Properties

Label 3840.2.f.j.769.5
Level $3840$
Weight $2$
Character 3840.769
Analytic conductor $30.663$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(769,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.769");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 1920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.5
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3840.769
Dual form 3840.2.f.j.769.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.41421 - 1.73205i) q^{5} -1.00000 q^{9} +3.46410i q^{13} +(1.73205 - 1.41421i) q^{15} -4.89898i q^{17} +4.89898 q^{19} -2.82843i q^{23} +(-1.00000 + 4.89898i) q^{25} -1.00000i q^{27} -2.82843 q^{29} -6.92820 q^{31} +3.46410i q^{37} -3.46410 q^{39} -6.00000 q^{41} -4.00000i q^{43} +(1.41421 + 1.73205i) q^{45} -2.82843i q^{47} +7.00000 q^{49} +4.89898 q^{51} +3.46410i q^{53} +4.89898i q^{57} +9.79796 q^{59} +(6.00000 - 4.89898i) q^{65} +4.00000i q^{67} +2.82843 q^{69} -13.8564 q^{71} +9.79796i q^{73} +(-4.89898 - 1.00000i) q^{75} -6.92820 q^{79} +1.00000 q^{81} -12.0000i q^{83} +(-8.48528 + 6.92820i) q^{85} -2.82843i q^{87} -6.00000 q^{89} -6.92820i q^{93} +(-6.92820 - 8.48528i) q^{95} -9.79796i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{25} - 48 q^{41} + 56 q^{49} + 48 q^{65} + 8 q^{81} - 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.41421 1.73205i −0.632456 0.774597i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) 1.73205 1.41421i 0.447214 0.365148i
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) 4.89898 1.12390 0.561951 0.827170i \(-0.310051\pi\)
0.561951 + 0.827170i \(0.310051\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) −1.00000 + 4.89898i −0.200000 + 0.979796i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) −6.92820 −1.24434 −0.622171 0.782881i \(-0.713749\pi\)
−0.622171 + 0.782881i \(0.713749\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.46410i 0.569495i 0.958603 + 0.284747i \(0.0919097\pi\)
−0.958603 + 0.284747i \(0.908090\pi\)
\(38\) 0 0
\(39\) −3.46410 −0.554700
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 1.41421 + 1.73205i 0.210819 + 0.258199i
\(46\) 0 0
\(47\) 2.82843i 0.412568i −0.978492 0.206284i \(-0.933863\pi\)
0.978492 0.206284i \(-0.0661372\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 4.89898 0.685994
\(52\) 0 0
\(53\) 3.46410i 0.475831i 0.971286 + 0.237915i \(0.0764641\pi\)
−0.971286 + 0.237915i \(0.923536\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.89898i 0.648886i
\(58\) 0 0
\(59\) 9.79796 1.27559 0.637793 0.770208i \(-0.279848\pi\)
0.637793 + 0.770208i \(0.279848\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 4.89898i 0.744208 0.607644i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 2.82843 0.340503
\(70\) 0 0
\(71\) −13.8564 −1.64445 −0.822226 0.569160i \(-0.807268\pi\)
−0.822226 + 0.569160i \(0.807268\pi\)
\(72\) 0 0
\(73\) 9.79796i 1.14676i 0.819288 + 0.573382i \(0.194369\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) −4.89898 1.00000i −0.565685 0.115470i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.92820 −0.779484 −0.389742 0.920924i \(-0.627436\pi\)
−0.389742 + 0.920924i \(0.627436\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) −8.48528 + 6.92820i −0.920358 + 0.751469i
\(86\) 0 0
\(87\) 2.82843i 0.303239i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.92820i 0.718421i
\(94\) 0 0
\(95\) −6.92820 8.48528i −0.710819 0.870572i
\(96\) 0 0
\(97\) 9.79796i 0.994832i −0.867512 0.497416i \(-0.834282\pi\)
0.867512 0.497416i \(-0.165718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.82843 −0.281439 −0.140720 0.990050i \(-0.544942\pi\)
