Properties

Label 3864.1.bx.f.275.1
Level 38643864
Weight 11
Character 3864.275
Analytic conductor 1.9281.928
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -552
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(275,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.275");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3864=233723 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3864.bx (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.928387208811.92838720881
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.16826668992.2

Embedding invariants

Embedding label 275.1
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 3864.275
Dual form 3864.1.bx.f.3035.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.500000+0.866025i)q3+(0.5000000.866025i)q4+1.00000q6+(0.866025+0.500000i)q71.00000q8+(0.500000+0.866025i)q9+(0.8660251.50000i)q11+(0.5000000.866025i)q12+1.00000iq14+(0.500000+0.866025i)q16+(0.8660251.50000i)q17+(0.500000+0.866025i)q18+(0.8660250.500000i)q211.73205q22+(0.500000+0.866025i)q23+(0.5000000.866025i)q24+(0.5000000.866025i)q251.00000q27+(0.866025+0.500000i)q281.00000q29+(0.500000+0.866025i)q32+(0.8660251.50000i)q331.73205q34+1.00000q36+(0.866025+0.500000i)q42+(0.866025+1.50000i)q44+(0.500000+0.866025i)q46+(0.5000000.866025i)q471.00000q48+(0.5000000.866025i)q491.00000q50+(0.8660251.50000i)q51+(0.500000+0.866025i)q54+(0.8660250.500000i)q56+(0.500000+0.866025i)q581.00000iq63+1.00000q64+(0.8660251.50000i)q66+(0.866025+1.50000i)q681.00000q69+1.00000q71+(0.5000000.866025i)q72+(0.5000000.866025i)q73+(0.5000000.866025i)q75+(1.50000+0.866025i)q77+(0.866025+1.50000i)q79+(0.5000000.866025i)q81+1.00000iq84+(0.5000000.866025i)q87+(0.866025+1.50000i)q88+1.00000q92+(0.5000000.866025i)q94+(0.500000+0.866025i)q96+(0.5000000.866025i)q98+1.73205q99+O(q100)q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{6} +(-0.866025 + 0.500000i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.866025 - 1.50000i) q^{11} +(0.500000 - 0.866025i) q^{12} +1.00000i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.866025 - 1.50000i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-0.866025 - 0.500000i) q^{21} -1.73205 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +(0.866025 + 0.500000i) q^{28} -1.00000 q^{29} +(0.500000 + 0.866025i) q^{32} +(0.866025 - 1.50000i) q^{33} -1.73205 q^{34} +1.00000 q^{36} +(-0.866025 + 0.500000i) q^{42} +(-0.866025 + 1.50000i) q^{44} +(0.500000 + 0.866025i) q^{46} +(0.500000 - 0.866025i) q^{47} -1.00000 q^{48} +(0.500000 - 0.866025i) q^{49} -1.00000 q^{50} +(0.866025 - 1.50000i) q^{51} +(-0.500000 + 0.866025i) q^{54} +(0.866025 - 0.500000i) q^{56} +(-0.500000 + 0.866025i) q^{58} -1.00000i q^{63} +1.00000 q^{64} +(-0.866025 - 1.50000i) q^{66} +(-0.866025 + 1.50000i) q^{68} -1.00000 q^{69} +1.00000 q^{71} +(0.500000 - 0.866025i) q^{72} +(-0.500000 - 0.866025i) q^{73} +(0.500000 - 0.866025i) q^{75} +(1.50000 + 0.866025i) q^{77} +(-0.866025 + 1.50000i) q^{79} +(-0.500000 - 0.866025i) q^{81} +1.00000i q^{84} +(-0.500000 - 0.866025i) q^{87} +(0.866025 + 1.50000i) q^{88} +1.00000 q^{92} +(-0.500000 - 0.866025i) q^{94} +(-0.500000 + 0.866025i) q^{96} +(-0.500000 - 0.866025i) q^{98} +1.73205 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q2+2q32q4+4q64q82q9+2q122q16+2q182q232q242q254q274q29+2q32+4q36+2q46+2q474q48+2q98+O(q100) 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} - 4 q^{8} - 2 q^{9} + 2 q^{12} - 2 q^{16} + 2 q^{18} - 2 q^{23} - 2 q^{24} - 2 q^{25} - 4 q^{27} - 4 q^{29} + 2 q^{32} + 4 q^{36} + 2 q^{46} + 2 q^{47} - 4 q^{48}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3864Z)×\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times.

