Properties

Label 3840.2.k.e.1921.1
Level $3840$
Weight $2$
Character 3840.1921
Analytic conductor $30.663$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(1921,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.1921");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1921.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.1921
Dual form 3840.2.k.e.1921.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.00000i q^{5} -4.00000 q^{7} -1.00000 q^{9} -6.00000i q^{11} +4.00000i q^{13} +1.00000 q^{15} +4.00000 q^{17} -8.00000i q^{19} +4.00000i q^{21} -1.00000 q^{25} +1.00000i q^{27} -2.00000i q^{29} +2.00000 q^{31} -6.00000 q^{33} -4.00000i q^{35} +4.00000i q^{37} +4.00000 q^{39} -6.00000 q^{41} +12.0000i q^{43} -1.00000i q^{45} +9.00000 q^{49} -4.00000i q^{51} -14.0000i q^{53} +6.00000 q^{55} -8.00000 q^{57} +6.00000i q^{59} +6.00000i q^{61} +4.00000 q^{63} -4.00000 q^{65} -4.00000i q^{67} -8.00000 q^{71} +2.00000 q^{73} +1.00000i q^{75} +24.0000i q^{77} -6.00000 q^{79} +1.00000 q^{81} +12.0000i q^{83} +4.00000i q^{85} -2.00000 q^{87} -6.00000 q^{89} -16.0000i q^{91} -2.00000i q^{93} +8.00000 q^{95} -14.0000 q^{97} +6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{7} - 2 q^{9} + 2 q^{15} + 8 q^{17} - 2 q^{25} + 4 q^{31} - 12 q^{33} + 8 q^{39} - 12 q^{41} + 18 q^{49} + 12 q^{55} - 16 q^{57} + 8 q^{63} - 8 q^{65} - 16 q^{71} + 4 q^{73} - 12 q^{79} + 2 q^{81}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 6.00000i − 1.80907i −0.426401 0.904534i \(-0.640219\pi\)
0.426401 0.904534i \(-0.359781\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) − 8.00000i − 1.83533i −0.397360 0.917663i \(-0.630073\pi\)
0.397360 0.917663i \(-0.369927\pi\)
\(20\) 0 0
\(21\) 4.00000i 0.872872i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) − 4.00000i − 0.676123i
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 0.149071i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) − 4.00000i − 0.560112i
\(52\) 0 0
\(53\) − 14.0000i − 1.92305i −0.274721 0.961524i \(-0.588586\pi\)
0.274721 0.961524i \(-0.411414\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i 0.923287 + 0.384111i \(0.125492\pi\)
−0.923287 + 0.384111i \(0.874508\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 24.0000i 2.73505i
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) − 16.0000i − 1.67726i
\(92\) 0 0
\(93\) − 2.00000i − 0.207390i
\(94\) 0 0
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) − 10.0000i − 0.995037i −0.867453 0.497519i \(-0.834245\pi\)
0.867453 0.497519i \(-0.165755\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 18.0000i 1.72409i 0.506834 + 0.862044i \(0.330816\pi\)
−0.506834 + 0.862044i \(0.669184\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.00000i − 0.369800i
\(118\) 0 0
\(119\) −16.0000 −1.46672
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) − 2.00000i − 0.174741i −0.996176 0.0873704i \(-0.972154\pi\)
0.996176 0.0873704i \(-0.0278464\pi\)
\(132\) 0 0
\(133\) 32.0000i 2.77475i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 8.00000i 0.678551i 0.940687 + 0.339276i \(0.110182\pi\)
−0.940687 + 0.339276i \(0.889818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 24.0000 2.00698
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) − 9.00000i − 0.742307i
\(148\) 0 0
\(149\) 18.0000i 1.47462i 0.675556 + 0.737309i \(0.263904\pi\)
−0.675556 + 0.737309i \(0.736096\pi\)
\(150\) 0 0
\(151\) −6.00000 −0.488273 −0.244137 0.969741i \(-0.578505\pi\)
−0.244137 + 0.969741i \(0.578505\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 2.00000i 0.160644i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 0 0
\(165\) − 6.00000i − 0.467099i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 8.00000i 0.611775i