−0.140720 + 0.990050i \(0.544942\pi\)
\(102\) 0 0
\(103\) 16.9706i 1.67216i −0.548608 0.836080i \(-0.684842\pi\)
0.548608 0.836080i \(-0.315158\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −16.9706 −1.62549 −0.812743 0.582623i \(-0.802026\pi\)
−0.812743 + 0.582623i \(0.802026\pi\)
\(110\) 0 0
\(111\) −3.46410 −0.328798
\(112\) 0 0
\(113\) 14.6969i 1.38257i −0.722581 0.691286i \(-0.757045\pi\)
0.722581 0.691286i \(-0.242955\pi\)
\(114\) 0 0
\(115\) −4.89898 + 4.00000i −0.456832 + 0.373002i
\(116\) 0 0
\(117\) 3.46410i 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 9.89949 5.19615i 0.885438 0.464758i
\(126\) 0 0
\(127\) 16.9706i 1.50589i −0.658081 0.752947i \(-0.728632\pi\)
0.658081 0.752947i \(-0.271368\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −19.5959 −1.71210 −0.856052 0.516890i \(-0.827090\pi\)
−0.856052 + 0.516890i \(0.827090\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.73205 + 1.41421i −0.149071 + 0.121716i
\(136\) 0 0
\(137\) 4.89898i 0.418548i 0.977857 + 0.209274i \(0.0671101\pi\)
−0.977857 + 0.209274i \(0.932890\pi\)
\(138\) 0 0
\(139\) −14.6969 −1.24658 −0.623289 0.781992i \(-0.714204\pi\)
−0.623289 + 0.781992i \(0.714204\pi\)
\(140\) 0 0
\(141\) 2.82843 0.238197
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 + 4.89898i 0.332182 + 0.406838i
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) 19.7990 1.62200 0.810998 0.585049i \(-0.198925\pi\)
0.810998 + 0.585049i \(0.198925\pi\)
\(150\) 0 0
\(151\) −6.92820 −0.563809 −0.281905 0.959442i \(-0.590966\pi\)
−0.281905 + 0.959442i \(0.590966\pi\)
\(152\) 0 0
\(153\) 4.89898i 0.396059i
\(154\) 0 0
\(155\) 9.79796 + 12.0000i 0.786991 + 0.963863i
\(156\) 0 0
\(157\) 10.3923i 0.829396i 0.909959 + 0.414698i \(0.136113\pi\)
−0.909959 + 0.414698i \(0.863887\pi\)
\(158\) 0 0
\(159\) −3.46410 −0.274721
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.1421i 1.09435i −0.837018 0.547176i \(-0.815703\pi\)
0.837018 0.547176i \(-0.184297\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −4.89898 −0.374634
\(172\) 0 0
\(173\) 3.46410i 0.263371i 0.991292 + 0.131685i \(0.0420389\pi\)
−0.991292 + 0.131685i \(0.957961\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.79796i 0.736460i
\(178\) 0 0
\(179\) −19.5959 −1.46467 −0.732334 0.680946i \(-0.761569\pi\)
−0.732334 + 0.680946i \(0.761569\pi\)
\(180\) 0 0
\(181\) −16.9706 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 4.89898i 0.441129 0.360180i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.8564 −1.00261 −0.501307 0.865269i \(-0.667147\pi\)
−0.501307 + 0.865269i \(0.667147\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 4.89898 + 6.00000i 0.350823 + 0.429669i
\(196\) 0 0
\(197\) 10.3923i 0.740421i −0.928948 0.370211i \(-0.879286\pi\)
0.928948 0.370211i \(-0.120714\pi\)
\(198\) 0 0
\(199\) −20.7846 −1.47338 −0.736691 0.676230i \(-0.763613\pi\)
−0.736691 + 0.676230i \(0.763613\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.48528 + 10.3923i 0.592638 + 0.725830i
\(206\) 0 0
\(207\) 2.82843i 0.196589i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 14.6969 1.01178 0.505889 0.862598i \(-0.331164\pi\)
0.505889 + 0.862598i \(0.331164\pi\)
\(212\) 0 0
\(213\) 13.8564i 0.949425i
\(214\) 0 0
\(215\) −6.92820 + 5.65685i −0.472500 + 0.385794i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.79796 −0.662085
\(220\) 0 0
\(221\) 16.9706 1.14156
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 4.89898i 0.0666667 0.326599i
\(226\) 0 0
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 16.9706 1.12145 0.560723 0.828003i \(-0.310523\pi\)