nn 967967 12891289 19331933 27612761 28572857
χ(n)\chi(n) 1-1 1-1 1-1 e(13)e\left(\frac{1}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 0.866025i 0.500000 0.866025i
33 0.500000 + 0.866025i 0.500000 + 0.866025i
44 −0.500000 0.866025i −0.500000 0.866025i
55 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
66 1.00000 1.00000
77 −0.866025 + 0.500000i −0.866025 + 0.500000i
88 −1.00000 −1.00000
99 −0.500000 + 0.866025i −0.500000 + 0.866025i
1010 0 0
1111 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
1212 0.500000 0.866025i 0.500000 0.866025i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 1.00000i 1.00000i
1515 0 0
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
1818 0.500000 + 0.866025i 0.500000 + 0.866025i
1919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0 0
2121 −0.866025 0.500000i −0.866025 0.500000i
2222 −1.73205 −1.73205
2323 −0.500000 + 0.866025i −0.500000 + 0.866025i
2424 −0.500000 0.866025i −0.500000 0.866025i
2525 −0.500000 0.866025i −0.500000 0.866025i
2626 0 0
2727 −1.00000 −1.00000
2828 0.866025 + 0.500000i 0.866025 + 0.500000i
2929 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 0 0
3131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0.500000 + 0.866025i 0.500000 + 0.866025i
3333 0.866025 1.50000i 0.866025 1.50000i
3434 −1.73205 −1.73205
3535 0 0
3636 1.00000 1.00000
3737 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 −0.866025 + 0.500000i −0.866025 + 0.500000i
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −0.866025 + 1.50000i −0.866025 + 1.50000i
4545 0 0
4646 0.500000 + 0.866025i 0.500000 + 0.866025i
4747 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4848 −1.00000 −1.00000
4949 0.500000 0.866025i 0.500000 0.866025i
5050 −1.00000 −1.00000
5151 0.866025 1.50000i 0.866025 1.50000i
5252 0 0
5353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0 0
5656 0.866025 0.500000i 0.866025 0.500000i
5757 0 0
5858 −0.500000 + 0.866025i −0.500000 + 0.866025i
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 0 0
6161 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6262 0 0
6363 1.00000i 1.00000i
6464 1.00000 1.00000
6565 0 0
6666 −0.866025 1.50000i −0.866025 1.50000i
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 −0.866025 + 1.50000i −0.866025 + 1.50000i
6969 −1.00000 −1.00000
7070 0 0
7171 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 0.500000 0.866025i 0.500000 0.866025i
7373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
7474 0 0
7575 0.500000 0.866025i 0.500000 0.866025i
7676 0 0
7777 1.50000 + 0.866025i 1.50000 + 0.866025i
7878 0 0
7979 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
8080 0 0
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 1.00000i 1.00000i
8585 0 0
8686 0 0
8787 −0.500000 0.866025i −0.500000 0.866025i
8888 0.866025 + 1.50000i 0.866025 + 1.50000i
8989 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
9090 0 0
9191 0 0
9292 1.00000 1.00000
9393 0 0
9494 −0.500000 0.866025i −0.500000 0.866025i
9595 0 0
9696 −0.500000 + 0.866025i −0.500000 + 0.866025i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −0.500000 0.866025i −0.500000 0.866025i
9999 1.73205 1.73205
100100 −0.500000 + 0.866025i −0.500000 + 0.866025i
101101 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
102102 −0.866025 1.50000i −0.866025 1.50000i
103103 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
108108 0.500000 + 0.866025i 0.500000 + 0.866025i
109109 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
110110 0 0
111111 0 0
112112 1.00000i 1.00000i
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0.500000 + 0.866025i 0.500000 + 0.866025i
117117 0 0
118118 0 0
119119 1.50000 + 0.866025i 1.50000 + 0.866025i
120120 0 0
