Properties

Label 3864.1.cx.a.1805.1
Level 38643864
Weight 11
Character 3864.1805
Analytic conductor 1.9281.928
Analytic rank 00
Dimension 4040
Projective image D44D_{44}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(125,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 11, 11, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.125");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3864=233723 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3864.cx (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.928387208811.92838720881
Analytic rank: 00
Dimension: 4040
Relative dimension: 44 over Q(ζ22)\Q(\zeta_{22})
Coefficient field: Q(ζ88)\Q(\zeta_{88})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x40x36+x32x28+x24x20+x16x12+x8x4+1 x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D44D_{44}
Projective field: Galois closure of Q[x]/(x44)\mathbb{Q}[x]/(x^{44} - \cdots)

Embedding invariants

Embedding label 1805.1
Root 0.479249+0.877679i0.479249 + 0.877679i of defining polynomial
Character χ\chi == 3864.1805
Dual form 3864.1.cx.a.3149.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5406410.841254i)q2+(0.877679+0.479249i)q3+(0.415415+0.909632i)q4+(0.1368990.0401971i)q5+(0.877679+0.479249i)q6+(0.7557500.654861i)q7+(0.9898210.142315i)q8+(0.5406410.841254i)q9+(0.1078290.0934345i)q10+(0.07133920.997452i)q12+(1.27979+1.47696i)q13+(0.9594930.281733i)q14+(0.100889+0.100889i)q15+(0.6548610.755750i)q161.00000q18+(1.59673+0.729202i)q19+(0.0203052+0.141226i)q20+(0.349464+0.936950i)q21+(0.654861+0.755750i)q23+(0.800541+0.599278i)q24+(0.824128+0.529635i)q25+(1.93440+0.278125i)q26+(0.0713392+0.997452i)q27+(0.281733+0.959493i)q28+(0.139418+0.0303285i)q30+(0.281733+0.959493i)q32+(0.07713770.120029i)q35+(0.540641+0.841254i)q36+(0.2498131.73749i)q38+(0.4154151.90963i)q39+(0.1297850.0592707i)q40+(0.9771470.212565i)q42+(0.04019710.136899i)q45+(0.989821+0.142315i)q46+(0.936950+0.349464i)q48+(0.1423150.989821i)q49+(0.891115+0.406958i)q50+(0.8118431.77769i)q52+(0.8776790.479249i)q54+(0.6548610.755750i)q56+(1.75089+0.125226i)q57+(0.7243840.627683i)q59+(0.04986100.133682i)q60+(1.39982+0.201264i)q61+(0.1423150.989821i)q63+(0.9594930.281733i)q64+(0.115832+0.253638i)q65+(0.2125650.977147i)q690.142678q70+(0.909632+1.41542i)q71+(0.4154150.909632i)q72+(0.4694930.859812i)q75+(1.32661+1.14952i)q76+(1.83107+0.682956i)q78+(0.627899+0.544078i)q79+(0.1200290.0771377i)q80+(0.4154150.909632i)q81+(0.670617+0.196911i)q83+(0.7071070.707107i)q84+(0.136899+0.0401971i)q90+1.95429iq91+(0.4154150.909632i)q92+(0.247902+0.0356430i)q95+(0.2125650.977147i)q96+(0.909632+0.415415i)q98+O(q100)q+(-0.540641 - 0.841254i) q^{2} +(-0.877679 + 0.479249i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(0.136899 - 0.0401971i) q^{5} +(0.877679 + 0.479249i) q^{6} +(0.755750 - 0.654861i) q^{7} +(0.989821 - 0.142315i) q^{8} +(0.540641 - 0.841254i) q^{9} +(-0.107829 - 0.0934345i) q^{10} +(-0.0713392 - 0.997452i) q^{12} +(-1.27979 + 1.47696i) q^{13} +(-0.959493 - 0.281733i) q^{14} +(-0.100889 + 0.100889i) q^{15} +(-0.654861 - 0.755750i) q^{16} -1.00000 q^{18} +(1.59673 + 0.729202i) q^{19} +(-0.0203052 + 0.141226i) q^{20} +(-0.349464 + 0.936950i) q^{21} +(-0.654861 + 0.755750i) q^{23} +(-0.800541 + 0.599278i) q^{24} +(-0.824128 + 0.529635i) q^{25} +(1.93440 + 0.278125i) q^{26} +(-0.0713392 + 0.997452i) q^{27} +(0.281733 + 0.959493i) q^{28} +(0.139418 + 0.0303285i) q^{30} +(-0.281733 + 0.959493i) q^{32} +(0.0771377 - 0.120029i) q^{35} +(0.540641 + 0.841254i) q^{36} +(-0.249813 - 1.73749i) q^{38} +(0.415415 - 1.90963i) q^{39} +(0.129785 - 0.0592707i) q^{40} +(0.977147 - 0.212565i) q^{42} +(0.0401971 - 0.136899i) q^{45} +(0.989821 + 0.142315i) q^{46} +(0.936950 + 0.349464i) q^{48} +(0.142315 - 0.989821i) q^{49} +(0.891115 + 0.406958i) q^{50} +(-0.811843 - 1.77769i) q^{52} +(0.877679 - 0.479249i) q^{54} +(0.654861 - 0.755750i) q^{56} +(-1.75089 + 0.125226i) q^{57} +(-0.724384 - 0.627683i) q^{59} +(-0.0498610 - 0.133682i) q^{60} +(-1.39982 + 0.201264i) q^{61} +(-0.142315 - 0.989821i) q^{63} +(0.959493 - 0.281733i) q^{64} +(-0.115832 + 0.253638i) q^{65} +(0.212565 - 0.977147i) q^{69} -0.142678 q^{70} +(0.909632 + 1.41542i) q^{71} +(0.415415 - 0.909632i) q^{72} +(0.469493 - 0.859812i) q^{75} +(-1.32661 + 1.14952i) q^{76} +(-1.83107 + 0.682956i) q^{78} +(0.627899 + 0.544078i) q^{79} +(-0.120029 - 0.0771377i) q^{80} +(-0.415415 - 0.909632i) q^{81} +(0.670617 + 0.196911i) q^{83} +(-0.707107 - 0.707107i) q^{84} +(-0.136899 + 0.0401971i) q^{90} +1.95429i q^{91} +(-0.415415 - 0.909632i) q^{92} +(0.247902 + 0.0356430i) q^{95} +(-0.212565 - 0.977147i) q^{96} +(-0.909632 + 0.415415i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q+4q44q14+4q154q1640q184q234q254q304q39+4q49+4q56+4q574q604q63+4q64+8q654q72+4q78++4q92+O(q100) 40 q + 4 q^{4} - 4 q^{14} + 4 q^{15} - 4 q^{16} - 40 q^{18} - 4 q^{23} - 4 q^{25} - 4 q^{30} - 4 q^{39} + 4 q^{49} + 4 q^{56} + 4 q^{57} - 4 q^{60} - 4 q^{63} + 4 q^{64} + 8 q^{65} - 4 q^{72} + 4 q^{78}+ \cdots + 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3864Z)×\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times.