0.560723 + 0.828003i \(0.310523\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.89898i 0.320943i −0.987040 0.160471i \(-0.948699\pi\)
0.987040 0.160471i \(-0.0513014\pi\)
\(234\) 0 0
\(235\) −4.89898 + 4.00000i −0.319574 + 0.260931i
\(236\) 0 0
\(237\) 6.92820i 0.450035i
\(238\) 0 0
\(239\) −13.8564 −0.896296 −0.448148 0.893959i \(-0.647916\pi\)
−0.448148 + 0.893959i \(0.647916\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −9.89949 12.1244i −0.632456 0.774597i
\(246\) 0 0
\(247\) 16.9706i 1.07981i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 9.79796 0.618442 0.309221 0.950990i \(-0.399932\pi\)
0.309221 + 0.950990i \(0.399932\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −6.92820 8.48528i −0.433861 0.531369i
\(256\) 0 0
\(257\) 14.6969i 0.916770i 0.888754 + 0.458385i \(0.151572\pi\)
−0.888754 + 0.458385i \(0.848428\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.82843 0.175075
\(262\) 0 0
\(263\) 14.1421i 0.872041i −0.899937 0.436021i \(-0.856387\pi\)
0.899937 0.436021i \(-0.143613\pi\)
\(264\) 0 0
\(265\) 6.00000 4.89898i 0.368577 0.300942i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) −19.7990 −1.20717 −0.603583 0.797300i \(-0.706261\pi\)
−0.603583 + 0.797300i \(0.706261\pi\)
\(270\) 0 0
\(271\) 6.92820 0.420858 0.210429 0.977609i \(-0.432514\pi\)
0.210429 + 0.977609i \(0.432514\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.3205i 1.04069i 0.853957 + 0.520344i \(0.174196\pi\)
−0.853957 + 0.520344i \(0.825804\pi\)
\(278\) 0 0
\(279\) 6.92820 0.414781
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 28.0000i 1.66443i −0.554455 0.832214i \(-0.687073\pi\)
0.554455 0.832214i \(-0.312927\pi\)
\(284\) 0 0
\(285\) 8.48528 6.92820i 0.502625 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 9.79796 0.574367
\(292\) 0 0
\(293\) 3.46410i 0.202375i −0.994867 0.101187i \(-0.967736\pi\)
0.994867 0.101187i \(-0.0322642\pi\)
\(294\) 0 0
\(295\) −13.8564 16.9706i −0.806751 0.988064i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.79796 0.566631
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.82843i 0.162489i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 16.9706 0.965422
\(310\) 0 0
\(311\) 27.7128 1.57145 0.785725 0.618576i \(-0.212290\pi\)
0.785725 + 0.618576i \(0.212290\pi\)
\(312\) 0 0
\(313\) 19.5959i 1.10763i −0.832641 0.553813i \(-0.813172\pi\)
0.832641 0.553813i \(-0.186828\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.1769i 1.75107i −0.483155 0.875535i \(-0.660509\pi\)
0.483155 0.875535i \(-0.339491\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) −16.9706 3.46410i −0.941357 0.192154i
\(326\) 0 0
\(327\) 16.9706i 0.938474i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.89898 −0.269272 −0.134636 0.990895i \(-0.542987\pi\)
−0.134636 + 0.990895i \(0.542987\pi\)
\(332\) 0 0
\(333\) 3.46410i 0.189832i
\(334\) 0 0
\(335\) 6.92820 5.65685i 0.378528 0.309067i
\(336\) 0 0
\(337\) 9.79796i 0.533729i 0.963734 + 0.266864i \(0.0859876\pi\)
−0.963734 + 0.266864i \(0.914012\pi\)
\(338\) 0 0
\(339\) 14.6969 0.798228
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.00000 4.89898i −0.215353 0.263752i
\(346\) 0 0
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 0 0
\(349\) −33.9411 −1.81683 −0.908413 0.418073i \(-0.862706\pi\)
−0.908413 + 0.418073i \(0.862706\pi\)
\(350\) 0 0
\(351\) 3.46410 0.184900
\(352\) 0 0
\(353\) 34.2929i 1.82522i 0.408826 + 0.912612i \(0.365938\pi\)
−0.408826 + 0.912612i \(0.634062\pi\)
\(354\) 0 0
\(355\) 19.5959 + 24.0000i 1.04004 + 1.27379i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.7128 −1.46263 −0.731313 0.682042i \(-0.761092\pi\)