121121 −1.00000 + 1.73205i −1.00000 + 1.73205i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −0.866025 0.500000i −0.866025 0.500000i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.500000 0.866025i 0.500000 0.866025i
129129 0 0
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 −1.73205 −1.73205
133133 0 0
134134 0 0
135135 0 0
136136 0.866025 + 1.50000i 0.866025 + 1.50000i
137137 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
138138 −0.500000 + 0.866025i −0.500000 + 0.866025i
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 1.00000 1.00000
142142 0.500000 0.866025i 0.500000 0.866025i
143143 0 0
144144 −0.500000 0.866025i −0.500000 0.866025i
145145 0 0
146146 −1.00000 −1.00000
147147 1.00000 1.00000
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 −0.500000 0.866025i −0.500000 0.866025i
151151 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 0 0
153153 1.73205 1.73205
154154 1.50000 0.866025i 1.50000 0.866025i
155155 0 0
156156 0 0
157157 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
158158 0.866025 + 1.50000i 0.866025 + 1.50000i
159159 0 0
160160 0 0
161161 1.00000i 1.00000i
162162 −1.00000 −1.00000
163163 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
164164 0 0
165165 0 0
166166 0 0
167167 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
168168 0.866025 + 0.500000i 0.866025 + 0.500000i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
174174 −1.00000 −1.00000
175175 0.866025 + 0.500000i 0.866025 + 0.500000i
176176 1.73205 1.73205
177177 0 0
178178 0 0
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
182182 0 0
183183 0 0
184184 0.500000 0.866025i 0.500000 0.866025i
185185 0 0
186186 0 0
187187 −1.50000 + 2.59808i −1.50000 + 2.59808i
188188 −1.00000 −1.00000
189189 0.866025 0.500000i 0.866025 0.500000i
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0.500000 + 0.866025i 0.500000 + 0.866025i
193193 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 −1.00000 −1.00000
197197 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
198198 0.866025 1.50000i 0.866025 1.50000i
199199 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
200200 0.500000 + 0.866025i 0.500000 + 0.866025i
201201 0 0
202202 −1.00000 −1.00000
203203 0.866025 0.500000i 0.866025 0.500000i
204204 −1.73205 −1.73205
205205 0 0
206206 0.866025 + 1.50000i 0.866025 + 1.50000i
207207 −0.500000 0.866025i −0.500000 0.866025i
208208 0 0
209209 0 0
210210 0 0
211211 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 0.500000 + 0.866025i 0.500000 + 0.866025i
214214 0 0
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 −1.73205 −1.73205
219219 0.500000 0.866025i 0.500000 0.866025i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −0.866025 0.500000i −0.866025 0.500000i
225225 1.00000 1.00000
226226 0 0
227227 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
230230 0 0
231231 1.73205i 1.73205i
232232 1.00000 1.00000
233233 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0 0
236236 0 0
237237 −1.73205 −1.73205
238238 1.50000 0.866025i 1.50000 0.866025i
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 1.00000 + 1.73205i 1.00000 + 1.73205i
243243 0.500000 0.866025i 0.500000 0.866025i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 −0.866025 + 0.500000i −0.866025 + 0.500000i
253253 1.73205 1.73205
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0.500000 0.866025i 0.500000 0.866025i
262262 0 0
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 −0.866025 + 1.50000i −0.866025 + 1.50000i
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
270270 0 0
271271 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 1.73205 1.73205
273273 0 0
274274 1.73205 1.73205
275275 −0.866025 + 1.50000i −0.866025 + 1.50000i
