1.53784i −0.639343 0.768922i 0.720793π-0.720793\pi
0.639343 0.768922i 0.279207π-0.279207\pi
138138 0 0
139139 20.0000i 1.69638i −0.529694 0.848189i 0.677693π-0.677693\pi
0.529694 0.848189i 0.322307π-0.322307\pi
140140 0 0
141141 8.00000i 0.673722i
142142 0 0
143143 12.0000i 1.00349i
144144 0 0
145145 0 0
146146 0 0
147147 3.00000 0.247436
148148 0 0
149149 20.0000i 1.63846i 0.573462 + 0.819232i 0.305600π0.305600\pi
−0.573462 + 0.819232i 0.694400π0.694400\pi
150150 0 0
151151 −8.00000 −0.651031 −0.325515 0.945537i 0.605538π-0.605538\pi
−0.325515 + 0.945537i 0.605538π0.605538\pi
152152 0 0
153153 2.00000i 0.161690i
154154 0 0
155155 −8.00000 16.0000i −0.642575 1.28515i
156156 0 0
157157 −22.0000 −1.75579 −0.877896 0.478852i 0.841053π-0.841053\pi
−0.877896 + 0.478852i 0.841053π0.841053\pi
158158 0 0
159159 −6.00000 −0.475831
160160 0 0
161161 −8.00000 −0.630488
162162 0 0
163163 −16.0000 −1.25322 −0.626608 0.779334i 0.715557π-0.715557\pi
−0.626608 + 0.779334i 0.715557π0.715557\pi
164164 0 0
165165 −4.00000 + 2.00000i −0.311400 + 0.155700i
166166 0 0
167167 12.0000i 0.928588i −0.885681 0.464294i 0.846308π-0.846308\pi
0.885681 0.464294i 0.153692π-0.153692\pi
168168 0 0
169169 23.0000 1.76923
170170 0 0
171171 0 0
172172 0 0
173173 −14.0000 −1.06440 −0.532200 0.846619i 0.678635π-0.678635\pi
−0.532200 + 0.846619i 0.678635π0.678635\pi
174174 0 0
175175 8.00000 + 6.00000i 0.604743 + 0.453557i
176176 0 0
177177 10.0000i 0.751646i
178178 0 0
179179 10.0000i 0.747435i −0.927543 0.373718i 0.878083π-0.878083\pi
0.927543 0.373718i 0.121917π-0.121917\pi
180180 0 0
181181 2.00000i 0.148659i 0.997234 + 0.0743294i 0.0236816π0.0236816\pi
−0.997234 + 0.0743294i 0.976318π0.976318\pi
182182 0 0
183183 2.00000i 0.147844i
184184 0 0
185185 −2.00000 4.00000i −0.147043 0.294086i
186186 0 0
187187 −4.00000 −0.292509
188188 0 0
189189 2.00000i 0.145479i
190190 0 0
191191 −12.0000 −0.868290 −0.434145 0.900843i 0.642949π-0.642949\pi
−0.434145 + 0.900843i 0.642949π0.642949\pi
192192 0 0
193193 4.00000i 0.287926i −0.989583 0.143963i 0.954015π-0.954015\pi
0.989583 0.143963i 0.0459847π-0.0459847\pi
194194 0 0
195195 −6.00000 12.0000i −0.429669 0.859338i
196196 0 0
197197 22.0000 1.56744 0.783718 0.621117i 0.213321π-0.213321\pi
0.783718 + 0.621117i 0.213321π0.213321\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 −8.00000 −0.564276
202202 0 0
203203 0 0
204204 0 0
205205 2.00000 + 4.00000i 0.139686 + 0.279372i
206206 0 0
207207 4.00000i 0.278019i
208208 0 0
209209 0 0
210210 0 0
211211 12.0000i 0.826114i 0.910705 + 0.413057i 0.135539π0.135539\pi
−0.910705 + 0.413057i 0.864461π0.864461\pi
212212 0 0
213213 12.0000 0.822226
214214 0 0
215215 4.00000 + 8.00000i 0.272798 + 0.545595i
216216 0 0
217217 16.0000i 1.08615i
218218 0 0
219219 4.00000i 0.270295i
220220 0 0
221221 12.0000i 0.807207i
222222 0 0
223223 26.0000i 1.74109i −0.492090 0.870544i 0.663767π-0.663767\pi
0.492090 0.870544i 0.336233π-0.336233\pi
224224 0 0
225225 −3.00000 + 4.00000i −0.200000 + 0.266667i
226226 0 0
227227 −28.0000 −1.85843 −0.929213 0.369546i 0.879513π-0.879513\pi
−0.929213 + 0.369546i 0.879513π0.879513\pi
228228 0 0
229229 10.0000i 0.660819i 0.943838 + 0.330409i 0.107187π0.107187\pi
−0.943838 + 0.330409i 0.892813π0.892813\pi
230230 0 0
231231 −4.00000 −0.263181
232232 0 0
233233 14.0000i 0.917170i 0.888650 + 0.458585i 0.151644π0.151644\pi
−0.888650 + 0.458585i 0.848356π0.848356\pi
234234 0 0
235235 −16.0000 + 8.00000i −1.04372 + 0.521862i
236236 0 0
237237 0 0
238238 0 0
239239 20.0000 1.29369 0.646846 0.762620i 0.276088π-0.276088\pi
0.646846 + 0.762620i 0.276088π0.276088\pi
240240 0 0
241241 22.0000 1.41714 0.708572 0.705638i 0.249340π-0.249340\pi
0.708572 + 0.705638i 0.249340π0.249340\pi
242242 0 0
243243 1.00000 0.0641500
244244 0 0
245245 −3.00000 6.00000i −0.191663 0.383326i
246246 0 0
247247 0 0
248248 0 0
249249 4.00000 0.253490
250250 0 0