−0.731313 + 0.682042i \(0.761092\pi\)
\(360\) 0 0
\(361\) 5.00000 0.263158
\(362\) 0 0
\(363\) 11.0000i 0.577350i
\(364\) 0 0
\(365\) 16.9706 13.8564i 0.888280 0.725277i
\(366\) 0 0
\(367\) 16.9706i 0.885856i −0.896557 0.442928i \(-0.853940\pi\)
0.896557 0.442928i \(-0.146060\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 31.1769i 1.61428i 0.590360 + 0.807140i \(0.298986\pi\)
−0.590360 + 0.807140i \(0.701014\pi\)
\(374\) 0 0
\(375\) 5.19615 + 9.89949i 0.268328 + 0.511208i
\(376\) 0 0
\(377\) 9.79796i 0.504621i
\(378\) 0 0
\(379\) 4.89898 0.251644 0.125822 0.992053i \(-0.459843\pi\)
0.125822 + 0.992053i \(0.459843\pi\)
\(380\) 0 0
\(381\) 16.9706 0.869428
\(382\) 0 0
\(383\) 14.1421i 0.722629i −0.932444 0.361315i \(-0.882328\pi\)
0.932444 0.361315i \(-0.117672\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 31.1127 1.57748 0.788738 0.614729i \(-0.210735\pi\)
0.788738 + 0.614729i \(0.210735\pi\)
\(390\) 0 0
\(391\) −13.8564 −0.700749
\(392\) 0 0
\(393\) 19.5959i 0.988483i
\(394\) 0 0
\(395\) 9.79796 + 12.0000i 0.492989 + 0.603786i
\(396\) 0 0
\(397\) 17.3205i 0.869291i 0.900602 + 0.434646i \(0.143126\pi\)
−0.900602 + 0.434646i \(0.856874\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 24.0000i 1.19553i
\(404\) 0 0
\(405\) −1.41421 1.73205i −0.0702728 0.0860663i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −4.89898 −0.241649
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.7846 + 16.9706i −1.02028 + 0.833052i
\(416\) 0 0
\(417\) 14.6969i 0.719712i
\(418\) 0 0
\(419\) 9.79796 0.478662 0.239331 0.970938i \(-0.423072\pi\)
0.239331 + 0.970938i \(0.423072\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) 0 0
\(423\) 2.82843i 0.137523i
\(424\) 0 0
\(425\) 24.0000 + 4.89898i 1.16417 + 0.237635i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.8564 0.667440 0.333720 0.942672i \(-0.391696\pi\)
0.333720 + 0.942672i \(0.391696\pi\)
\(432\) 0 0
\(433\) 19.5959i 0.941720i 0.882208 + 0.470860i \(0.156056\pi\)
−0.882208 + 0.470860i \(0.843944\pi\)
\(434\) 0 0
\(435\) −4.89898 + 4.00000i −0.234888 + 0.191785i
\(436\) 0 0
\(437\) 13.8564i 0.662842i
\(438\) 0 0
\(439\) 34.6410 1.65333 0.826663 0.562698i \(-0.190236\pi\)
0.826663 + 0.562698i \(0.190236\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 8.48528 + 10.3923i 0.402241 + 0.492642i
\(446\) 0 0
\(447\) 19.7990i 0.936460i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 6.92820i 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.3939i 1.37499i −0.726190 0.687494i \(-0.758711\pi\)
0.726190 0.687494i \(-0.241289\pi\)
\(458\) 0 0
\(459\) −4.89898 −0.228665
\(460\) 0 0
\(461\) 14.1421 0.658665 0.329332 0.944214i \(-0.393176\pi\)
0.329332 + 0.944214i \(0.393176\pi\)
\(462\) 0 0
\(463\) 16.9706i 0.788689i 0.918963 + 0.394344i \(0.129028\pi\)
−0.918963 + 0.394344i \(0.870972\pi\)
\(464\) 0 0
\(465\) −12.0000 + 9.79796i −0.556487 + 0.454369i
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.3923 −0.478852
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.89898 + 24.0000i −0.224781 + 1.10120i
\(476\) 0 0
\(477\) 3.46410i 0.158610i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.9706 + 13.8564i −0.770594 + 0.629187i
\(486\) 0 0
\(487\) 16.9706i 0.769010i 0.923123 + 0.384505i \(0.125628\pi\)
−0.923123 + 0.384505i \(0.874372\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 29.3939 1.32653 0.663264 0.748386i \(-0.269171\pi\)
0.663264 + 0.748386i \(0.269171\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.89898 0.219308 0.109654 0.993970i \(-0.465026\pi\)
0.109654 + 0.993970i \(0.465026\pi\)
\(500\) 0 0