\(172\) 0 0
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 18.0000i 1.34538i 0.739923 + 0.672692i \(0.234862\pi\)
−0.739923 + 0.672692i \(0.765138\pi\)
\(180\) 0 0
\(181\) − 18.0000i − 1.33793i −0.743294 0.668965i \(-0.766738\pi\)
0.743294 0.668965i \(-0.233262\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) − 24.0000i − 1.75505i
\(188\) 0 0
\(189\) − 4.00000i − 0.290957i
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 4.00000i 0.286446i
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 8.00000i 0.561490i
\(204\) 0 0
\(205\) − 6.00000i − 0.419058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −48.0000 −3.32023
\(210\) 0 0
\(211\) − 8.00000i − 0.550743i −0.961338 0.275371i \(-0.911199\pi\)
0.961338 0.275371i \(-0.0888008\pi\)
\(212\) 0 0
\(213\) 8.00000i 0.548151i
\(214\) 0 0
\(215\) −12.0000 −0.818393
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) − 2.00000i − 0.135147i
\(220\) 0 0
\(221\) 16.0000i 1.07628i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 8.00000i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914466\pi\)
\(228\) 0 0
\(229\) − 22.0000i − 1.45380i −0.686743 0.726900i \(-0.740960\pi\)
0.686743 0.726900i \(-0.259040\pi\)
\(230\) 0 0
\(231\) 24.0000 1.57908
\(232\) 0 0
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.00000i 0.389742i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 9.00000i 0.574989i
\(246\) 0 0
\(247\) 32.0000 2.03611
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) − 18.0000i − 1.13615i −0.822977 0.568075i \(-0.807688\pi\)
0.822977 0.568075i \(-0.192312\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 4.00000 0.249513 0.124757 0.992187i \(-0.460185\pi\)
0.124757 + 0.992187i \(0.460185\pi\)
\(258\) 0 0
\(259\) − 16.0000i − 0.994192i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 14.0000 0.860013
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) 30.0000i 1.82913i 0.404436 + 0.914566i \(0.367468\pi\)
−0.404436 + 0.914566i \(0.632532\pi\)
\(270\) 0 0
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) −16.0000 −0.968364
\(274\) 0 0
\(275\) 6.00000i 0.361814i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) − 8.00000i − 0.473879i
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 14.0000i 0.820695i
\(292\) 0 0
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) 6.00000 0.348155
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 48.0000i − 2.76667i
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 16.0000i 0.910208i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) 4.00000i 0.225374i
\(316\) 0 0
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) − 32.0000i − 1.78053i
\(324\) 0 0
\(325\) − 4.00000i − 0.221880i
\(326\) 0 0
\(327\) 18.0000 0.995402
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0000i 0.659580i 0.944054 + 0.329790i \(0.106978\pi\)
−0.944054 + 0.329790i \(0.893022\pi\)
\(332\) 0 0
\(333\) − 4.00000i − 0.219199i
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 0 0
\(339\) 12.0000i 0.651751i
\(340\) 0 0
\(341\) − 12.0000i − 0.649836i
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 24.0000i − 1.28839i −0.764862 0.644194i \(-0.777193\pi\)
0.764862 0.644194i \(-0.222807\pi\)
\(348\) 0 0
\(349\) − 2.00000i − 0.107058i −0.998566 0.0535288i \(-0.982953\pi\)
0.998566 0.0535288i \(-0.0170469\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) − 8.00000i − 0.424596i
\(356\) 0 0
\(357\) 16.0000i 0.846810i
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −45.0000 −2.36842
\(362\) 0 0
\(363\) 25.0000i 1.31216i
\(364\) 0 0
\(365\) 2.00000i 0.104685i
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 56.0000i 2.90738i