251251 18.0000i 1.13615i 0.822977 + 0.568075i 0.192312π0.192312\pi
−0.822977 + 0.568075i 0.807688π0.807688\pi
252252 0 0
253253 −8.00000 −0.502956
254254 0 0
255255 −4.00000 + 2.00000i −0.250490 + 0.125245i
256256 0 0
257257 18.0000i 1.12281i 0.827541 + 0.561405i 0.189739π0.189739\pi
−0.827541 + 0.561405i 0.810261π0.810261\pi
258258 0 0
259259 4.00000i 0.248548i
260260 0 0
261261 0 0
262262 0 0
263263 4.00000i 0.246651i −0.992366 0.123325i 0.960644π-0.960644\pi
0.992366 0.123325i 0.0393559π-0.0393559\pi
264264 0 0
265265 6.00000 + 12.0000i 0.368577 + 0.737154i
266266 0 0
267267 −10.0000 −0.611990
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 8.00000 0.485965 0.242983 0.970031i 0.421874π-0.421874\pi
0.242983 + 0.970031i 0.421874π0.421874\pi
272272 0 0
273273 12.0000i 0.726273i
274274 0 0
275275 8.00000 + 6.00000i 0.482418 + 0.361814i
276276 0 0
277277 2.00000 0.120168 0.0600842 0.998193i 0.480863π-0.480863\pi
0.0600842 + 0.998193i 0.480863π0.480863\pi
278278 0 0
279279 8.00000 0.478947
280280 0 0
281281 18.0000 1.07379 0.536895 0.843649i 0.319597π-0.319597\pi
0.536895 + 0.843649i 0.319597π0.319597\pi
282282 0 0
283283 16.0000 0.951101 0.475551 0.879688i 0.342249π-0.342249\pi
0.475551 + 0.879688i 0.342249π0.342249\pi
284284 0 0
285285 0 0
286286 0 0
287287 4.00000i 0.236113i
288288 0 0
289289 13.0000 0.764706
290290 0 0
291291 8.00000i 0.468968i
292292 0 0
293293 −6.00000 −0.350524 −0.175262 0.984522i 0.556077π-0.556077\pi
−0.175262 + 0.984522i 0.556077π0.556077\pi
294294 0 0
295295 20.0000 10.0000i 1.16445 0.582223i
296296 0 0
297297 2.00000i 0.116052i
298298 0 0
299299 24.0000i 1.38796i
300300 0 0
301301 8.00000i 0.461112i
302302 0 0
303303 8.00000i 0.459588i
304304 0 0
305305 −4.00000 + 2.00000i −0.229039 + 0.114520i
306306 0 0
307307 12.0000 0.684876 0.342438 0.939540i 0.388747π-0.388747\pi
0.342438 + 0.939540i 0.388747π0.388747\pi
308308 0 0
309309 14.0000i 0.796432i
310310 0 0
311311 12.0000 0.680458 0.340229 0.940343i 0.389495π-0.389495\pi
0.340229 + 0.940343i 0.389495π0.389495\pi
312312 0 0
313313 4.00000i 0.226093i 0.993590 + 0.113047i 0.0360610π0.0360610\pi
−0.993590 + 0.113047i 0.963939π0.963939\pi
314314 0 0
315315 −4.00000 + 2.00000i −0.225374 + 0.112687i
316316 0 0
317317 −2.00000 −0.112331 −0.0561656 0.998421i 0.517887π-0.517887\pi
−0.0561656 + 0.998421i 0.517887π0.517887\pi
318318 0 0
319319 0 0
320320 0 0
321321 −12.0000 −0.669775
322322 0 0
323323 0 0
324324 0 0
325325 −18.0000 + 24.0000i −0.998460 + 1.33128i
326326 0 0
327327 10.0000i 0.553001i
328328 0 0
329329 −16.0000 −0.882109
330330 0 0
331331 8.00000i 0.439720i 0.975531 + 0.219860i 0.0705600π0.0705600\pi
−0.975531 + 0.219860i 0.929440π0.929440\pi
332332 0 0
333333 2.00000 0.109599
334334 0 0
335335 8.00000 + 16.0000i 0.437087 + 0.874173i
336336 0 0
337337 28.0000i 1.52526i 0.646837 + 0.762629i 0.276092π0.276092\pi
−0.646837 + 0.762629i 0.723908π0.723908\pi
338338 0 0
339339 6.00000i 0.325875i
340340 0 0
341341 16.0000i 0.866449i
342342 0 0
343343 20.0000i 1.07990i
344344 0 0
345345 −8.00000 + 4.00000i −0.430706 + 0.215353i
346346 0 0
347347 −12.0000 −0.644194 −0.322097 0.946707i 0.604388π-0.604388\pi
−0.322097 + 0.946707i 0.604388π0.604388\pi
348348 0 0
349349 10.0000i 0.535288i 0.963518 + 0.267644i 0.0862451π0.0862451\pi
−0.963518 + 0.267644i 0.913755π0.913755\pi
350350 0 0
351351 6.00000 0.320256
352352 0 0
353353 14.0000i 0.745145i −0.928003 0.372572i 0.878476π-0.878476\pi
0.928003 0.372572i 0.121524π-0.121524\pi
354354 0 0
355355 −12.0000 24.0000i −0.636894 1.27379i
356356 0 0
357357 −4.00000 −0.211702
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 19.0000 1.00000
362362 0 0
363363 7.00000 0.367405
364364 0 0
365365 8.00000 4.00000i 0.418739 0.209370i
366366 0 0
367367 2.00000i 0.104399i 0.998637 + 0.0521996i 0.0166232π0.0166232\pi
−0.998637 + 0.0521996i 0.983377π0.983377\pi
368368 0 0
369369 −2.00000 −0.104116
370370 0 0
371371 12.0000i 0.623009i