\(501\) 14.1421 0.631824
\(502\) 0 0
\(503\) 36.7696i 1.63947i 0.572741 + 0.819737i \(0.305880\pi\)
−0.572741 + 0.819737i \(0.694120\pi\)
\(504\) 0 0
\(505\) 4.00000 + 4.89898i 0.177998 + 0.218002i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) −14.1421 −0.626839 −0.313420 0.949615i \(-0.601475\pi\)
−0.313420 + 0.949615i \(0.601475\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.89898i 0.216295i
\(514\) 0 0
\(515\) −29.3939 + 24.0000i −1.29525 + 1.05757i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.46410 −0.152057
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.9411i 1.47850i
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) 0 0
\(531\) −9.79796 −0.425195
\(532\) 0 0
\(533\) 20.7846i 0.900281i
\(534\) 0 0
\(535\) 20.7846 16.9706i 0.898597 0.733701i
\(536\) 0 0
\(537\) 19.5959i 0.845626i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −16.9706 −0.729621 −0.364811 0.931082i \(-0.618866\pi\)
−0.364811 + 0.931082i \(0.618866\pi\)
\(542\) 0 0
\(543\) 16.9706i 0.728277i
\(544\) 0 0
\(545\) 24.0000 + 29.3939i 1.02805 + 1.25910i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.8564 −0.590303
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.89898 + 6.00000i 0.207950 + 0.254686i
\(556\) 0 0
\(557\) 31.1769i 1.32101i 0.750822 + 0.660504i \(0.229657\pi\)
−0.750822 + 0.660504i \(0.770343\pi\)
\(558\) 0 0
\(559\) 13.8564 0.586064
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0000i 1.51722i −0.651546 0.758610i \(-0.725879\pi\)
0.651546 0.758610i \(-0.274121\pi\)
\(564\) 0 0
\(565\) −25.4558 + 20.7846i −1.07094 + 0.874415i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −24.4949 −1.02508 −0.512540 0.858663i \(-0.671295\pi\)
−0.512540 + 0.858663i \(0.671295\pi\)
\(572\) 0 0
\(573\) 13.8564i 0.578860i
\(574\) 0 0
\(575\) 13.8564 + 2.82843i 0.577852 + 0.117954i
\(576\) 0 0
\(577\) 19.5959i 0.815789i 0.913029 + 0.407894i \(0.133737\pi\)
−0.913029 + 0.407894i \(0.866263\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.00000 + 4.89898i −0.248069 + 0.202548i
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −33.9411 −1.39852
\(590\) 0 0
\(591\) 10.3923 0.427482
\(592\) 0 0
\(593\) 4.89898i 0.201177i 0.994928 + 0.100588i \(0.0320726\pi\)
−0.994928 + 0.100588i \(0.967927\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.7846i 0.850657i
\(598\) 0 0
\(599\) 27.7128 1.13231 0.566157 0.824297i \(-0.308429\pi\)
0.566157 + 0.824297i \(0.308429\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) 15.5563 + 19.0526i 0.632456 + 0.774597i
\(606\) 0 0
\(607\) 33.9411i 1.37763i −0.724938 0.688814i \(-0.758132\pi\)
0.724938 0.688814i \(-0.241868\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.79796 0.396383
\(612\) 0 0
\(613\) 3.46410i 0.139914i −0.997550 0.0699569i \(-0.977714\pi\)
0.997550 0.0699569i \(-0.0222862\pi\)
\(614\) 0 0
\(615\) −10.3923 + 8.48528i −0.419058 + 0.342160i
\(616\) 0 0
\(617\) 4.89898i 0.197225i 0.995126 + 0.0986127i \(0.0314405\pi\)
−0.995126 + 0.0986127i \(0.968559\pi\)
\(618\) 0 0
\(619\) 44.0908 1.77216 0.886080 0.463533i \(-0.153418\pi\)
0.886080 + 0.463533i \(0.153418\pi\)
\(620\) 0 0
\(621\) −2.82843 −0.113501
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.9706 0.676661
\(630\) 0 0
\(631\) 48.4974 1.93065 0.965326 0.261048i \(-0.0840679\pi\)
0.965326 + 0.261048i \(0.0840679\pi\)
\(632\) 0 0
\(633\) 14.6969i 0.584151i
\(634\) 0 0
\(635\) −29.3939 + 24.0000i −1.16646 + 0.952411i
\(636\) 0 0
\(637\) 24.2487i 0.960769i
\(638\) 0 0
\(639\) 13.8564 0.548151
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) −5.65685 6.92820i −0.222738 0.272798i