\(372\) 0 0
\(373\) 32.0000i 1.65690i 0.560065 + 0.828449i \(0.310776\pi\)
−0.560065 + 0.828449i \(0.689224\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) − 12.0000i − 0.616399i −0.951322 0.308199i \(-0.900274\pi\)
0.951322 0.308199i \(-0.0997264\pi\)
\(380\) 0 0
\(381\) 16.0000i 0.819705i
\(382\) 0 0
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) −24.0000 −1.22315
\(386\) 0 0
\(387\) − 12.0000i − 0.609994i
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −2.00000 −0.100887
\(394\) 0 0
\(395\) − 6.00000i − 0.301893i
\(396\) 0 0
\(397\) − 4.00000i − 0.200754i −0.994949 0.100377i \(-0.967995\pi\)
0.994949 0.100377i \(-0.0320049\pi\)
\(398\) 0 0
\(399\) 32.0000 1.60200
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) − 8.00000i − 0.394611i
\(412\) 0 0
\(413\) − 24.0000i − 1.18096i
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 34.0000i 1.66101i 0.557012 + 0.830504i \(0.311948\pi\)
−0.557012 + 0.830504i \(0.688052\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i 0.969854 + 0.243685i \(0.0783563\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) − 24.0000i − 1.16144i
\(428\) 0 0
\(429\) − 24.0000i − 1.15873i
\(430\) 0 0
\(431\) −28.0000 −1.34871 −0.674356 0.738406i \(-0.735579\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) − 2.00000i − 0.0958927i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) − 6.00000i − 0.284427i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 42.0000 1.98210 0.991051 0.133482i \(-0.0426157\pi\)
0.991051 + 0.133482i \(0.0426157\pi\)
\(450\) 0 0
\(451\) 36.0000i 1.69517i
\(452\) 0 0
\(453\) 6.00000i 0.281905i
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 4.00000i 0.186704i
\(460\) 0 0
\(461\) − 10.0000i − 0.465746i −0.972507 0.232873i \(-0.925187\pi\)
0.972507 0.232873i \(-0.0748127\pi\)
\(462\) 0 0
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 0 0
\(465\) 2.00000 0.0927478
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 72.0000 3.31056
\(474\) 0 0
\(475\) 8.00000i 0.367065i
\(476\) 0 0
\(477\) 14.0000i 0.641016i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 14.0000i − 0.635707i
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 26.0000i 1.17336i 0.809818 + 0.586682i \(0.199566\pi\)
−0.809818 + 0.586682i \(0.800434\pi\)
\(492\) 0 0
\(493\) − 8.00000i − 0.360302i
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) − 4.00000i − 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 0 0
\(509\) 26.0000i 1.15243i 0.817298 + 0.576215i \(0.195471\pi\)
−0.817298 + 0.576215i \(0.804529\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) − 16.0000i − 0.705044i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) − 4.00000i − 0.174574i
\(526\) 0 0
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) − 6.00000i − 0.260378i
\(532\) 0 0
\(533\) − 24.0000i − 1.03956i
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) 18.0000 0.776757
\(538\) 0 0
\(539\) − 54.0000i − 2.32594i
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) − 20.0000i − 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) − 6.00000i − 0.256074i
\(550\) 0 0
\(551\) −16.0000 −0.681623
\(552\) 0 0
\(553\) 24.0000 1.02058
\(554\) 0 0
\(555\) 4.00000i 0.169791i
\(556\) 0 0
\(557\) − 30.0000i − 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) − 32.0000i − 1.34864i −0.738440 0.674320i \(-0.764437\pi\)
0.738440 0.674320i \(-0.235563\pi\)
\(564\) 0 0
\(565\) − 12.0000i − 0.504844i
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) − 28.0000i − 1.17176i −0.810397 0.585882i \(-0.800748\pi\)
0.810397 0.585882i \(-0.199252\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 0 0
\(579\) − 14.0000i − 0.581820i