372372 0 0
373373 −6.00000 −0.310668 −0.155334 0.987862i 0.549645π-0.549645\pi
−0.155334 + 0.987862i 0.549645π0.549645\pi
374374 0 0
375375 11.0000 + 2.00000i 0.568038 + 0.103280i
376376 0 0
377377 0 0
378378 0 0
379379 20.0000i 1.02733i 0.857991 + 0.513665i 0.171713π0.171713\pi
−0.857991 + 0.513665i 0.828287π0.828287\pi
380380 0 0
381381 2.00000i 0.102463i
382382 0 0
383383 16.0000i 0.817562i −0.912633 0.408781i 0.865954π-0.865954\pi
0.912633 0.408781i 0.134046π-0.134046\pi
384384 0 0
385385 4.00000 + 8.00000i 0.203859 + 0.407718i
386386 0 0
387387 −4.00000 −0.203331
388388 0 0
389389 20.0000i 1.01404i −0.861934 0.507020i 0.830747π-0.830747\pi
0.861934 0.507020i 0.169253π-0.169253\pi
390390 0 0
391391 −8.00000 −0.404577
392392 0 0
393393 18.0000i 0.907980i
394394 0 0
395395 0 0
396396 0 0
397397 −2.00000 −0.100377 −0.0501886 0.998740i 0.515982π-0.515982\pi
−0.0501886 + 0.998740i 0.515982π0.515982\pi
398398 0 0
399399 0 0
400400 0 0
401401 22.0000 1.09863 0.549314 0.835616i 0.314889π-0.314889\pi
0.549314 + 0.835616i 0.314889π0.314889\pi
402402 0 0
403403 48.0000 2.39105
404404 0 0
405405 −1.00000 2.00000i −0.0496904 0.0993808i
406406 0 0
407407 4.00000i 0.198273i
408408 0 0
409409 −10.0000 −0.494468 −0.247234 0.968956i 0.579522π-0.579522\pi
−0.247234 + 0.968956i 0.579522π0.579522\pi
410410 0 0
411411 18.0000i 0.887875i
412412 0 0
413413 20.0000 0.984136
414414 0 0
415415 −4.00000 8.00000i −0.196352 0.392705i
416416 0 0
417417 20.0000i 0.979404i
418418 0 0
419419 10.0000i 0.488532i 0.969708 + 0.244266i 0.0785470π0.0785470\pi
−0.969708 + 0.244266i 0.921453π0.921453\pi
420420 0 0
421421 22.0000i 1.07221i 0.844150 + 0.536107i 0.180106π0.180106\pi
−0.844150 + 0.536107i 0.819894π0.819894\pi
422422 0 0
423423 8.00000i 0.388973i
424424 0 0
425425 8.00000 + 6.00000i 0.388057 + 0.291043i
426426 0 0
427427 −4.00000 −0.193574
428428 0 0
429429 12.0000i 0.579365i
430430 0 0
431431 −32.0000 −1.54139 −0.770693 0.637207i 0.780090π-0.780090\pi
−0.770693 + 0.637207i 0.780090π0.780090\pi
432432 0 0
433433 4.00000i 0.192228i −0.995370 0.0961139i 0.969359π-0.969359\pi
0.995370 0.0961139i 0.0306413π-0.0306413\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 3.00000 0.142857
442442 0 0
443443 36.0000 1.71041 0.855206 0.518289i 0.173431π-0.173431\pi
0.855206 + 0.518289i 0.173431π0.173431\pi
444444 0 0
445445 10.0000 + 20.0000i 0.474045 + 0.948091i
446446 0 0
447447 20.0000i 0.945968i
448448 0 0
449449 −30.0000 −1.41579 −0.707894 0.706319i 0.750354π-0.750354\pi
−0.707894 + 0.706319i 0.750354π0.750354\pi
450450 0 0
451451 4.00000i 0.188353i
452452 0 0
453453 −8.00000 −0.375873
454454 0 0
455455 −24.0000 + 12.0000i −1.12514 + 0.562569i
456456 0 0
457457 32.0000i 1.49690i 0.663193 + 0.748448i 0.269201π0.269201\pi
−0.663193 + 0.748448i 0.730799π0.730799\pi
458458 0 0
459459 2.00000i 0.0933520i
460460 0 0
461461 12.0000i 0.558896i −0.960161 0.279448i 0.909849π-0.909849\pi
0.960161 0.279448i 0.0901514π-0.0901514\pi
462462 0 0
463463 6.00000i 0.278844i −0.990233 0.139422i 0.955476π-0.955476\pi
0.990233 0.139422i 0.0445244π-0.0445244\pi
464464 0 0
465465 −8.00000 16.0000i −0.370991 0.741982i
466466 0 0
467467 12.0000 0.555294 0.277647 0.960683i 0.410445π-0.410445\pi
0.277647 + 0.960683i 0.410445π0.410445\pi
468468 0 0
469469 16.0000i 0.738811i
470470 0 0
471471 −22.0000 −1.01371
472472 0 0
473473 8.00000i 0.367840i
474474 0 0
475475 0 0
476476 0 0
477477 −6.00000 −0.274721
478478 0 0
479479 20.0000 0.913823 0.456912 0.889512i 0.348956π-0.348956\pi
0.456912 + 0.889512i 0.348956π0.348956\pi
480480 0 0
481481 12.0000 0.547153
482482 0 0
483483 −8.00000 −0.364013
484484 0 0
485485 16.0000 8.00000i 0.726523 0.363261i
486486 0 0
487487 18.0000i 0.815658i 0.913058 + 0.407829i 0.133714π0.133714\pi
−0.913058 + 0.407829i 0.866286π0.866286\pi
488488 0 0
489489 −16.0000 −0.723545
490490 0 0
491491 18.0000i 0.812329i 0.913800 + 0.406164i 0.133134π0.133134\pi