\(646\) 0 0
\(647\) 31.1127i 1.22317i −0.791180 0.611583i \(-0.790533\pi\)
0.791180 0.611583i \(-0.209467\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.1769i 1.22005i −0.792383 0.610023i \(-0.791160\pi\)
0.792383 0.610023i \(-0.208840\pi\)
\(654\) 0 0
\(655\) 27.7128 + 33.9411i 1.08283 + 1.32619i
\(656\) 0 0
\(657\) 9.79796i 0.382255i
\(658\) 0 0
\(659\) −9.79796 −0.381674 −0.190837 0.981622i \(-0.561120\pi\)
−0.190837 + 0.981622i \(0.561120\pi\)
\(660\) 0 0
\(661\) −33.9411 −1.32016 −0.660078 0.751197i \(-0.729477\pi\)
−0.660078 + 0.751197i \(0.729477\pi\)
\(662\) 0 0
\(663\) 16.9706i 0.659082i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.1918i 1.51073i −0.655302 0.755367i \(-0.727459\pi\)
0.655302 0.755367i \(-0.272541\pi\)
\(674\) 0 0
\(675\) 4.89898 + 1.00000i 0.188562 + 0.0384900i
\(676\) 0 0
\(677\) 17.3205i 0.665681i 0.942983 + 0.332841i \(0.108007\pi\)
−0.942983 + 0.332841i \(0.891993\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 36.0000i 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) 8.48528 6.92820i 0.324206 0.264713i
\(686\) 0 0
\(687\) 16.9706i 0.647467i
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −34.2929 −1.30456 −0.652281 0.757977i \(-0.726188\pi\)
−0.652281 + 0.757977i \(0.726188\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.7846 + 25.4558i 0.788405 + 0.965595i
\(696\) 0 0
\(697\) 29.3939i 1.11337i
\(698\) 0 0
\(699\) 4.89898 0.185296
\(700\) 0 0
\(701\) 2.82843 0.106828 0.0534141 0.998572i \(-0.482990\pi\)
0.0534141 + 0.998572i \(0.482990\pi\)
\(702\) 0 0
\(703\) 16.9706i 0.640057i
\(704\) 0 0
\(705\) −4.00000 4.89898i −0.150649 0.184506i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.9706 0.637343 0.318671 0.947865i \(-0.396763\pi\)
0.318671 + 0.947865i \(0.396763\pi\)
\(710\) 0 0
\(711\) 6.92820 0.259828
\(712\) 0 0
\(713\) 19.5959i 0.733873i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.8564i 0.517477i
\(718\) 0 0
\(719\) 41.5692 1.55027 0.775135 0.631795i \(-0.217682\pi\)
0.775135 + 0.631795i \(0.217682\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14.0000i 0.520666i
\(724\) 0 0
\(725\) 2.82843 13.8564i 0.105045 0.514614i
\(726\) 0 0
\(727\) 50.9117i 1.88821i 0.329645 + 0.944105i \(0.393071\pi\)
−0.329645 + 0.944105i \(0.606929\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −19.5959 −0.724781
\(732\) 0 0
\(733\) 51.9615i 1.91924i 0.281295 + 0.959621i \(0.409236\pi\)
−0.281295 + 0.959621i \(0.590764\pi\)
\(734\) 0 0
\(735\) 12.1244 9.89949i 0.447214 0.365148i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −14.6969 −0.540636 −0.270318 0.962771i \(-0.587129\pi\)
−0.270318 + 0.962771i \(0.587129\pi\)
\(740\) 0 0
\(741\) −16.9706 −0.623429
\(742\) 0 0
\(743\) 14.1421i 0.518825i 0.965767 + 0.259412i \(0.0835289\pi\)
−0.965767 + 0.259412i \(0.916471\pi\)
\(744\) 0 0
\(745\) −28.0000 34.2929i −1.02584 1.25639i
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.92820 −0.252814 −0.126407 0.991978i \(-0.540344\pi\)
−0.126407 + 0.991978i \(0.540344\pi\)
\(752\) 0 0
\(753\) 9.79796i 0.357057i
\(754\) 0 0
\(755\) 9.79796 + 12.0000i 0.356584 + 0.436725i
\(756\) 0 0
\(757\) 45.0333i 1.63676i 0.574675 + 0.818382i \(0.305129\pi\)
−0.574675 + 0.818382i \(0.694871\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.48528 6.92820i 0.306786 0.250490i
\(766\) 0 0
\(767\) 33.9411i 1.22554i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −14.6969 −0.529297
\(772\) 0 0
\(773\) 17.3205i 0.622975i 0.950250 + 0.311488i \(0.100827\pi\)
−0.950250 + 0.311488i \(0.899173\pi\)
\(774\) 0 0
\(775\) 6.92820 33.9411i 0.248868 1.21920i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −29.3939 −1.05314