\(580\) 0 0
\(581\) − 48.0000i − 1.99138i
\(582\) 0 0
\(583\) −84.0000 −3.47892
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 16.0000i 0.660391i 0.943913 + 0.330195i \(0.107115\pi\)
−0.943913 + 0.330195i \(0.892885\pi\)
\(588\) 0 0
\(589\) − 16.0000i − 0.659269i
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) −4.00000 −0.164260 −0.0821302 0.996622i \(-0.526172\pi\)
−0.0821302 + 0.996622i \(0.526172\pi\)
\(594\) 0 0
\(595\) − 16.0000i − 0.655936i
\(596\) 0 0
\(597\) 2.00000i 0.0818546i
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) − 25.0000i − 1.01639i
\(606\) 0 0
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) 0 0
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 4.00000i − 0.161558i −0.996732 0.0807792i \(-0.974259\pi\)
0.996732 0.0807792i \(-0.0257409\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 24.0000 0.966204 0.483102 0.875564i \(-0.339510\pi\)
0.483102 + 0.875564i \(0.339510\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.0000 0.961540
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 48.0000i 1.91694i
\(628\) 0 0
\(629\) 16.0000i 0.637962i
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 0 0
\(633\) −8.00000 −0.317971
\(634\) 0 0
\(635\) − 16.0000i − 0.634941i
\(636\) 0 0
\(637\) 36.0000i 1.42637i
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) − 12.0000i − 0.473234i −0.971603 0.236617i \(-0.923961\pi\)
0.971603 0.236617i \(-0.0760386\pi\)
\(644\) 0 0
\(645\) 12.0000i 0.472500i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 8.00000i 0.313545i
\(652\) 0 0
\(653\) − 14.0000i − 0.547862i −0.961749 0.273931i \(-0.911676\pi\)
0.961749 0.273931i \(-0.0883240\pi\)
\(654\) 0 0
\(655\) 2.00000 0.0781465
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) − 10.0000i − 0.389545i −0.980848 0.194772i \(-0.937603\pi\)
0.980848 0.194772i \(-0.0623968\pi\)
\(660\) 0 0
\(661\) − 38.0000i − 1.47803i −0.673690 0.739014i \(-0.735292\pi\)
0.673690 0.739014i \(-0.264708\pi\)
\(662\) 0 0
\(663\) 16.0000 0.621389
\(664\) 0 0
\(665\) −32.0000 −1.24091
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 16.0000i − 0.618596i
\(670\) 0 0
\(671\) 36.0000 1.38976
\(672\) 0 0
\(673\) −18.0000 −0.693849 −0.346925 0.937893i \(-0.612774\pi\)
−0.346925 + 0.937893i \(0.612774\pi\)
\(674\) 0 0
\(675\) − 1.00000i − 0.0384900i
\(676\) 0 0
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 0 0
\(679\) 56.0000 2.14908
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 20.0000i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(684\) 0 0
\(685\) 8.00000i 0.305664i
\(686\) 0 0
\(687\) −22.0000 −0.839352
\(688\) 0 0
\(689\) 56.0000 2.13343
\(690\) 0 0
\(691\) − 16.0000i − 0.608669i −0.952565 0.304334i \(-0.901566\pi\)
0.952565 0.304334i \(-0.0984340\pi\)
\(692\) 0 0
\(693\) − 24.0000i − 0.911685i
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) − 8.00000i − 0.302588i
\(700\) 0 0
\(701\) − 38.0000i − 1.43524i −0.696435 0.717620i \(-0.745231\pi\)
0.696435 0.717620i \(-0.254769\pi\)
\(702\) 0 0
\(703\) 32.0000 1.20690
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.0000i 1.50435i
\(708\) 0 0
\(709\) − 38.0000i − 1.42712i −0.700594 0.713560i \(-0.747082\pi\)
0.700594 0.713560i \(-0.252918\pi\)
\(710\) 0 0
\(711\) 6.00000 0.225018
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000i 0.897549i
\(716\) 0 0
\(717\) − 12.0000i − 0.448148i
\(718\) 0 0
\(719\) 4.00000 0.149175 0.0745874 0.997214i \(-0.476236\pi\)
0.0745874 + 0.997214i \(0.476236\pi\)
\(720\) 0 0
\(721\) 64.0000 2.38348
\(722\) 0 0
\(723\) 18.0000i 0.669427i
\(724\) 0 0
\(725\) 2.00000i 0.0742781i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 48.0000i 1.77534i