nn 967967 12891289 19331933 27612761 28572857
χ(n)\chi(n) 11 1-1 1-1 1-1 e(922)e\left(\frac{9}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.540641 0.841254i −0.540641 0.841254i
33 −0.877679 + 0.479249i −0.877679 + 0.479249i
44 −0.415415 + 0.909632i −0.415415 + 0.909632i
55 0.136899 0.0401971i 0.136899 0.0401971i −0.212565 0.977147i 0.568182π-0.568182\pi
0.349464 + 0.936950i 0.386364π0.386364\pi
66 0.877679 + 0.479249i 0.877679 + 0.479249i
77 0.755750 0.654861i 0.755750 0.654861i
88 0.989821 0.142315i 0.989821 0.142315i
99 0.540641 0.841254i 0.540641 0.841254i
1010 −0.107829 0.0934345i −0.107829 0.0934345i
1111 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1212 −0.0713392 0.997452i −0.0713392 0.997452i
1313 −1.27979 + 1.47696i −1.27979 + 1.47696i −0.479249 + 0.877679i 0.659091π0.659091\pi
−0.800541 + 0.599278i 0.795455π0.795455\pi
1414 −0.959493 0.281733i −0.959493 0.281733i
1515 −0.100889 + 0.100889i −0.100889 + 0.100889i
1616 −0.654861 0.755750i −0.654861 0.755750i
1717 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
1818 −1.00000 −1.00000
1919 1.59673 + 0.729202i 1.59673 + 0.729202i 0.997452 0.0713392i 0.0227273π-0.0227273\pi
0.599278 + 0.800541i 0.295455π0.295455\pi
2020 −0.0203052 + 0.141226i −0.0203052 + 0.141226i
2121 −0.349464 + 0.936950i −0.349464 + 0.936950i
2222 0 0
2323 −0.654861 + 0.755750i −0.654861 + 0.755750i
2424 −0.800541 + 0.599278i −0.800541 + 0.599278i
2525 −0.824128 + 0.529635i −0.824128 + 0.529635i
2626 1.93440 + 0.278125i 1.93440 + 0.278125i
2727 −0.0713392 + 0.997452i −0.0713392 + 0.997452i
2828 0.281733 + 0.959493i 0.281733 + 0.959493i
2929 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
3030 0.139418 + 0.0303285i 0.139418 + 0.0303285i
3131 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
3232 −0.281733 + 0.959493i −0.281733 + 0.959493i
3333 0 0
3434 0 0
3535 0.0771377 0.120029i 0.0771377 0.120029i
3636 0.540641 + 0.841254i 0.540641 + 0.841254i
3737 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
3838 −0.249813 1.73749i −0.249813 1.73749i
3939 0.415415 1.90963i 0.415415 1.90963i
4040 0.129785 0.0592707i 0.129785 0.0592707i
4141 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
4242 0.977147 0.212565i 0.977147 0.212565i
4343 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
4444 0 0
4545 0.0401971 0.136899i 0.0401971 0.136899i
4646 0.989821 + 0.142315i 0.989821 + 0.142315i
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0.936950 + 0.349464i 0.936950 + 0.349464i
4949 0.142315 0.989821i 0.142315 0.989821i
5050 0.891115 + 0.406958i 0.891115 + 0.406958i
5151 0 0
5252 −0.811843 1.77769i −0.811843 1.77769i
5353 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
5454 0.877679 0.479249i 0.877679 0.479249i
5555 0 0
5656 0.654861 0.755750i 0.654861 0.755750i
5757 −1.75089 + 0.125226i −1.75089 + 0.125226i
5858 0 0
5959 −0.724384 0.627683i −0.724384 0.627683i 0.212565 0.977147i 0.431818π-0.431818\pi
−0.936950 + 0.349464i 0.886364π0.886364\pi
6060 −0.0498610 0.133682i −0.0498610 0.133682i
6161 −1.39982 + 0.201264i −1.39982 + 0.201264i −0.800541 0.599278i 0.795455π-0.795455\pi
−0.599278 + 0.800541i 0.704545π0.704545\pi
6262 0 0
6363 −0.142315 0.989821i −0.142315 0.989821i
6464 0.959493 0.281733i 0.959493 0.281733i
6565 −0.115832 + 0.253638i −0.115832 + 0.253638i
6666 0 0
6767 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
6868 0 0
6969 0.212565 0.977147i 0.212565 0.977147i
7070 −0.142678 −0.142678
7171 0.909632 + 1.41542i 0.909632 + 1.41542i 0.909632 + 0.415415i 0.136364π0.136364\pi
1.00000i 0.5π0.5\pi
7272 0.415415 0.909632i 0.415415 0.909632i
7373 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
7474 0 0
7575 0.469493 0.859812i 0.469493 0.859812i
7676 −1.32661 + 1.14952i −1.32661 + 1.14952i
7777 0 0
7878 −1.83107 + 0.682956i −1.83107 + 0.682956i
7979 0.627899 + 0.544078i 0.627899 + 0.544078i 0.909632 0.415415i 0.136364π-0.136364\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
8080 −0.120029 0.0771377i −0.120029 0.0771377i
8181 −0.415415 0.909632i −0.415415 0.909632i
8282 0 0
8383 0.670617 + 0.196911i 0.670617 + 0.196911i 0.599278 0.800541i 0.295455π-0.295455\pi
0.0713392 + 0.997452i 0.477273π0.477273\pi
8484 −0.707107 0.707107i −0.707107 0.707107i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
9090 −0.136899 + 0.0401971i −0.136899 + 0.0401971i
9191 1.95429i 1.95429i