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.82843i 0.101080i
\(784\) 0 0
\(785\) 18.0000 14.6969i 0.642448 0.524556i
\(786\) 0 0
\(787\) 44.0000i 1.56843i 0.620489 + 0.784215i \(0.286934\pi\)
−0.620489 + 0.784215i \(0.713066\pi\)
\(788\) 0 0
\(789\) 14.1421 0.503473
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.89898 + 6.00000i 0.173749 + 0.212798i
\(796\) 0 0
\(797\) 17.3205i 0.613524i −0.951786 0.306762i \(-0.900754\pi\)
0.951786 0.306762i \(-0.0992455\pi\)
\(798\) 0 0
\(799\) −13.8564 −0.490204
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 19.7990i 0.696957i
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 4.89898 0.172026 0.0860132 0.996294i \(-0.472587\pi\)
0.0860132 + 0.996294i \(0.472587\pi\)
\(812\) 0 0
\(813\) 6.92820i 0.242983i
\(814\) 0 0
\(815\) −6.92820 + 5.65685i −0.242684 + 0.198151i
\(816\) 0 0
\(817\) 19.5959i 0.685574i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.82843 0.0987128 0.0493564 0.998781i \(-0.484283\pi\)
0.0493564 + 0.998781i \(0.484283\pi\)
\(822\) 0 0
\(823\) 33.9411i 1.18311i 0.806263 + 0.591557i \(0.201486\pi\)
−0.806263 + 0.591557i \(0.798514\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) −16.9706 −0.589412 −0.294706 0.955588i \(-0.595222\pi\)
−0.294706 + 0.955588i \(0.595222\pi\)
\(830\) 0 0
\(831\) −17.3205 −0.600842
\(832\) 0 0
\(833\) 34.2929i 1.18818i
\(834\) 0 0
\(835\) −24.4949 + 20.0000i −0.847681 + 0.692129i
\(836\) 0 0
\(837\) 6.92820i 0.239474i
\(838\) 0 0
\(839\) 27.7128 0.956753 0.478376 0.878155i \(-0.341226\pi\)
0.478376 + 0.878155i \(0.341226\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) 6.00000i 0.206651i
\(844\) 0 0
\(845\) −1.41421 1.73205i −0.0486504 0.0595844i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 9.79796 0.335870
\(852\) 0 0
\(853\) 24.2487i 0.830260i 0.909762 + 0.415130i \(0.136264\pi\)
−0.909762 + 0.415130i \(0.863736\pi\)
\(854\) 0 0
\(855\) 6.92820 + 8.48528i 0.236940 + 0.290191i
\(856\) 0 0
\(857\) 4.89898i 0.167346i −0.996493 0.0836730i \(-0.973335\pi\)
0.996493 0.0836730i \(-0.0266651\pi\)
\(858\) 0 0
\(859\) −53.8888 −1.83866 −0.919331 0.393486i \(-0.871269\pi\)
−0.919331 + 0.393486i \(0.871269\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.7990i 0.673965i −0.941511 0.336983i \(-0.890594\pi\)
0.941511 0.336983i \(-0.109406\pi\)
\(864\) 0 0
\(865\) 6.00000 4.89898i 0.204006 0.166570i
\(866\) 0 0
\(867\) 7.00000i 0.237732i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −13.8564 −0.469506
\(872\) 0 0
\(873\) 9.79796i 0.331611i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 45.0333i 1.52067i −0.649533 0.760334i \(-0.725035\pi\)
0.649533 0.760334i \(-0.274965\pi\)
\(878\) 0 0
\(879\) 3.46410 0.116841
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 52.0000i 1.74994i −0.484178 0.874970i \(-0.660881\pi\)
0.484178 0.874970i \(-0.339119\pi\)
\(884\) 0 0
\(885\) 16.9706 13.8564i 0.570459 0.465778i
\(886\) 0 0
\(887\) 19.7990i 0.664785i 0.943141 + 0.332393i \(0.107856\pi\)
−0.943141 + 0.332393i \(0.892144\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8564i 0.463687i
\(894\) 0 0
\(895\) 27.7128 + 33.9411i 0.926337 + 1.13453i
\(896\) 0 0
\(897\) 9.79796i 0.327144i
\(898\) 0 0
\(899\) 19.5959 0.653560
\(900\) 0 0
\(901\) 16.9706 0.565371
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.0000 + 29.3939i 0.797787 + 0.977086i
\(906\) 0 0
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 0 0
\(909\) 2.82843 0.0938130
\(910\) 0 0
\(911\) 27.7128 0.918166 0.459083 0.888393i \(-0.348178\pi\)