−0.913800 + 0.406164i 0.866866π0.866866\pi
492492 0 0
493493 0 0
494494 0 0
495495 −4.00000 + 2.00000i −0.179787 + 0.0898933i
496496 0 0
497497 24.0000i 1.07655i
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 12.0000i 0.536120i
502502 0 0
503503 24.0000i 1.07011i −0.844818 0.535054i 0.820291π-0.820291\pi
0.844818 0.535054i 0.179709π-0.179709\pi
504504 0 0
505505 −16.0000 + 8.00000i −0.711991 + 0.355995i
506506 0 0
507507 23.0000 1.02147
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 8.00000 0.353899
512512 0 0
513513 0 0
514514 0 0
515515 −28.0000 + 14.0000i −1.23383 + 0.616914i
516516 0 0
517517 −16.0000 −0.703679
518518 0 0
519519 −14.0000 −0.614532
520520 0 0
521521 −22.0000 −0.963837 −0.481919 0.876216i 0.660060π-0.660060\pi
−0.481919 + 0.876216i 0.660060π0.660060\pi
522522 0 0
523523 16.0000 0.699631 0.349816 0.936819i 0.386244π-0.386244\pi
0.349816 + 0.936819i 0.386244π0.386244\pi
524524 0 0
525525 8.00000 + 6.00000i 0.349149 + 0.261861i
526526 0 0
527527 16.0000i 0.696971i
528528 0 0
529529 7.00000 0.304348
530530 0 0
531531 10.0000i 0.433963i
532532 0 0
533533 −12.0000 −0.519778
534534 0 0
535535 12.0000 + 24.0000i 0.518805 + 1.03761i
536536 0 0
537537 10.0000i 0.431532i
538538 0 0
539539 6.00000i 0.258438i
540540 0 0
541541 38.0000i 1.63375i 0.576816 + 0.816874i 0.304295π0.304295\pi
−0.576816 + 0.816874i 0.695705π0.695705\pi
542542 0 0
543543 2.00000i 0.0858282i
544544 0 0
545545 20.0000 10.0000i 0.856706 0.428353i
546546 0 0
547547 −28.0000 −1.19719 −0.598597 0.801050i 0.704275π-0.704275\pi
−0.598597 + 0.801050i 0.704275π0.704275\pi
548548 0 0
549549 2.00000i 0.0853579i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 −2.00000 4.00000i −0.0848953 0.169791i
556556 0 0
557557 18.0000 0.762684 0.381342 0.924434i 0.375462π-0.375462\pi
0.381342 + 0.924434i 0.375462π0.375462\pi
558558 0 0
559559 −24.0000 −1.01509
560560 0 0
561561 −4.00000 −0.168880
562562 0 0
563563 44.0000 1.85438 0.927189 0.374593i 0.122217π-0.122217\pi
0.927189 + 0.374593i 0.122217π0.122217\pi
564564 0 0
565565 12.0000 6.00000i 0.504844 0.252422i
566566 0 0
567567 2.00000i 0.0839921i
568568 0 0
569569 −10.0000 −0.419222 −0.209611 0.977785i 0.567220π-0.567220\pi
−0.209611 + 0.977785i 0.567220π0.567220\pi
570570 0 0
571571 8.00000i 0.334790i 0.985890 + 0.167395i 0.0535355π0.0535355\pi
−0.985890 + 0.167395i 0.946465π0.946465\pi
572572 0 0
573573 −12.0000 −0.501307
574574 0 0
575575 16.0000 + 12.0000i 0.667246 + 0.500435i
576576 0 0
577577 32.0000i 1.33218i −0.745873 0.666089i 0.767967π-0.767967\pi
0.745873 0.666089i 0.232033π-0.232033\pi
578578 0 0
579579 4.00000i 0.166234i
580580 0 0
581581 8.00000i 0.331896i
582582 0 0
583583 12.0000i 0.496989i
584584 0 0
585585 −6.00000 12.0000i −0.248069 0.496139i
586586 0 0
587587 −12.0000 −0.495293 −0.247647 0.968850i 0.579657π-0.579657\pi
−0.247647 + 0.968850i 0.579657π0.579657\pi
588588 0 0
589589 0 0
590590 0 0
591591 22.0000 0.904959
592592 0 0
593593 6.00000i 0.246390i 0.992382 + 0.123195i 0.0393141π0.0393141\pi
−0.992382 + 0.123195i 0.960686π0.960686\pi
594594 0 0
595595 4.00000 + 8.00000i 0.163984 + 0.327968i
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −2.00000 −0.0815817 −0.0407909 0.999168i 0.512988π-0.512988\pi
−0.0407909 + 0.999168i 0.512988π0.512988\pi
602602 0 0
603603 −8.00000 −0.325785
604604 0 0
605605 −7.00000 14.0000i −0.284590 0.569181i
606606 0 0
607607 22.0000i 0.892952i 0.894795 + 0.446476i 0.147321π0.147321\pi
−0.894795 + 0.446476i 0.852679π0.852679\pi
608608 0 0
609609 0 0
610610 0 0
611611 48.0000i 1.94187i
612612 0 0
613613 −26.0000 −1.05013 −0.525065 0.851062i 0.675959π-0.675959\pi
−0.525065 + 0.851062i 0.675959π0.675959\pi
614614 0 0
615615 2.00000 + 4.00000i 0.0806478 + 0.161296i
616616 0 0
617617 2.00000i 0.0805170i 0.999189 + 0.0402585i 0.0128181π0.0128181\pi
−0.999189 + 0.0402585i 0.987182π0.987182\pi
618618 0 0