276276 0.500000 + 0.866025i 0.500000 + 0.866025i
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 −0.500000 + 0.866025i −0.500000 + 0.866025i
279279 0 0
280280 0 0
281281 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
282282 0.500000 0.866025i 0.500000 0.866025i
283283 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 −0.500000 0.866025i −0.500000 0.866025i
285285 0 0
286286 0 0
287287 0 0
288288 −1.00000 −1.00000
289289 −1.00000 + 1.73205i −1.00000 + 1.73205i
290290 0 0
291291 0 0
292292 −0.500000 + 0.866025i −0.500000 + 0.866025i
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 0 0
296296 0 0
297297 0.866025 + 1.50000i 0.866025 + 1.50000i
298298 0 0
299299 0 0
300300 −1.00000 −1.00000
301301 0 0
302302 0 0
303303 0.500000 0.866025i 0.500000 0.866025i
304304 0 0
305305 0 0
306306 0.866025 1.50000i 0.866025 1.50000i
307307 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
308308 1.73205i 1.73205i
309309 −1.73205 −1.73205
310310 0 0
311311 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
312312 0 0
313313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −1.73205 −1.73205
315315 0 0
316316 1.73205 1.73205
317317 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0.866025 + 1.50000i 0.866025 + 1.50000i
320320 0 0
321321 0 0
322322 −0.866025 0.500000i −0.866025 0.500000i
323323 0 0
324324 −0.500000 + 0.866025i −0.500000 + 0.866025i
325325 0 0
326326 −0.500000 0.866025i −0.500000 0.866025i
327327 0.866025 1.50000i 0.866025 1.50000i
328328 0 0
329329 1.00000i 1.00000i
330330 0 0
331331 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
332332 0 0
333333 0 0
334334 −1.00000 + 1.73205i −1.00000 + 1.73205i
335335 0 0
336336 0.866025 0.500000i 0.866025 0.500000i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0.500000 0.866025i 0.500000 0.866025i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 0 0
346346 −0.500000 0.866025i −0.500000 0.866025i
347347 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
348348 −0.500000 + 0.866025i −0.500000 + 0.866025i
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0.866025 0.500000i 0.866025 0.500000i
351351 0 0
352352 0.866025 1.50000i 0.866025 1.50000i
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 1.73205i 1.73205i
358358 0 0
359359 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −0.500000 0.866025i −0.500000 0.866025i
362362 0.866025 1.50000i 0.866025 1.50000i
363363 −2.00000 −2.00000
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 −0.500000 0.866025i −0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
374374 1.50000 + 2.59808i 1.50000 + 2.59808i
375375 0 0
376376 −0.500000 + 0.866025i −0.500000 + 0.866025i
377377 0 0
378378 1.00000i 1.00000i
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 1.00000 1.00000
385385 0 0
386386 2.00000 2.00000
387387 0 0
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 1.73205 1.73205
392392 −0.500000 + 0.866025i −0.500000 + 0.866025i
393393 0 0
394394 0.500000 0.866025i 0.500000 0.866025i
395395 0 0
396396 −0.866025 1.50000i −0.866025 1.50000i
397397 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 1.73205 1.73205
399399 0 0
400400 1.00000 1.00000
401401 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
402402 0 0
403403 0 0
404404 −0.500000 + 0.866025i −0.500000 + 0.866025i
405405 0 0
406406 1.00000i 1.00000i
407407 0 0
408408 −0.866025 + 1.50000i −0.866025 + 1.50000i
409409 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
410410 0 0
411411 −0.866025 + 1.50000i −0.866025 + 1.50000i
412412 1.73205 1.73205
413413 0 0
414414 −1.00000 −1.00000
415415 0 0
416416 0 0
417417 −0.500000 0.866025i −0.500000 0.866025i
418418 0 0
419419 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
420420 0 0