9292 −0.415415 0.909632i −0.415415 0.909632i
9393 0 0
9494 0 0
9595 0.247902 + 0.0356430i 0.247902 + 0.0356430i
9696 −0.212565 0.977147i −0.212565 0.977147i
9797 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
9898 −0.909632 + 0.415415i −0.909632 + 0.415415i
9999 0 0
100100 −0.139418 0.969672i −0.139418 0.969672i
101101 −0.398430 + 1.35693i −0.398430 + 1.35693i 0.479249 + 0.877679i 0.340909π0.340909\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
102102 0 0
103103 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
104104 −1.05657 + 1.64406i −1.05657 + 1.64406i
105105 −0.0101786 + 0.142315i −0.0101786 + 0.142315i
106106 0 0
107107 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
108108 −0.877679 0.479249i −0.877679 0.479249i
109109 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
110110 0 0
111111 0 0
112112 −0.989821 0.142315i −0.989821 0.142315i
113113 −1.53046 + 0.983568i −1.53046 + 0.983568i −0.540641 + 0.841254i 0.681818π0.681818\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
114114 1.05195 + 1.40524i 1.05195 + 1.40524i
115115 −0.0592707 + 0.129785i −0.0592707 + 0.129785i
116116 0 0
117117 0.550588 + 1.87513i 0.550588 + 1.87513i
118118 −0.136408 + 0.948742i −0.136408 + 0.948742i
119119 0 0
120120 −0.0855040 + 0.114220i −0.0855040 + 0.114220i
121121 0.415415 + 0.909632i 0.415415 + 0.909632i
122122 0.926113 + 1.06879i 0.926113 + 1.06879i
123123 0 0
124124 0 0
125125 −0.184967 + 0.213463i −0.184967 + 0.213463i
126126 −0.755750 + 0.654861i −0.755750 + 0.654861i
127127 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
128128 −0.755750 0.654861i −0.755750 0.654861i
129129 0 0
130130 0.275997 0.0396824i 0.275997 0.0396824i
131131 1.50765 1.30638i 1.50765 1.30638i 0.707107 0.707107i 0.250000π-0.250000\pi
0.800541 0.599278i 0.204545π-0.204545\pi
132132 0 0
133133 1.68425 0.494541i 1.68425 0.494541i
134134 0 0
135135 0.0303285 + 0.139418i 0.0303285 + 0.139418i
136136 0 0
137137 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
138138 −0.936950 + 0.349464i −0.936950 + 0.349464i
139139 0.698928 0.698928 0.349464 0.936950i 0.386364π-0.386364\pi
0.349464 + 0.936950i 0.386364π0.386364\pi
140140 0.0771377 + 0.120029i 0.0771377 + 0.120029i
141141 0 0
142142 0.698939 1.53046i 0.698939 1.53046i
143143 0 0
144144 −0.989821 + 0.142315i −0.989821 + 0.142315i
145145 0 0
146146 0 0
147147 0.349464 + 0.936950i 0.349464 + 0.936950i
148148 0 0
149149 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
150150 −0.977147 + 0.0698869i −0.977147 + 0.0698869i
151151 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
152152 1.68425 + 0.494541i 1.68425 + 0.494541i
153153 0 0
154154 0 0
155155 0 0
156156 1.56449 + 1.17116i 1.56449 + 1.17116i
157157 1.70456 + 0.778446i 1.70456 + 0.778446i 0.997452 + 0.0713392i 0.0227273π0.0227273\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
158158 0.118239 0.822373i 0.118239 0.822373i
159159 0 0
160160 0.142678i 0.142678i
161161 1.00000i 1.00000i
162162 −0.540641 + 0.841254i −0.540641 + 0.841254i
163163 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
164164 0 0
165165 0 0
166166 −0.196911 0.670617i −0.196911 0.670617i
167167 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
168168 −0.212565 + 0.977147i −0.212565 + 0.977147i
169169 −0.401223 2.79057i −0.401223 2.79057i
170170 0 0
171171 1.47670 0.949018i 1.47670 0.949018i
172172 0 0
173173 −1.01311 + 1.57642i −1.01311 + 1.57642i −0.212565 + 0.977147i 0.568182π0.568182\pi
−0.800541 + 0.599278i 0.795455π0.795455\pi
174174 0 0
175175 −0.275997 + 0.939960i −0.275997 + 0.939960i
176176 0 0
177177 0.936593 + 0.203743i 0.936593 + 0.203743i
178178 0 0
179179 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
180180 0.107829 + 0.0934345i 0.107829 + 0.0934345i
181181 −1.58479 0.227858i −1.58479 0.227858i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
182182 1.64406 1.05657i 1.64406 1.05657i
183183 1.13214 0.847507i 1.13214 0.847507i
184184 −0.540641 + 0.841254i −0.540641 + 0.841254i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.599278 + 0.800541i 0.599278 + 0.800541i
190190 −0.104041 0.227819i −0.104041 0.227819i
191191 1.29639 + 1.49611i 1.29639 + 1.49611i 0.755750 + 0.654861i 0.227273π0.227273\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
192192 −0.707107 + 0.707107i −0.707107 + 0.707107i