\(732\) 0 0
\(733\) − 40.0000i − 1.47743i −0.674016 0.738717i \(-0.735432\pi\)
0.674016 0.738717i \(-0.264568\pi\)
\(734\) 0 0
\(735\) 9.00000 0.331970
\(736\) 0 0
\(737\) −24.0000 −0.884051
\(738\) 0 0
\(739\) − 44.0000i − 1.61857i −0.587419 0.809283i \(-0.699856\pi\)
0.587419 0.809283i \(-0.300144\pi\)
\(740\) 0 0
\(741\) − 32.0000i − 1.17555i
\(742\) 0 0
\(743\) 8.00000 0.293492 0.146746 0.989174i \(-0.453120\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) 0 0
\(747\) − 12.0000i − 0.439057i
\(748\) 0 0
\(749\) − 32.0000i − 1.16925i
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 0 0
\(753\) −18.0000 −0.655956
\(754\) 0 0
\(755\) − 6.00000i − 0.218362i
\(756\) 0 0
\(757\) 48.0000i 1.74459i 0.488980 + 0.872295i \(0.337369\pi\)
−0.488980 + 0.872295i \(0.662631\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) 0 0
\(763\) − 72.0000i − 2.60658i
\(764\) 0 0
\(765\) − 4.00000i − 0.144620i
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) − 4.00000i − 0.144056i
\(772\) 0 0
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 0 0
\(777\) −16.0000 −0.573997
\(778\) 0 0
\(779\) 48.0000i 1.71978i
\(780\) 0 0
\(781\) 48.0000i 1.71758i
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) − 16.0000i − 0.569615i
\(790\) 0 0
\(791\) 48.0000 1.70668
\(792\) 0 0
\(793\) −24.0000 −0.852265
\(794\) 0 0
\(795\) − 14.0000i − 0.496529i
\(796\) 0 0
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) − 12.0000i − 0.423471i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.0000 1.05605
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) − 52.0000i − 1.82597i −0.407997 0.912983i \(-0.633772\pi\)
0.407997 0.912983i \(-0.366228\pi\)
\(812\) 0 0
\(813\) 22.0000i 0.771574i
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 96.0000 3.35861
\(818\) 0 0
\(819\) 16.0000i 0.559085i
\(820\) 0 0
\(821\) − 54.0000i − 1.88461i −0.334751 0.942306i \(-0.608652\pi\)
0.334751 0.942306i \(-0.391348\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) 6.00000 0.208893
\(826\) 0 0
\(827\) − 20.0000i − 0.695468i −0.937593 0.347734i \(-0.886951\pi\)
0.937593 0.347734i \(-0.113049\pi\)
\(828\) 0 0
\(829\) 2.00000i 0.0694629i 0.999397 + 0.0347314i \(0.0110576\pi\)
−0.999397 + 0.0347314i \(0.988942\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) 36.0000 1.24733
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 6.00000i 0.206651i
\(844\) 0 0
\(845\) − 3.00000i − 0.103203i
\(846\) 0 0
\(847\) 100.000 3.43604
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 28.0000i − 0.958702i −0.877623 0.479351i \(-0.840872\pi\)
0.877623 0.479351i \(-0.159128\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) −4.00000 −0.136637 −0.0683187 0.997664i \(-0.521763\pi\)
−0.0683187 + 0.997664i \(0.521763\pi\)
\(858\) 0 0
\(859\) 28.0000i 0.955348i 0.878537 + 0.477674i \(0.158520\pi\)
−0.878537 + 0.477674i \(0.841480\pi\)
\(860\) 0 0
\(861\) − 24.0000i − 0.817918i
\(862\) 0 0
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 36.0000i 1.22122i
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 4.00000i 0.135225i
\(876\) 0 0
\(877\) 32.0000i 1.08056i 0.841484 + 0.540282i \(0.181682\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) −58.0000 −1.95407 −0.977035 0.213080i \(-0.931651\pi\)
−0.977035 + 0.213080i \(0.931651\pi\)
\(882\) 0 0
\(883\) 20.0000i 0.673054i 0.941674 + 0.336527i \(0.109252\pi\)
−0.941674 + 0.336527i \(0.890748\pi\)
\(884\) 0 0
\(885\) 6.00000i 0.201688i
\(886\) 0 0
\(887\) −32.0000 −1.07445 −0.537227 0.843437i \(-0.680528\pi\)
−0.537227 + 0.843437i \(0.680528\pi\)
\(888\) 0 0
\(889\) 64.0000 2.14649
\(890\) 0 0