421421 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
422422 0.500000 0.866025i 0.500000 0.866025i
423423 0.500000 + 0.866025i 0.500000 + 0.866025i
424424 0 0
425425 −0.866025 + 1.50000i −0.866025 + 1.50000i
426426 1.00000 1.00000
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 0.500000 0.866025i 0.500000 0.866025i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 −0.866025 + 1.50000i −0.866025 + 1.50000i
437437 0 0
438438 −0.500000 0.866025i −0.500000 0.866025i
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0.500000 + 0.866025i 0.500000 + 0.866025i
442442 0 0
443443 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.866025 + 0.500000i −0.866025 + 0.500000i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0.500000 0.866025i 0.500000 0.866025i
451451 0 0
452452 0 0
453453 0 0
454454 1.73205 1.73205
455455 0 0
456456 0 0
457457 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 −0.866025 1.50000i −0.866025 1.50000i
459459 0.866025 + 1.50000i 0.866025 + 1.50000i
460460 0 0
461461 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
462462 1.50000 + 0.866025i 1.50000 + 0.866025i
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0.500000 0.866025i 0.500000 0.866025i
465465 0 0
466466 0 0
467467 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.866025 1.50000i 0.866025 1.50000i
472472 0 0
473473 0 0
474474 −0.866025 + 1.50000i −0.866025 + 1.50000i
475475 0 0
476476 1.73205i 1.73205i
477477 0 0
478478 −0.500000 + 0.866025i −0.500000 + 0.866025i
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0.866025 0.500000i 0.866025 0.500000i
484484 2.00000 2.00000
485485 0 0
486486 −0.500000 0.866025i −0.500000 0.866025i
487487 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
488488 0 0
489489 1.00000 1.00000
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0.866025 + 1.50000i 0.866025 + 1.50000i
494494 0 0
495495 0 0
496496 0 0
497497 −0.866025 + 0.500000i −0.866025 + 0.500000i
498498 0 0
499499 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
500500 0 0
501501 −1.00000 1.73205i −1.00000 1.73205i
502502 −0.866025 + 1.50000i −0.866025 + 1.50000i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 1.00000i 1.00000i
505505 0 0
506506 0.866025 1.50000i 0.866025 1.50000i
507507 0.500000 + 0.866025i 0.500000 + 0.866025i
508508 0 0
509509 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
510510 0 0
511511 0.866025 + 0.500000i 0.866025 + 0.500000i
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −1.73205 −1.73205
518518 0 0
519519 1.00000 1.00000
520520 0 0
521521 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 −0.500000 0.866025i −0.500000 0.866025i
523523 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0 0
525525 1.00000i 1.00000i
526526 0 0
527527 0 0
528528 0.866025 + 1.50000i 0.866025 + 1.50000i
529529 −0.500000 0.866025i −0.500000 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −1.00000 −1.00000
539539 −1.73205 −1.73205
540540 0 0
541541 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 0.866025 + 1.50000i 0.866025 + 1.50000i
544544 0.866025 1.50000i 0.866025 1.50000i
545545 0 0
546546 0 0
547547 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 0.866025 1.50000i 0.866025 1.50000i
549549 0 0
550550 0.866025 + 1.50000i 0.866025 + 1.50000i
551551 0 0
552552 1.00000 1.00000
553553 1.73205i 1.73205i
554554 0 0
555555 0 0
556556 0.500000 + 0.866025i 0.500000 + 0.866025i
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 0 0
560560 0 0
561561 −3.00000 −3.00000
562562 −0.866025 + 1.50000i −0.866025 + 1.50000i
563563 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
564564 −0.500000 0.866025i −0.500000 0.866025i
565565 0 0
566566 0 0
567567 0.866025 + 0.500000i 0.866025 + 0.500000i
568568 −1.00000 −1.00000