193193 1.45027 + 0.425839i 1.45027 + 0.425839i 0.909632 0.415415i 0.136364π-0.136364\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
194194 0 0
195195 −0.0198919 0.278125i −0.0198919 0.278125i
196196 0.841254 + 0.540641i 0.841254 + 0.540641i
197197 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
198198 0 0
199199 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
200200 −0.740365 + 0.641530i −0.740365 + 0.641530i
201201 0 0
202202 1.35693 0.398430i 1.35693 0.398430i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0.281733 + 0.959493i 0.281733 + 0.959493i
208208 1.95429 1.95429
209209 0 0
210210 0.125226 0.0683785i 0.125226 0.0683785i
211211 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
212212 0 0
213213 −1.47670 0.806340i −1.47670 0.806340i
214214 0 0
215215 0 0
216216 0.0713392 + 0.997452i 0.0713392 + 0.997452i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
224224 0.415415 + 0.909632i 0.415415 + 0.909632i
225225 0.979643i 0.979643i
226226 1.65486 + 0.755750i 1.65486 + 0.755750i
227227 −0.266684 + 1.85483i −0.266684 + 1.85483i 0.212565 + 0.977147i 0.431818π0.431818\pi
−0.479249 + 0.877679i 0.659091π0.659091\pi
228228 0.613435 1.64468i 0.613435 1.64468i
229229 0.958498i 0.958498i −0.877679 0.479249i 0.840909π-0.840909\pi
0.877679 0.479249i 0.159091π-0.159091\pi
230230 0.141226 0.0203052i 0.141226 0.0203052i
231231 0 0
232232 0 0
233233 1.80075 + 0.258908i 1.80075 + 0.258908i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
234234 1.27979 1.47696i 1.27979 1.47696i
235235 0 0
236236 0.871880 0.398174i 0.871880 0.398174i
237237 −0.811843 0.176606i −0.811843 0.176606i
238238 0 0
239239 0.425839 1.45027i 0.425839 1.45027i −0.415415 0.909632i 0.636364π-0.636364\pi
0.841254 0.540641i 0.181818π-0.181818\pi
240240 0.142315 + 0.0101786i 0.142315 + 0.0101786i
241241 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
242242 0.540641 0.841254i 0.540641 0.841254i
243243 0.800541 + 0.599278i 0.800541 + 0.599278i
244244 0.398430 1.35693i 0.398430 1.35693i
245245 −0.0203052 0.141226i −0.0203052 0.141226i
246246 0 0
247247 −3.12048 + 1.42508i −3.12048 + 1.42508i
248248 0 0
249249 −0.682956 + 0.148568i −0.682956 + 0.148568i
250250 0.279577 + 0.0401971i 0.279577 + 0.0401971i
251251 −1.00829 + 0.647988i −1.00829 + 0.647988i −0.936950 0.349464i 0.886364π-0.886364\pi
−0.0713392 + 0.997452i 0.522727π0.522727\pi
252252 0.959493 + 0.281733i 0.959493 + 0.281733i
253253 0 0
254254 1.30972i 1.30972i
255255 0 0
256256 −0.142315 + 0.989821i −0.142315 + 0.989821i
257257 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
258258 0 0
259259 0 0
260260 −0.182598 0.210730i −0.182598 0.210730i
261261 0 0
262262 −1.91410 0.562029i −1.91410 0.562029i
263263 −0.708089 + 0.817178i −0.708089 + 0.817178i −0.989821 0.142315i 0.954545π-0.954545\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
264264 0 0
265265 0 0
266266 −1.32661 1.14952i −1.32661 1.14952i
267267 0 0
268268 0 0
269269 −1.32661 + 1.14952i −1.32661 + 1.14952i −0.349464 + 0.936950i 0.613636π0.613636\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
270270 0.100889 0.100889i 0.100889 0.100889i
271271 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
272272 0 0
273273 −0.936593 1.71524i −0.936593 1.71524i
274274 1.03748 + 1.61435i 1.03748 + 1.61435i
275275 0 0
276276 0.800541 + 0.599278i 0.800541 + 0.599278i
277277 0 0 1.00000 00
−1.00000 π\pi
278278 −0.377869 0.587976i −0.377869 0.587976i
279279 0 0
280280 0.0592707 0.129785i 0.0592707 0.129785i
281281 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i 0.363636π-0.363636\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
282282 0 0
283283 0.321292 0.278401i 0.321292 0.278401i −0.479249 0.877679i 0.659091π-0.659091\pi
0.800541 + 0.599278i 0.204545π0.204545\pi
284284 −1.66538 + 0.239446i −1.66538 + 0.239446i
285285 −0.234661 + 0.0875239i −0.234661 + 0.0875239i
286286 0 0
287287 0 0
288288 0.654861 + 0.755750i 0.654861 + 0.755750i
289289 −0.654861 + 0.755750i −0.654861 + 0.755750i
290290 0 0
291291 0 0
292292 0 0
293293 −0.497898 1.09024i −0.497898 1.09024i −0.977147 0.212565i 0.931818π-0.931818\pi
0.479249 0.877679i 0.340909π-0.340909\pi
294294 0.599278 0.800541i 0.599278 0.800541i
295295 −0.124398 0.0568109i −0.124398 0.0568109i
296296 0 0
297297 0 0
298298 0 0
299299 −0.278125 1.93440i −0.278125 1.93440i
300300 0.587078 + 0.784245i 0.587078 + 0.784245i