619619 20.0000i 0.803868i 0.915669 + 0.401934i 0.131662π0.131662\pi
−0.915669 + 0.401934i 0.868338π0.868338\pi
620620 0 0
621621 4.00000i 0.160514i
622622 0 0
623623 20.0000i 0.801283i
624624 0 0
625625 −7.00000 24.0000i −0.280000 0.960000i
626626 0 0
627627 0 0
628628 0 0
629629 4.00000i 0.159490i
630630 0 0
631631 32.0000 1.27390 0.636950 0.770905i 0.280196π-0.280196\pi
0.636950 + 0.770905i 0.280196π0.280196\pi
632632 0 0
633633 12.0000i 0.476957i
634634 0 0
635635 4.00000 2.00000i 0.158735 0.0793676i
636636 0 0
637637 18.0000 0.713186
638638 0 0
639639 12.0000 0.474713
640640 0 0
641641 2.00000 0.0789953 0.0394976 0.999220i 0.487424π-0.487424\pi
0.0394976 + 0.999220i 0.487424π0.487424\pi
642642 0 0
643643 24.0000 0.946468 0.473234 0.880937i 0.343087π-0.343087\pi
0.473234 + 0.880937i 0.343087π0.343087\pi
644644 0 0
645645 4.00000 + 8.00000i 0.157500 + 0.315000i
646646 0 0
647647 48.0000i 1.88707i 0.331266 + 0.943537i 0.392524π0.392524\pi
−0.331266 + 0.943537i 0.607476π0.607476\pi
648648 0 0
649649 20.0000 0.785069
650650 0 0
651651 16.0000i 0.627089i
652652 0 0
653653 26.0000 1.01746 0.508729 0.860927i 0.330115π-0.330115\pi
0.508729 + 0.860927i 0.330115π0.330115\pi
654654 0 0
655655 −36.0000 + 18.0000i −1.40664 + 0.703318i
656656 0 0
657657 4.00000i 0.156055i
658658 0 0
659659 50.0000i 1.94772i 0.227142 + 0.973862i 0.427062π0.427062\pi
−0.227142 + 0.973862i 0.572938π0.572938\pi
660660 0 0
661661 2.00000i 0.0777910i 0.999243 + 0.0388955i 0.0123839π0.0123839\pi
−0.999243 + 0.0388955i 0.987616π0.987616\pi
662662 0 0
663663 12.0000i 0.466041i
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 26.0000i 1.00522i
670670 0 0
671671 −4.00000 −0.154418
672672 0 0
673673 36.0000i 1.38770i 0.720121 + 0.693849i 0.244086π0.244086\pi
−0.720121 + 0.693849i 0.755914π0.755914\pi
674674 0 0
675675 −3.00000 + 4.00000i −0.115470 + 0.153960i
676676 0 0
677677 2.00000 0.0768662 0.0384331 0.999261i 0.487763π-0.487763\pi
0.0384331 + 0.999261i 0.487763π0.487763\pi
678678 0 0
679679 16.0000 0.614024
680680 0 0
681681 −28.0000 −1.07296
682682 0 0
683683 −4.00000 −0.153056 −0.0765279 0.997067i 0.524383π-0.524383\pi
−0.0765279 + 0.997067i 0.524383π0.524383\pi
684684 0 0
685685 −36.0000 + 18.0000i −1.37549 + 0.687745i
686686 0 0
687687 10.0000i 0.381524i
688688 0 0
689689 −36.0000 −1.37149
690690 0 0
691691 8.00000i 0.304334i −0.988355 0.152167i 0.951375π-0.951375\pi
0.988355 0.152167i 0.0486252π-0.0486252\pi
692692 0 0
693693 −4.00000 −0.151947
694694 0 0
695695 −40.0000 + 20.0000i −1.51729 + 0.758643i
696696 0 0
697697 4.00000i 0.151511i
698698 0 0
699699 14.0000i 0.529529i
700700 0 0
701701 32.0000i 1.20862i −0.796748 0.604312i 0.793448π-0.793448\pi
0.796748 0.604312i 0.206552π-0.206552\pi
702702 0 0
703703 0 0
704704 0 0
705705 −16.0000 + 8.00000i −0.602595 + 0.301297i
706706 0 0
707707 −16.0000 −0.601742
708708 0 0
709709 30.0000i 1.12667i −0.826227 0.563337i 0.809517π-0.809517\pi
0.826227 0.563337i 0.190483π-0.190483\pi
710710 0 0
711711 0 0
712712 0 0
713713 32.0000i 1.19841i
714714 0 0
715715 −24.0000 + 12.0000i −0.897549 + 0.448775i
716716 0 0
717717 20.0000 0.746914
718718 0 0
719719 −40.0000 −1.49175 −0.745874 0.666087i 0.767968π-0.767968\pi
−0.745874 + 0.666087i 0.767968π0.767968\pi
720720 0 0
721721 −28.0000 −1.04277
722722 0 0
723723 22.0000 0.818189
724724 0 0
725725 0 0
726726 0 0
727727 18.0000i 0.667583i 0.942647 + 0.333792i 0.108328π0.108328\pi
−0.942647 + 0.333792i 0.891672π0.891672\pi
728728 0 0
729729 1.00000 0.0370370
730730 0 0
731731 8.00000i 0.295891i
732732 0 0
733733 −14.0000 −0.517102 −0.258551 0.965998i 0.583245π-0.583245\pi
−0.258551 + 0.965998i 0.583245π0.583245\pi
734734 0 0
735735 −3.00000 6.00000i −0.110657 0.221313i
736736 0 0
737737 16.0000i 0.589368i
738738 0 0
739739 40.0000i 1.47142i −0.677295 0.735712i 0.736848π-0.736848\pi
0.677295 0.735712i 0.263152π-0.263152\pi
740740 0 0
741741 0 0
742742 0 0