569569 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 1.00000 1.00000
576576 −0.500000 + 0.866025i −0.500000 + 0.866025i
577577 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 1.00000 + 1.73205i 1.00000 + 1.73205i
579579 −1.00000 + 1.73205i −1.00000 + 1.73205i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0.500000 + 0.866025i 0.500000 + 0.866025i
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 −0.500000 0.866025i −0.500000 0.866025i
589589 0 0
590590 0 0
591591 0.500000 + 0.866025i 0.500000 + 0.866025i
592592 0 0
593593 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 1.73205 1.73205
595595 0 0
596596 0 0
597597 −0.866025 + 1.50000i −0.866025 + 1.50000i
598598 0 0
599599 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 −0.500000 + 0.866025i −0.500000 + 0.866025i
601601 2.00000 2.00000 1.00000 00
1.00000 00
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −0.500000 0.866025i −0.500000 0.866025i
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0 0
609609 0.866025 + 0.500000i 0.866025 + 0.500000i
610610 0 0
611611 0 0
612612 −0.866025 1.50000i −0.866025 1.50000i
613613 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
614614 −0.500000 + 0.866025i −0.500000 + 0.866025i
615615 0 0
616616 −1.50000 0.866025i −1.50000 0.866025i
617617 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
618618 −0.866025 + 1.50000i −0.866025 + 1.50000i
619619 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 0.500000 0.866025i 0.500000 0.866025i
622622 −1.00000 −1.00000
623623 0 0
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 −0.866025 + 1.50000i −0.866025 + 1.50000i
629629 0 0
630630 0 0
631631 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
632632 0.866025 1.50000i 0.866025 1.50000i
633633 0.500000 + 0.866025i 0.500000 + 0.866025i
634634 1.00000 + 1.73205i 1.00000 + 1.73205i
635635 0 0
636636 0 0
637637 0 0
638638 1.73205 1.73205
639639 −0.500000 + 0.866025i −0.500000 + 0.866025i
640640 0 0
641641 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 −0.866025 + 0.500000i −0.866025 + 0.500000i
645645 0 0
646646 0 0
647647 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
648648 0.500000 + 0.866025i 0.500000 + 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 −1.00000 −1.00000
653653 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
654654 −0.866025 1.50000i −0.866025 1.50000i
655655 0 0
656656 0 0
657657 1.00000 1.00000
658658 0.866025 + 0.500000i 0.866025 + 0.500000i
659659 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
662662 −1.00000 1.73205i −1.00000 1.73205i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0.500000 0.866025i 0.500000 0.866025i
668668 1.00000 + 1.73205i 1.00000 + 1.73205i
669669 0 0
670670 0 0
671671 0 0
672672 1.00000i 1.00000i
673673 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 0.500000 + 0.866025i 0.500000 + 0.866025i
676676 −0.500000 0.866025i −0.500000 0.866025i
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0 0
679679 0 0
680680 0 0
681681 −0.866025 + 1.50000i −0.866025 + 1.50000i
682682 0 0
683683 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0 0
685685 0 0
686686 0.866025 + 0.500000i 0.866025 + 0.500000i
687687 1.73205 1.73205
688688 0 0
689689 0 0
690690 0 0
691691 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
692692 −1.00000 −1.00000
693693 −1.50000 + 0.866025i −1.50000 + 0.866025i
694694 0 0
695695 0 0
696696 0.500000 + 0.866025i 0.500000 + 0.866025i
697697 0 0
698698 0 0
699699 0 0
700700 1.00000i 1.00000i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 −0.866025 1.50000i −0.866025 1.50000i
705705 0 0
706706 0 0
707707 0.866025 + 0.500000i 0.866025 + 0.500000i
708708 0 0
709709 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