301301 0 0
302302 −0.281733 0.0405070i −0.281733 0.0405070i
303303 −0.300613 1.38189i −0.300613 1.38189i
304304 −0.494541 1.68425i −0.494541 1.68425i
305305 −0.183543 + 0.0838215i −0.183543 + 0.0838215i
306306 0 0
307307 −0.0605024 0.420803i −0.0605024 0.420803i −0.997452 0.0713392i 0.977273π-0.977273\pi
0.936950 0.349464i 0.113636π-0.113636\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
312312 0.139418 1.94931i 0.139418 1.94931i
313313 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
314314 −0.266684 1.85483i −0.266684 1.85483i
315315 −0.0592707 0.129785i −0.0592707 0.129785i
316316 −0.755750 + 0.345139i −0.755750 + 0.345139i
317317 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
318318 0 0
319319 0 0
320320 0.120029 0.0771377i 0.120029 0.0771377i
321321 0 0
322322 0.841254 0.540641i 0.841254 0.540641i
323323 0 0
324324 1.00000 1.00000
325325 0.272463 1.89502i 0.272463 1.89502i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
332332 −0.457701 + 0.528215i −0.457701 + 0.528215i
333333 0 0
334334 0 0
335335 0 0
336336 0.936950 0.349464i 0.936950 0.349464i
337337 1.66538 0.239446i 1.66538 0.239446i 0.755750 0.654861i 0.227273π-0.227273\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
338338 −2.13066 + 1.84623i −2.13066 + 1.84623i
339339 0.871880 1.59673i 0.871880 1.59673i
340340 0 0
341341 0 0
342342 −1.59673 0.729202i −1.59673 0.729202i
343343 −0.540641 0.841254i −0.540641 0.841254i
344344 0 0
345345 −0.0101786 0.142315i −0.0101786 0.142315i
346346 1.87390 1.87390
347347 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
348348 0 0
349349 0.587486 1.28641i 0.587486 1.28641i −0.349464 0.936950i 0.613636π-0.613636\pi
0.936950 0.349464i 0.113636π-0.113636\pi
350350 0.939960 0.275997i 0.939960 0.275997i
351351 −1.38189 1.38189i −1.38189 1.38189i
352352 0 0
353353 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
354354 −0.334961 0.898064i −0.334961 0.898064i
355355 0.181423 + 0.157204i 0.181423 + 0.157204i
356356 0 0
357357 0 0
358358 0 0
359359 −1.25667 0.368991i −1.25667 0.368991i −0.415415 0.909632i 0.636364π-0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
360360 0.0203052 0.141226i 0.0203052 0.141226i
361361 1.36295 + 1.57293i 1.36295 + 1.57293i
362362 0.665114 + 1.45640i 0.665114 + 1.45640i
363363 −0.800541 0.599278i −0.800541 0.599278i
364364 −1.77769 0.811843i −1.77769 0.811843i
365365 0 0
366366 −1.32505 0.494217i −1.32505 0.494217i
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 1.00000 1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
374374 0 0
375375 0.0600395 0.275997i 0.0600395 0.275997i
376376 0 0
377377 0 0
378378 0.349464 0.936950i 0.349464 0.936950i
379379 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
380380 −0.135404 + 0.210693i −0.135404 + 0.210693i
381381 −1.30638 0.0934345i −1.30638 0.0934345i
382382 0.557730 1.89945i 0.557730 1.89945i
383383 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
384384 0.977147 + 0.212565i 0.977147 + 0.212565i
385385 0 0
386386 −0.425839 1.45027i −0.425839 1.45027i
387387 0 0
388388 0 0
389389 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
390390 −0.223219 + 0.167100i −0.223219 + 0.167100i
391391 0 0
392392 1.00000i 1.00000i
393393 −0.697148 + 1.86912i −0.697148 + 1.86912i
394394 0 0
395395 0.107829 + 0.0492439i 0.107829 + 0.0492439i
396396 0 0
397397 −0.176606 0.386712i −0.176606 0.386712i 0.800541 0.599278i 0.204545π-0.204545\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
398398 0 0
399399 −1.24123 + 1.24123i −1.24123 + 1.24123i
400400 0.939960 + 0.275997i 0.939960 + 0.275997i
401401 0.708089 0.817178i 0.708089 0.817178i −0.281733 0.959493i 0.590909π-0.590909\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
402402 0 0
403403 0 0
404404 −1.06879 0.926113i −1.06879 0.926113i
405405 −0.0934345 0.107829i −0.0934345 0.107829i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
410410 0 0
411411 1.68425 0.919672i 1.68425 0.919672i
412412 0 0
413413 −0.958498 −0.958498
414414 0.654861 0.755750i 0.654861 0.755750i
415415 0.0997220 0.0997220
416416 −1.05657 1.64406i −1.05657 1.64406i
417417 −0.613435 + 0.334961i −0.613435 + 0.334961i
418418 0 0
419419 1.87513 0.550588i 1.87513 0.550588i 0.877679 0.479249i 0.159091π-0.159091\pi
0.997452 0.0713392i 0.0227273π-0.0227273\pi
420420 −0.125226 0.0683785i −0.125226 0.0683785i