743743 24.0000i 0.880475i −0.897881 0.440237i 0.854894π-0.854894\pi
0.897881 0.440237i 0.145106π-0.145106\pi
744744 0 0
745745 40.0000 20.0000i 1.46549 0.732743i
746746 0 0
747747 4.00000 0.146352
748748 0 0
749749 24.0000i 0.876941i
750750 0 0
751751 −32.0000 −1.16770 −0.583848 0.811863i 0.698454π-0.698454\pi
−0.583848 + 0.811863i 0.698454π0.698454\pi
752752 0 0
753753 18.0000i 0.655956i
754754 0 0
755755 8.00000 + 16.0000i 0.291150 + 0.582300i
756756 0 0
757757 2.00000 0.0726912 0.0363456 0.999339i 0.488428π-0.488428\pi
0.0363456 + 0.999339i 0.488428π0.488428\pi
758758 0 0
759759 −8.00000 −0.290382
760760 0 0
761761 18.0000 0.652499 0.326250 0.945284i 0.394215π-0.394215\pi
0.326250 + 0.945284i 0.394215π0.394215\pi
762762 0 0
763763 20.0000 0.724049
764764 0 0
765765 −4.00000 + 2.00000i −0.144620 + 0.0723102i
766766 0 0
767767 60.0000i 2.16647i
768768 0 0
769769 30.0000 1.08183 0.540914 0.841078i 0.318079π-0.318079\pi
0.540914 + 0.841078i 0.318079π0.318079\pi
770770 0 0
771771 18.0000i 0.648254i
772772 0 0
773773 54.0000 1.94225 0.971123 0.238581i 0.0766824π-0.0766824\pi
0.971123 + 0.238581i 0.0766824π0.0766824\pi
774774 0 0
775775 −24.0000 + 32.0000i −0.862105 + 1.14947i
776776 0 0
777777 4.00000i 0.143499i
778778 0 0
779779 0 0
780780 0 0
781781 24.0000i 0.858788i
782782 0 0
783783 0 0
784784 0 0
785785 22.0000 + 44.0000i 0.785214 + 1.57043i
786786 0 0
787787 32.0000 1.14068 0.570338 0.821410i 0.306812π-0.306812\pi
0.570338 + 0.821410i 0.306812π0.306812\pi
788788 0 0
789789 4.00000i 0.142404i
790790 0 0
791791 12.0000 0.426671
792792 0 0
793793 12.0000i 0.426132i
794794 0 0
795795 6.00000 + 12.0000i 0.212798 + 0.425596i
796796 0 0
797797 −2.00000 −0.0708436 −0.0354218 0.999372i 0.511277π-0.511277\pi
−0.0354218 + 0.999372i 0.511277π0.511277\pi
798798 0 0
799799 −16.0000 −0.566039
800800 0 0
801801 −10.0000 −0.353333
802802 0 0
803803 8.00000 0.282314
804804 0 0
805805 8.00000 + 16.0000i 0.281963 + 0.563926i
806806 0 0
807807 0 0
808808 0 0
809809 −30.0000 −1.05474 −0.527372 0.849635i 0.676823π-0.676823\pi
−0.527372 + 0.849635i 0.676823π0.676823\pi
810810 0 0
811811 52.0000i 1.82597i −0.407997 0.912983i 0.633772π-0.633772\pi
0.407997 0.912983i 0.366228π-0.366228\pi
812812 0 0
813813 8.00000 0.280572
814814 0 0
815815 16.0000 + 32.0000i 0.560456 + 1.12091i
816816 0 0
817817 0 0
818818 0 0
819819 12.0000i 0.419314i
820820 0 0
821821 8.00000i 0.279202i −0.990208 0.139601i 0.955418π-0.955418\pi
0.990208 0.139601i 0.0445820π-0.0445820\pi
822822 0 0
823823 6.00000i 0.209147i 0.994517 + 0.104573i 0.0333477π0.0333477\pi
−0.994517 + 0.104573i 0.966652π0.966652\pi
824824 0 0
825825 8.00000 + 6.00000i 0.278524 + 0.208893i
826826 0 0
827827 28.0000 0.973655 0.486828 0.873498i 0.338154π-0.338154\pi
0.486828 + 0.873498i 0.338154π0.338154\pi
828828 0 0
829829 30.0000i 1.04194i −0.853574 0.520972i 0.825570π-0.825570\pi
0.853574 0.520972i 0.174430π-0.174430\pi
830830 0 0
831831 2.00000 0.0693792
832832 0 0
833833 6.00000i 0.207888i
834834 0 0
835835 −24.0000 + 12.0000i −0.830554 + 0.415277i
836836 0 0
837837 8.00000 0.276520
838838 0 0
839839 −40.0000 −1.38095 −0.690477 0.723355i 0.742599π-0.742599\pi
−0.690477 + 0.723355i 0.742599π0.742599\pi
840840 0 0
841841 29.0000 1.00000
842842 0 0
843843 18.0000 0.619953
844844 0 0
845845 −23.0000 46.0000i −0.791224 1.58245i
846846 0 0
847847 14.0000i 0.481046i
848848 0 0
849849 16.0000 0.549119
850850 0 0
851851 8.00000i 0.274236i
852852 0 0
853853 14.0000 0.479351 0.239675 0.970853i 0.422959π-0.422959\pi
0.239675 + 0.970853i 0.422959π0.422959\pi
854854 0 0
855855 0 0
856856 0 0
857857 42.0000i 1.43469i 0.696717 + 0.717346i 0.254643π0.254643\pi
−0.696717 + 0.717346i 0.745357π0.745357\pi
858858 0 0
859859 20.0000i 0.682391i 0.939992 + 0.341196i 0.110832π0.110832\pi
−0.939992 + 0.341196i 0.889168π0.889168\pi
860860 0 0
861861 4.00000i 0.136320i
862862 0 0
863863 36.0000i 1.22545i −0.790295 0.612727i 0.790072π-0.790072\pi