0.459083 + 0.888393i \(0.348178\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.92820 −0.228540 −0.114270 0.993450i \(-0.536453\pi\)
−0.114270 + 0.993450i \(0.536453\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 48.0000i 1.57994i
\(924\) 0 0
\(925\) −16.9706 3.46410i −0.557989 0.113899i
\(926\) 0 0
\(927\) 16.9706i 0.557386i
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 34.2929 1.12390
\(932\) 0 0
\(933\) 27.7128i 0.907277i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 58.7878i 1.92051i 0.279120 + 0.960256i \(0.409957\pi\)
−0.279120 + 0.960256i \(0.590043\pi\)
\(938\) 0 0
\(939\) 19.5959 0.639489
\(940\) 0 0
\(941\) 2.82843 0.0922041 0.0461020 0.998937i \(-0.485320\pi\)
0.0461020 + 0.998937i \(0.485320\pi\)
\(942\) 0 0
\(943\) 16.9706i 0.552638i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 60.0000i 1.94974i 0.222779 + 0.974869i \(0.428487\pi\)
−0.222779 + 0.974869i \(0.571513\pi\)
\(948\) 0 0
\(949\) −33.9411 −1.10178
\(950\) 0 0
\(951\) 31.1769 1.01098
\(952\) 0 0
\(953\) 14.6969i 0.476081i 0.971255 + 0.238040i \(0.0765050\pi\)
−0.971255 + 0.238040i \(0.923495\pi\)
\(954\) 0 0
\(955\) 19.5959 + 24.0000i 0.634109 + 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 17.0000 0.548387
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 33.9411i 1.09147i 0.837957 + 0.545737i \(0.183750\pi\)
−0.837957 + 0.545737i \(0.816250\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −29.3939 −0.943294 −0.471647 0.881787i \(-0.656340\pi\)
−0.471647 + 0.881787i \(0.656340\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.46410 16.9706i 0.110940 0.543493i
\(976\) 0 0
\(977\) 24.4949i 0.783661i −0.920037 0.391831i \(-0.871842\pi\)
0.920037 0.391831i \(-0.128158\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 16.9706 0.541828
\(982\) 0 0
\(983\) 14.1421i 0.451064i 0.974236 + 0.225532i \(0.0724120\pi\)
−0.974236 + 0.225532i \(0.927588\pi\)
\(984\) 0 0
\(985\) −18.0000 + 14.6969i −0.573528 + 0.468283i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.3137 −0.359755
\(990\) 0 0
\(991\) 20.7846 0.660245 0.330122 0.943938i \(-0.392910\pi\)
0.330122 + 0.943938i \(0.392910\pi\)
\(992\) 0 0
\(993\) 4.89898i 0.155464i
\(994\) 0 0
\(995\) 29.3939 + 36.0000i 0.931849 + 1.14128i
\(996\) 0 0
\(997\) 31.1769i 0.987383i −0.869637 0.493691i \(-0.835647\pi\)
0.869637 0.493691i \(-0.164353\pi\)
\(998\) 0 0
\(999\) 3.46410 0.109599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.f.j.769.5 8
4.3 odd 2 inner 3840.2.f.j.769.1 8
5.4 even 2 inner 3840.2.f.j.769.2 8
8.3 odd 2 inner 3840.2.f.j.769.8 8
8.5 even 2 inner 3840.2.f.j.769.4 8
16.3 odd 4 1920.2.d.b.1729.2 yes 4
16.5 even 4 1920.2.d.b.1729.3 yes 4
16.11 odd 4 1920.2.d.a.1729.3 yes 4
16.13 even 4 1920.2.d.a.1729.2 yes 4
20.19 odd 2 inner 3840.2.f.j.769.6 8
40.19 odd 2 inner 3840.2.f.j.769.3 8
40.29 even 2 inner 3840.2.f.j.769.7 8
80.19 odd 4 1920.2.d.a.1729.4 yes 4
80.29 even 4 1920.2.d.b.1729.4 yes 4
80.59 odd 4 1920.2.d.b.1729.1 yes 4
80.69 even 4 1920.2.d.a.1729.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.d.a.1729.1 4 80.69 even 4
1920.2.d.a.1729.2 yes 4 16.13 even 4
1920.2.d.a.1729.3 yes 4 16.11 odd 4
1920.2.d.a.1729.4 yes 4 80.19 odd 4
1920.2.d.b.1729.1 yes 4 80.59 odd 4
1920.2.d.b.1729.2 yes 4 16.3 odd 4
1920.2.d.b.1729.3 yes 4 16.5 even 4
1920.2.d.b.1729.4 yes 4 80.29 even 4
3840.2.f.j.769.1 8 4.3 odd 2 inner
3840.2.f.j.769.2 8 5.4 even 2 inner
3840.2.f.j.769.3 8 40.19 odd 2 inner
3840.2.f.j.769.4 8 8.5 even 2 inner
3840.2.f.j.769.5 8 1.1 even 1 trivial
3840.2.f.j.769.6 8 20.19 odd 2 inner
3840.2.f.j.769.7 8 40.29 even 2 inner
3840.2.f.j.769.8 8 8.3 odd 2 inner