\(891\) − 6.00000i − 0.201008i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −18.0000 −0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 4.00000i − 0.133407i
\(900\) 0 0
\(901\) − 56.0000i − 1.86563i
\(902\) 0 0
\(903\) −48.0000 −1.59734
\(904\) 0 0
\(905\) 18.0000 0.598340
\(906\) 0 0
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 0 0
\(909\) 10.0000i 0.331679i
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) 72.0000 2.38285
\(914\) 0 0
\(915\) 6.00000i 0.198354i
\(916\) 0 0
\(917\) 8.00000i 0.264183i
\(918\) 0 0
\(919\) −50.0000 −1.64935 −0.824674 0.565608i \(-0.808641\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) − 32.0000i − 1.05329i
\(924\) 0 0
\(925\) − 4.00000i − 0.131519i
\(926\) 0 0
\(927\) 16.0000 0.525509
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) − 72.0000i − 2.35970i
\(932\) 0 0
\(933\) − 12.0000i − 0.392862i
\(934\) 0 0
\(935\) 24.0000 0.784884
\(936\) 0 0
\(937\) 46.0000 1.50275 0.751377 0.659873i \(-0.229390\pi\)
0.751377 + 0.659873i \(0.229390\pi\)
\(938\) 0 0
\(939\) 6.00000i 0.195803i
\(940\) 0 0
\(941\) − 14.0000i − 0.456387i −0.973616 0.228193i \(-0.926718\pi\)
0.973616 0.228193i \(-0.0732819\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) − 52.0000i − 1.68977i −0.534946 0.844886i \(-0.679668\pi\)
0.534946 0.844886i \(-0.320332\pi\)
\(948\) 0 0
\(949\) 8.00000i 0.259691i
\(950\) 0 0
\(951\) 14.0000 0.453981
\(952\) 0 0
\(953\) 8.00000 0.259145 0.129573 0.991570i \(-0.458639\pi\)
0.129573 + 0.991570i \(0.458639\pi\)
\(954\) 0 0
\(955\) − 12.0000i − 0.388311i
\(956\) 0 0
\(957\) 12.0000i 0.387905i
\(958\) 0 0
\(959\) −32.0000 −1.03333
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) − 8.00000i − 0.257796i
\(964\) 0 0
\(965\) 14.0000i 0.450676i
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 0 0
\(969\) −32.0000 −1.02799
\(970\) 0 0
\(971\) 30.0000i 0.962746i 0.876516 + 0.481373i \(0.159862\pi\)
−0.876516 + 0.481373i \(0.840138\pi\)
\(972\) 0 0
\(973\) − 32.0000i − 1.02587i
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 4.00000 0.127971 0.0639857 0.997951i \(-0.479619\pi\)
0.0639857 + 0.997951i \(0.479619\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) − 18.0000i − 0.574696i
\(982\) 0 0
\(983\) 56.0000 1.78612 0.893061 0.449935i \(-0.148553\pi\)
0.893061 + 0.449935i \(0.148553\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 30.0000 0.952981 0.476491 0.879180i \(-0.341909\pi\)
0.476491 + 0.879180i \(0.341909\pi\)
\(992\) 0 0
\(993\) 12.0000 0.380808
\(994\) 0 0
\(995\) − 2.00000i − 0.0634043i
\(996\) 0 0
\(997\) − 24.0000i − 0.760088i −0.924968 0.380044i \(-0.875909\pi\)
0.924968 0.380044i \(-0.124091\pi\)
\(998\) 0 0
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.k.e.1921.1 2
4.3 odd 2 3840.2.k.x.1921.2 2
8.3 odd 2 3840.2.k.x.1921.1 2
8.5 even 2 inner 3840.2.k.e.1921.2 2
16.3 odd 4 1920.2.a.g.1.1 yes 1
16.5 even 4 1920.2.a.f.1.1 1
16.11 odd 4 1920.2.a.m.1.1 yes 1
16.13 even 4 1920.2.a.x.1.1 yes 1
48.5 odd 4 5760.2.a.bu.1.1 1
48.11 even 4 5760.2.a.z.1.1 1
48.29 odd 4 5760.2.a.x.1.1 1
48.35 even 4 5760.2.a.a.1.1 1
80.19 odd 4 9600.2.a.cd.1.1 1
80.29 even 4 9600.2.a.a.1.1 1
80.59 odd 4 9600.2.a.y.1.1 1
80.69 even 4 9600.2.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.a.f.1.1 1 16.5 even 4
1920.2.a.g.1.1 yes 1 16.3 odd 4
1920.2.a.m.1.1 yes 1 16.11 odd 4
1920.2.a.x.1.1 yes 1 16.13 even 4
3840.2.k.e.1921.1 2 1.1 even 1 trivial
3840.2.k.e.1921.2 2 8.5 even 2 inner
3840.2.k.x.1921.1 2 8.3 odd 2
3840.2.k.x.1921.2 2 4.3 odd 2
5760.2.a.a.1.1 1 48.35 even 4
5760.2.a.x.1.1 1 48.29 odd 4
5760.2.a.z.1.1 1 48.11 even 4
5760.2.a.bu.1.1 1 48.5 odd 4
9600.2.a.a.1.1 1 80.29 even 4
9600.2.a.y.1.1 1 80.59 odd 4
9600.2.a.bf.1.1 1 80.69 even 4
9600.2.a.cd.1.1 1 80.19 odd 4