710710 0 0
711711 −0.866025 1.50000i −0.866025 1.50000i
712712 0 0
713713 0 0
714714 1.50000 + 0.866025i 1.50000 + 0.866025i
715715 0 0
716716 0 0
717717 −0.500000 0.866025i −0.500000 0.866025i
718718 0 0
719719 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
720720 0 0
721721 1.73205i 1.73205i
722722 −1.00000 −1.00000
723723 0 0
724724 −0.866025 1.50000i −0.866025 1.50000i
725725 0.500000 + 0.866025i 0.500000 + 0.866025i
726726 −1.00000 + 1.73205i −1.00000 + 1.73205i
727727 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
734734 0 0
735735 0 0
736736 −1.00000 −1.00000
737737 0 0
738738 0 0
739739 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 −0.866025 1.50000i −0.866025 1.50000i
747747 0 0
748748 3.00000 3.00000
749749 0 0
750750 0 0
751751 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
752752 0.500000 + 0.866025i 0.500000 + 0.866025i
753753 −0.866025 1.50000i −0.866025 1.50000i
754754 0 0
755755 0 0
756756 −0.866025 0.500000i −0.866025 0.500000i
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0.866025 + 1.50000i 0.866025 + 1.50000i
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 1.50000 + 0.866025i 1.50000 + 0.866025i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0.500000 0.866025i 0.500000 0.866025i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 1.00000 1.73205i 1.00000 1.73205i
773773 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 −0.866025 1.50000i −0.866025 1.50000i
782782 0.866025 1.50000i 0.866025 1.50000i
783783 1.00000 1.00000
784784 0.500000 + 0.866025i 0.500000 + 0.866025i
785785 0 0
786786 0 0
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 −0.500000 0.866025i −0.500000 0.866025i
789789 0 0
790790 0 0
791791 0 0
792792 −1.73205 −1.73205
793793 0 0
794794 0 0
795795 0 0
796796 0.866025 1.50000i 0.866025 1.50000i
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −1.73205 −1.73205
800800 0.500000 0.866025i 0.500000 0.866025i
801801 0 0
802802 −0.866025 1.50000i −0.866025 1.50000i
803803 −0.866025 + 1.50000i −0.866025 + 1.50000i
804804 0 0
805805 0 0
806806 0 0
807807 0.500000 0.866025i 0.500000 0.866025i
808808 0.500000 + 0.866025i 0.500000 + 0.866025i
809809 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0 0
811811 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
812812 −0.866025 0.500000i −0.866025 0.500000i
813813 0 0
814814 0 0
815815 0 0
816816 0.866025 + 1.50000i 0.866025 + 1.50000i
817817 0 0
818818 −1.00000 −1.00000
819819 0 0
820820 0 0
821821 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
822822 0.866025 + 1.50000i 0.866025 + 1.50000i
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0.866025 1.50000i 0.866025 1.50000i
825825 −1.73205 −1.73205
826826 0 0
827827 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
828828 −0.500000 + 0.866025i −0.500000 + 0.866025i
829829 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
830830 0 0
831831 0 0
832832 0 0
833833 −1.73205 −1.73205
834834 −1.00000 −1.00000
835835 0 0
836836 0 0
837837 0 0
838838 0.866025 1.50000i 0.866025 1.50000i
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 0 0
842842 −0.866025 + 1.50000i −0.866025 + 1.50000i
843843 −0.866025 1.50000i −0.866025 1.50000i
844844 −0.500000 0.866025i −0.500000 0.866025i
845845 0 0
846846 1.00000 1.00000
847847 2.00000i 2.00000i
848848 0 0
849849 0 0
850850 0.866025 + 1.50000i 0.866025 + 1.50000i
851851 0 0
852852 0.500000 0.866025i 0.500000 0.866025i
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
864864 −0.500000 0.866025i −0.500000 0.866025i
865865 0 0
866866 0 0
867867 −2.00000 −2.00000
868868 0 0
869869 3.00000 3.00000
870870 0 0
871871 0 0
872872 0.866025 + 1.50000i 0.866025 + 1.50000i
873873 0 0
874874 0 0
875875 0 0
876876 −1.00000 −1.00000