0.790295 0.612727i 0.209928π-0.209928\pi
864864 0 0
865865 14.0000 + 28.0000i 0.476014 + 0.952029i
866866 0 0
867867 13.0000 0.441503
868868 0 0
869869 0 0
870870 0 0
871871 −48.0000 −1.62642
872872 0 0
873873 8.00000i 0.270759i
874874 0 0
875875 4.00000 22.0000i 0.135225 0.743736i
876876 0 0
877877 −22.0000 −0.742887 −0.371444 0.928456i 0.621137π-0.621137\pi
−0.371444 + 0.928456i 0.621137π0.621137\pi
878878 0 0
879879 −6.00000 −0.202375
880880 0 0
881881 −18.0000 −0.606435 −0.303218 0.952921i 0.598061π-0.598061\pi
−0.303218 + 0.952921i 0.598061π0.598061\pi
882882 0 0
883883 24.0000 0.807664 0.403832 0.914833i 0.367678π-0.367678\pi
0.403832 + 0.914833i 0.367678π0.367678\pi
884884 0 0
885885 20.0000 10.0000i 0.672293 0.336146i
886886 0 0
887887 12.0000i 0.402921i −0.979497 0.201460i 0.935431π-0.935431\pi
0.979497 0.201460i 0.0645687π-0.0645687\pi
888888 0 0
889889 4.00000 0.134156
890890 0 0
891891 2.00000i 0.0670025i
892892 0 0
893893 0 0
894894 0 0
895895 −20.0000 + 10.0000i −0.668526 + 0.334263i
896896 0 0
897897 24.0000i 0.801337i
898898 0 0
899899 0 0
900900 0 0
901901 12.0000i 0.399778i
902902 0 0
903903 8.00000i 0.266223i
904904 0 0
905905 4.00000 2.00000i 0.132964 0.0664822i
906906 0 0
907907 −12.0000 −0.398453 −0.199227 0.979953i 0.563843π-0.563843\pi
−0.199227 + 0.979953i 0.563843π0.563843\pi
908908 0 0
909909 8.00000i 0.265343i
910910 0 0
911911 48.0000 1.59031 0.795155 0.606406i 0.207389π-0.207389\pi
0.795155 + 0.606406i 0.207389π0.207389\pi
912912 0 0
913913 8.00000i 0.264761i
914914 0 0
915915 −4.00000 + 2.00000i −0.132236 + 0.0661180i
916916 0 0
917917 −36.0000 −1.18882
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 12.0000 0.395413
922922 0 0
923923 72.0000 2.36991
924924 0 0
925925 −6.00000 + 8.00000i −0.197279 + 0.263038i
926926 0 0
927927 14.0000i 0.459820i
928928 0 0
929929 −30.0000 −0.984268 −0.492134 0.870519i 0.663783π-0.663783\pi
−0.492134 + 0.870519i 0.663783π0.663783\pi
930930 0 0
931931 0 0
932932 0 0
933933 12.0000 0.392862
934934 0 0
935935 4.00000 + 8.00000i 0.130814 + 0.261628i
936936 0 0
937937 8.00000i 0.261349i −0.991425 0.130674i 0.958286π-0.958286\pi
0.991425 0.130674i 0.0417142π-0.0417142\pi
938938 0 0
939939 4.00000i 0.130535i
940940 0 0
941941 28.0000i 0.912774i 0.889781 + 0.456387i 0.150857π0.150857\pi
−0.889781 + 0.456387i 0.849143π0.849143\pi
942942 0 0
943943 8.00000i 0.260516i
944944 0 0
945945 −4.00000 + 2.00000i −0.130120 + 0.0650600i
946946 0 0
947947 12.0000 0.389948 0.194974 0.980808i 0.437538π-0.437538\pi
0.194974 + 0.980808i 0.437538π0.437538\pi
948948 0 0
949949 24.0000i 0.779073i
950950 0 0
951951 −2.00000 −0.0648544
952952 0 0
953953 46.0000i 1.49009i −0.667016 0.745043i 0.732429π-0.732429\pi
0.667016 0.745043i 0.267571π-0.267571\pi
954954 0 0
955955 12.0000 + 24.0000i 0.388311 + 0.776622i
956956 0 0
957957 0 0
958958 0 0
959959 −36.0000 −1.16250
960960 0 0
961961 33.0000 1.06452
962962 0 0
963963 −12.0000 −0.386695
964964 0 0
965965 −8.00000 + 4.00000i −0.257529 + 0.128765i
966966 0 0
967967 38.0000i 1.22200i 0.791632 + 0.610999i 0.209232π0.209232\pi
−0.791632 + 0.610999i 0.790768π0.790768\pi
968968 0 0
969969 0 0
970970 0 0
971971 18.0000i 0.577647i 0.957382 + 0.288824i 0.0932642π0.0932642\pi
−0.957382 + 0.288824i 0.906736π0.906736\pi
972972 0 0
973973 −40.0000 −1.28234
974974 0 0
975975 −18.0000 + 24.0000i −0.576461 + 0.768615i
976976 0 0
977977 42.0000i 1.34370i −0.740688 0.671850i 0.765500π-0.765500\pi
0.740688 0.671850i 0.234500π-0.234500\pi
978978 0 0
979979 20.0000i 0.639203i
980980 0 0
981981 10.0000i 0.319275i
982982 0 0
983983 16.0000i 0.510321i 0.966899 + 0.255160i 0.0821283π0.0821283\pi
−0.966899 + 0.255160i 0.917872π0.917872\pi
984984 0 0
985985 −22.0000 44.0000i −0.700978 1.40196i
986986 0 0
987987 −16.0000 −0.509286
988988 0 0
989989 16.0000i 0.508770i
990990 0 0
991991 8.00000 0.254128 0.127064 0.991894i 0.459445π-0.459445\pi