421421 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0.120029 + 1.67822i 0.120029 + 1.67822i
427427 −0.926113 + 1.06879i −0.926113 + 1.06879i
428428 0 0
429429 0 0
430430 0 0
431431 −0.345139 0.755750i −0.345139 0.755750i 0.654861 0.755750i 0.272727π-0.272727\pi
−1.00000 π\pi
432432 0.800541 0.599278i 0.800541 0.599278i
433433 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
434434 0 0
435435 0 0
436436 0 0
437437 −1.59673 + 0.729202i −1.59673 + 0.729202i
438438 0 0
439439 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
440440 0 0
441441 −0.755750 0.654861i −0.755750 0.654861i
442442 0 0
443443 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0.540641 0.841254i 0.540641 0.841254i
449449 0.304632 0.474017i 0.304632 0.474017i −0.654861 0.755750i 0.727273π-0.727273\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
450450 0.824128 0.529635i 0.824128 0.529635i
451451 0 0
452452 −0.258908 1.80075i −0.258908 1.80075i
453453 −0.0605024 + 0.278125i −0.0605024 + 0.278125i
454454 1.70456 0.778446i 1.70456 0.778446i
455455 0.0785570 + 0.267541i 0.0785570 + 0.267541i
456456 −1.71524 + 0.373128i −1.71524 + 0.373128i
457457 −1.89945 0.273100i −1.89945 0.273100i −0.909632 0.415415i 0.863636π-0.863636\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
458458 −0.806340 + 0.518203i −0.806340 + 0.518203i
459459 0 0
460460 −0.0934345 0.107829i −0.0934345 0.107829i
461461 0.698928i 0.698928i −0.936950 0.349464i 0.886364π-0.886364\pi
0.936950 0.349464i 0.113636π-0.113636\pi
462462 0 0
463463 −0.153882 + 1.07028i −0.153882 + 1.07028i 0.755750 + 0.654861i 0.227273π0.227273\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
464464 0 0
465465 0 0
466466 −0.755750 1.65486i −0.755750 1.65486i
467467 −1.04849 1.21002i −1.04849 1.21002i −0.977147 0.212565i 0.931818π-0.931818\pi
−0.0713392 0.997452i 0.522727π-0.522727\pi
468468 −1.93440 0.278125i −1.93440 0.278125i
469469 0 0
470470 0 0
471471 −1.86912 + 0.133682i −1.86912 + 0.133682i
472472 −0.806340 0.518203i −0.806340 0.518203i
473473 0 0
474474 0.290345 + 0.778446i 0.290345 + 0.778446i
475475 −1.70212 + 0.244728i −1.70212 + 0.244728i
476476 0 0
477477 0 0
478478 −1.45027 + 0.425839i −1.45027 + 0.425839i
479479 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
480480 −0.0683785 0.125226i −0.0683785 0.125226i
481481 0 0
482482 0 0
483483 −0.479249 0.877679i −0.479249 0.877679i
484484 −1.00000 −1.00000
485485 0 0
486486 0.0713392 0.997452i 0.0713392 0.997452i
487487 −0.698939 + 1.53046i −0.698939 + 1.53046i 0.142315 + 0.989821i 0.454545π0.454545\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
488488 −1.35693 + 0.398430i −1.35693 + 0.398430i
489489 0 0
490490 −0.107829 + 0.0934345i −0.107829 + 0.0934345i
491491 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
492492 0 0
493493 0 0
494494 2.88591 + 1.85466i 2.88591 + 1.85466i
495495 0 0
496496 0 0
497497 1.61435 + 0.474017i 1.61435 + 0.474017i
498498 0.494217 + 0.494217i 0.494217 + 0.494217i
499499 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
500500 −0.117335 0.256928i −0.117335 0.256928i
501501 0 0
502502 1.09024 + 0.497898i 1.09024 + 0.497898i
503503 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
504504 −0.281733 0.959493i −0.281733 0.959493i
505505 0.201778i 0.201778i
506506 0 0
507507 1.68952 + 2.25694i 1.68952 + 2.25694i
508508 −1.10181 + 0.708089i −1.10181 + 0.708089i
509509 1.97460 + 0.283904i 1.97460 + 0.283904i 0.997452 + 0.0713392i 0.0227273π0.0227273\pi
0.977147 + 0.212565i 0.0681818π0.0681818\pi
510510 0 0
511511 0 0
512512 0.909632 0.415415i 0.909632 0.415415i
513513 −0.841254 + 1.54064i −0.841254 + 1.54064i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0.133682 1.86912i 0.133682 1.86912i
520520 −0.0785570 + 0.267541i −0.0785570 + 0.267541i
521521 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
522522 0 0
523523 0.635768 0.290345i 0.635768 0.290345i −0.0713392 0.997452i 0.522727π-0.522727\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
524524 0.562029 + 1.91410i 0.562029 + 1.91410i
525525 −0.208238 0.957255i −0.208238 0.957255i
526526 1.07028 + 0.153882i 1.07028 + 0.153882i
527527 0 0
528528 0 0
529529 −0.142315 0.989821i −0.142315 0.989821i
530530 0 0
531531 −0.919672 + 0.270040i −0.919672 + 0.270040i
532532 −0.249813 + 1.73749i −0.249813 + 1.73749i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1.68425 + 0.494541i 1.68425 + 0.494541i