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 1.00000 1.00000
883883 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
888888 0 0
889889 0 0
890890 0 0
891891 −0.866025 + 1.50000i −0.866025 + 1.50000i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 1.00000i 1.00000i
897897 0 0
898898 0 0
899899 0 0
900900 −0.500000 0.866025i −0.500000 0.866025i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0.866025 1.50000i 0.866025 1.50000i
909909 1.00000 1.00000
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −1.73205 −1.73205
917917 0 0
918918 1.73205 1.73205
919919 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
920920 0 0
921921 −0.500000 0.866025i −0.500000 0.866025i
922922 −1.00000 + 1.73205i −1.00000 + 1.73205i
923923 0 0
924924 1.50000 0.866025i 1.50000 0.866025i
925925 0 0
926926 0 0
927927 −0.866025 1.50000i −0.866025 1.50000i
928928 −0.500000 0.866025i −0.500000 0.866025i
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 0 0
932932 0 0
933933 0.500000 0.866025i 0.500000 0.866025i
934934 −0.866025 1.50000i −0.866025 1.50000i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 −0.866025 1.50000i −0.866025 1.50000i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0.866025 + 1.50000i 0.866025 + 1.50000i
949949 0 0
950950 0 0
951951 −2.00000 −2.00000
952952 −1.50000 0.866025i −1.50000 0.866025i
953953 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
954954 0 0
955955 0 0
956956 0.500000 + 0.866025i 0.500000 + 0.866025i
957957 −0.866025 + 1.50000i −0.866025 + 1.50000i
958958 0 0
959959 −1.50000 0.866025i −1.50000 0.866025i
960960 0 0
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 1.00000i 1.00000i
967967 0 0 1.00000 00
−1.00000 π\pi
968968 1.00000 1.73205i 1.00000 1.73205i
969969 0 0
970970 0 0
971971 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
972972 −1.00000 −1.00000
973973 0.866025 0.500000i 0.866025 0.500000i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
978978 0.500000 0.866025i 0.500000 0.866025i
979979 0 0
980980 0 0
981981 1.73205 1.73205
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 1.73205 1.73205
987987 −0.866025 + 0.500000i −0.866025 + 0.500000i
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
992992 0 0
993993 2.00000 2.00000
994994 1.00000i 1.00000i
995995 0 0
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 −0.500000 0.866025i −0.500000 0.866025i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.bx.f.275.1 yes 4
3.2 odd 2 3864.1.bx.e.275.1 4
7.4 even 3 inner 3864.1.bx.f.3035.1 yes 4
8.3 odd 2 3864.1.bx.e.275.2 yes 4
21.11 odd 6 3864.1.bx.e.3035.1 yes 4
23.22 odd 2 inner 3864.1.bx.f.275.2 yes 4
24.11 even 2 inner 3864.1.bx.f.275.2 yes 4
56.11 odd 6 3864.1.bx.e.3035.2 yes 4
69.68 even 2 3864.1.bx.e.275.2 yes 4
161.137 odd 6 inner 3864.1.bx.f.3035.2 yes 4
168.11 even 6 inner 3864.1.bx.f.3035.2 yes 4
184.91 even 2 3864.1.bx.e.275.1 4
483.137 even 6 3864.1.bx.e.3035.2 yes 4
552.275 odd 2 CM 3864.1.bx.f.275.1 yes 4
1288.459 even 6 3864.1.bx.e.3035.1 yes 4
3864.3035 odd 6 inner 3864.1.bx.f.3035.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.bx.e.275.1 4 3.2 odd 2
3864.1.bx.e.275.1 4 184.91 even 2
3864.1.bx.e.275.2 yes 4 8.3 odd 2
3864.1.bx.e.275.2 yes 4 69.68 even 2
3864.1.bx.e.3035.1 yes 4 21.11 odd 6
3864.1.bx.e.3035.1 yes 4 1288.459 even 6
3864.1.bx.e.3035.2 yes 4 56.11 odd 6
3864.1.bx.e.3035.2 yes 4 483.137 even 6
3864.1.bx.f.275.1 yes 4 1.1 even 1 trivial
3864.1.bx.f.275.1 yes 4 552.275 odd 2 CM
3864.1.bx.f.275.2 yes 4 23.22 odd 2 inner
3864.1.bx.f.275.2 yes 4 24.11 even 2 inner
3864.1.bx.f.3035.1 yes 4 7.4 even 3 inner
3864.1.bx.f.3035.1 yes 4 3864.3035 odd 6 inner
3864.1.bx.f.3035.2 yes 4 161.137 odd 6 inner
3864.1.bx.f.3035.2 yes 4 168.11 even 6 inner