0.127064 + 0.991894i 0.459445π0.459445\pi
992992 0 0
993993 8.00000i 0.253872i
994994 0 0
995995 0 0
996996 0 0
997997 −18.0000 −0.570066 −0.285033 0.958518i 0.592005π-0.592005\pi
−0.285033 + 0.958518i 0.592005π0.592005\pi
998998 0 0
999999 2.00000 0.0632772
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.d.x.2689.1 2
4.3 odd 2 3840.2.d.g.2689.1 2
5.4 even 2 3840.2.d.j.2689.1 2
8.3 odd 2 3840.2.d.y.2689.2 2
8.5 even 2 3840.2.d.j.2689.2 2
16.3 odd 4 30.2.c.a.19.2 yes 2
16.5 even 4 960.2.f.i.769.1 2
16.11 odd 4 960.2.f.h.769.2 2
16.13 even 4 240.2.f.a.49.2 2
20.19 odd 2 3840.2.d.y.2689.1 2
40.19 odd 2 3840.2.d.g.2689.2 2
40.29 even 2 inner 3840.2.d.x.2689.2 2
48.5 odd 4 2880.2.f.c.1729.2 2
48.11 even 4 2880.2.f.e.1729.2 2
48.29 odd 4 720.2.f.f.289.1 2
48.35 even 4 90.2.c.a.19.1 2
80.3 even 4 150.2.a.c.1.1 1
80.13 odd 4 1200.2.a.g.1.1 1
80.19 odd 4 30.2.c.a.19.1 2
80.27 even 4 4800.2.a.cg.1.1 1
80.29 even 4 240.2.f.a.49.1 2
80.37 odd 4 4800.2.a.m.1.1 1
80.43 even 4 4800.2.a.l.1.1 1
80.53 odd 4 4800.2.a.cj.1.1 1
80.59 odd 4 960.2.f.h.769.1 2
80.67 even 4 150.2.a.a.1.1 1
80.69 even 4 960.2.f.i.769.2 2
80.77 odd 4 1200.2.a.m.1.1 1
112.3 even 12 1470.2.n.a.79.1 4
112.19 even 12 1470.2.n.a.949.2 4
112.51 odd 12 1470.2.n.h.949.2 4
112.67 odd 12 1470.2.n.h.79.1 4
112.83 even 4 1470.2.g.g.589.2 2
144.67 odd 12 810.2.i.e.379.1 4
144.83 even 12 810.2.i.b.109.1 4
144.115 odd 12 810.2.i.e.109.2 4
144.131 even 12 810.2.i.b.379.2 4
240.29 odd 4 720.2.f.f.289.2 2
240.59 even 4 2880.2.f.e.1729.1 2
240.77 even 4 3600.2.a.o.1.1 1
240.83 odd 4 450.2.a.b.1.1 1
240.149 odd 4 2880.2.f.c.1729.1 2
240.173 even 4 3600.2.a.bg.1.1 1
240.179 even 4 90.2.c.a.19.2 2
240.227 odd 4 450.2.a.f.1.1 1
560.19 even 12 1470.2.n.a.949.1 4
560.83 odd 4 7350.2.a.cc.1.1 1
560.179 odd 12 1470.2.n.h.79.2 4
560.307 odd 4 7350.2.a.bg.1.1 1
560.339 even 12 1470.2.n.a.79.2 4
560.419 even 4 1470.2.g.g.589.1 2
560.499 odd 12 1470.2.n.h.949.1 4
720.259 odd 12 810.2.i.e.109.1 4
720.419 even 12 810.2.i.b.379.1 4
720.499 odd 12 810.2.i.e.379.2 4
720.659 even 12 810.2.i.b.109.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.c.a.19.1 2 80.19 odd 4
30.2.c.a.19.2 yes 2 16.3 odd 4
90.2.c.a.19.1 2 48.35 even 4
90.2.c.a.19.2 2 240.179 even 4
150.2.a.a.1.1 1 80.67 even 4
150.2.a.c.1.1 1 80.3 even 4
240.2.f.a.49.1 2 80.29 even 4
240.2.f.a.49.2 2 16.13 even 4
450.2.a.b.1.1 1 240.83 odd 4
450.2.a.f.1.1 1 240.227 odd 4
720.2.f.f.289.1 2 48.29 odd 4
720.2.f.f.289.2 2 240.29 odd 4
810.2.i.b.109.1 4 144.83 even 12
810.2.i.b.109.2 4 720.659 even 12
810.2.i.b.379.1 4 720.419 even 12
810.2.i.b.379.2 4 144.131 even 12
810.2.i.e.109.1 4 720.259 odd 12
810.2.i.e.109.2 4 144.115 odd 12
810.2.i.e.379.1 4 144.67 odd 12
810.2.i.e.379.2 4 720.499 odd 12
960.2.f.h.769.1 2 80.59 odd 4
960.2.f.h.769.2 2 16.11 odd 4
960.2.f.i.769.1 2 16.5 even 4
960.2.f.i.769.2 2 80.69 even 4
1200.2.a.g.1.1 1 80.13 odd 4
1200.2.a.m.1.1 1 80.77 odd 4
1470.2.g.g.589.1 2 560.419 even 4
1470.2.g.g.589.2 2 112.83 even 4
1470.2.n.a.79.1 4 112.3 even 12
1470.2.n.a.79.2 4 560.339 even 12
1470.2.n.a.949.1 4 560.19 even 12
1470.2.n.a.949.2 4 112.19 even 12
1470.2.n.h.79.1 4 112.67 odd 12
1470.2.n.h.79.2 4 560.179 odd 12
1470.2.n.h.949.1 4 560.499 odd 12
1470.2.n.h.949.2 4 112.51 odd 12
2880.2.f.c.1729.1 2 240.149 odd 4
2880.2.f.c.1729.2 2 48.5 odd 4
2880.2.f.e.1729.1 2 240.59 even 4
2880.2.f.e.1729.2 2 48.11 even 4
3600.2.a.o.1.1 1 240.77 even 4
3600.2.a.bg.1.1 1 240.173 even 4
3840.2.d.g.2689.1 2 4.3 odd 2
3840.2.d.g.2689.2 2 40.19 odd 2
3840.2.d.j.2689.1 2 5.4 even 2
3840.2.d.j.2689.2 2 8.5 even 2
3840.2.d.x.2689.1 2 1.1 even 1 trivial
3840.2.d.x.2689.2 2 40.29 even 2 inner
3840.2.d.y.2689.1 2 20.19 odd 2
3840.2.d.y.2689.2 2 8.3 odd 2
4800.2.a.l.1.1 1 80.43 even 4
4800.2.a.m.1.1 1 80.37 odd 4
4800.2.a.cg.1.1 1 80.27 even 4
4800.2.a.cj.1.1 1 80.53 odd 4
7350.2.a.bg.1.1 1 560.307 odd 4
7350.2.a.cc.1.1 1 560.83 odd 4