539539 0 0
540540 −0.139418 0.0303285i −0.139418 0.0303285i
541541 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
542542 0 0
543543 1.50013 0.559521i 1.50013 0.559521i
544544 0 0
545545 0 0
546546 −0.936593 + 1.71524i −0.936593 + 1.71524i
547547 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
548548 0.797176 1.74557i 0.797176 1.74557i
549549 −0.587486 + 1.28641i −0.587486 + 1.28641i
550550 0 0
551551 0 0
552552 0.0713392 0.997452i 0.0713392 0.997452i
553553 0.830830 0.830830
554554 0 0
555555 0 0
556556 −0.290345 + 0.635768i −0.290345 + 0.635768i
557557 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
558558 0 0
559559 0 0
560560 −0.141226 + 0.0203052i −0.141226 + 0.0203052i
561561 0 0
562562 −0.989821 0.857685i −0.989821 0.857685i
563563 −0.357643 0.229843i −0.357643 0.229843i 0.349464 0.936950i 0.386364π-0.386364\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 −0.169982 + 0.196170i −0.169982 + 0.196170i
566566 −0.407910 0.119773i −0.407910 0.119773i
567567 −0.909632 0.415415i −0.909632 0.415415i
568568 1.10181 + 1.27155i 1.10181 + 1.27155i
569569 0.822373 + 1.80075i 0.822373 + 1.80075i 0.540641 + 0.841254i 0.318182π0.318182\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
570570 0.200497 + 0.150090i 0.200497 + 0.150090i
571571 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
572572 0 0
573573 −1.85483 0.691814i −1.85483 0.691814i
574574 0 0
575575 0.139418 0.969672i 0.139418 0.969672i
576576 0.281733 0.959493i 0.281733 0.959493i
577577 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
578578 0.989821 + 0.142315i 0.989821 + 0.142315i
579579 −1.47696 + 0.321292i −1.47696 + 0.321292i
580580 0 0
581581 0.635768 0.290345i 0.635768 0.290345i
582582 0 0
583583 0 0
584584 0 0
585585 0.150750 + 0.234571i 0.150750 + 0.234571i
586586 −0.647988 + 1.00829i −0.647988 + 1.00829i
587587 0.229843 0.357643i 0.229843 0.357643i −0.707107 0.707107i 0.750000π-0.750000\pi
0.936950 + 0.349464i 0.113636π0.113636\pi
588588 −0.997452 0.0713392i −0.997452 0.0713392i
589589 0 0
590590 0.0194625 + 0.135365i 0.0194625 + 0.135365i
591591 0 0
592592 0 0
593593 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −1.47696 + 1.27979i −1.47696 + 1.27979i
599599 0.284630i 0.284630i 0.989821 + 0.142315i 0.0454545π0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
600600 0.342350 0.917876i 0.342350 0.917876i
601601 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
602602 0 0
603603 0 0
604604 0.118239 + 0.258908i 0.118239 + 0.258908i
605605 0.0934345 + 0.107829i 0.0934345 + 0.107829i
606606 −1.00000 + 1.00000i −1.00000 + 1.00000i
607607 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
608608 −1.14952 + 1.32661i −1.14952 + 1.32661i
609609 0 0
610610 0.169746 + 0.109089i 0.169746 + 0.109089i
611611 0 0
612612 0 0
613613 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
614614 −0.321292 + 0.278401i −0.321292 + 0.278401i
615615 0 0
616616 0 0
617617 0.627899 1.37491i 0.627899 1.37491i −0.281733 0.959493i 0.590909π-0.590909\pi
0.909632 0.415415i 0.136364π-0.136364\pi
618618 0 0
619619 −0.377869 0.587976i −0.377869 0.587976i 0.599278 0.800541i 0.295455π-0.295455\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
620620 0 0
621621 −0.707107 0.707107i −0.707107 0.707107i
622622 0 0
623623 0 0
624624 −1.71524 + 0.936593i −1.71524 + 0.936593i
625625 0.390217 0.854457i 0.390217 0.854457i
626626 0 0
627627 0 0
628628 −1.41620 + 1.22714i −1.41620 + 1.22714i
629629 0 0
630630 −0.0771377 + 0.120029i −0.0771377 + 0.120029i
631631 −0.215109 0.186393i −0.215109 0.186393i 0.540641 0.841254i 0.318182π-0.318182\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
632632 0.698939 + 0.449181i 0.698939 + 0.449181i
633633 0 0
634634 0 0
635635 0.179299 + 0.0526471i 0.179299 + 0.0526471i
636636 0 0
637637 1.27979 + 1.47696i 1.27979 + 1.47696i
638638 0 0
639639 1.68251 1.68251
640640 −0.129785 0.0592707i −0.129785 0.0592707i
641641 −0.215109 + 1.49611i −0.215109 + 1.49611i 0.540641 + 0.841254i 0.318182π0.318182\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
642642 0 0
643643 1.60108i 1.60108i −0.599278 0.800541i 0.704545π-0.704545\pi
0.599278 0.800541i 0.295455π-0.295455\pi
644644 −0.909632 0.415415i −0.909632 0.415415i
645645 0 0
646646 0 0
647647 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
648648 −0.540641 0.841254i −0.540641 0.841254i
649649 0 0
650650 −1.74150 + 0.795316i −1.74150 + 0.795316i
651651 0 0
652652 0 0
653653 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
654654 0 0
655655 0.153882 0.239446i 0.153882 0.239446i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
660660 0 0
661661 −0.386712 + 0.176606i −0.386712 + 0.176606i −0.599278 0.800541i 0.704545π-0.704545\pi
0.212565 + 0.977147i 0.431818π0.431818\pi
662662 0 0
663663 0 0
664664 0.691814 + 0.0994679i 0.691814 + 0.0994679i
665665 0.210693 0.135404i 0.210693 0.135404i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 −0.800541 0.599278i −0.800541 0.599278i
673673 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
674674 −1.10181 1.27155i −1.10181 1.27155i
675675 −0.469493 0.859812i −0.469493 0.859812i
676676 2.70506 + 0.794278i 2.70506 + 0.794278i
677677 1.22714 1.41620i 1.22714 1.41620i 0.349464 0.936950i 0.386364π-0.386364\pi
0.877679 0.479249i 0.159091π-0.159091\pi
678678 −1.81463 + 0.129785i −1.81463 + 0.129785i
679679 0 0
680680 0 0
681681 −0.654861 1.75575i −0.654861 1.75575i
682682 0 0
683683 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
684684 0.249813 + 1.73749i 0.249813 + 1.73749i
685685 −0.262707 + 0.0771377i −0.262707 + 0.0771377i
686686 −0.415415 + 0.909632i −0.415415 + 0.909632i
687687 0.459359 + 0.841254i 0.459359 + 0.841254i
688688 0 0
689689 0 0
690690 −0.114220 + 0.0855040i −0.114220 + 0.0855040i
691691 0.958498 0.958498 0.479249 0.877679i 0.340909π-0.340909\pi
0.479249 + 0.877679i 0.340909π0.340909\pi
692692 −1.01311 1.57642i −1.01311 1.57642i
693693 0 0
694694 0 0
695695 0.0956825 0.0280949i 0.0956825 0.0280949i
696696 0 0
697697 0 0
698698 −1.39982 + 0.201264i −1.39982 + 0.201264i
699699 −1.70456 + 0.635768i −1.70456 + 0.635768i
700700 −0.740365 0.641530i −0.740365 0.641530i
701701 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
702702 −0.415415 + 1.90963i −0.415415 + 1.90963i
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0.587486 + 1.28641i 0.587486 + 1.28641i
708708 −0.574406 + 0.767317i −0.574406 + 0.767317i
709709 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
710710 0.0341637 0.237614i 0.0341637 0.237614i
711711 0.797176 0.234072i 0.797176 0.234072i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.321292 + 1.47696i 0.321292 + 1.47696i
718718 0.368991 + 1.25667i 0.368991 + 1.25667i
719719 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
720720 −0.129785 + 0.0592707i −0.129785 + 0.0592707i
721721 0 0
722722 0.586365 1.99698i 0.586365 1.99698i
723723 0 0
724724 0.865611 1.34692i 0.865611 1.34692i
725725 0 0
726726 −0.0713392 + 0.997452i −0.0713392 + 0.997452i
727727 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
728728 0.278125 + 1.93440i 0.278125 + 1.93440i
729729 −0.989821 0.142315i −0.989821 0.142315i
730730 0 0
731731 0 0
732732 0.300613 + 1.38189i 0.300613 + 1.38189i
733733 −1.93440 0.278125i −1.93440 0.278125i −0.936950 0.349464i 0.886364π-0.886364\pi
−0.997452 + 0.0713392i 0.977273π0.977273\pi
734734 0 0
735735 0.0855040 + 0.114220i 0.0855040 + 0.114220i
736736 −0.540641 0.841254i −0.540641 0.841254i
737737 0 0
738738 0 0
739739 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
740740 0 0
741741 2.05581 2.74624i 2.05581 2.74624i
742742 0 0
743743 −0.857685 0.989821i −0.857685 0.989821i 0.142315 0.989821i 0.454545π-0.454545\pi
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.528215 0.457701i 0.528215 0.457701i
748748 0 0
749749 0 0
750750 −0.264644 + 0.0987069i −0.264644 + 0.0987069i
751751 −0.557730 + 0.0801894i −0.557730 + 0.0801894i −0.415415 0.909632i 0.636364π-0.636364\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
752752 0 0
753753 0.574406 1.05195i 0.574406 1.05195i
754754 0 0
755755 0.0168702 0.0369406i 0.0168702 0.0369406i
756756 −0.977147 + 0.212565i −0.977147 + 0.212565i
757757 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
758758 0 0
759759 0 0
760760 0.250452 0.250452
761761 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
762762 0.627683 + 1.14952i 0.627683 + 1.14952i
763763 0 0
764764 −1.89945 + 0.557730i −1.89945 + 0.557730i
765765 0 0
766766 0 0
767767 1.85412 0.266582i 1.85412 0.266582i
768768 −0.349464 0.936950i −0.349464 0.936950i
769769 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
770770 0 0
771771 0 0
772772 −0.989821 + 1.14231i −0.989821 + 1.14231i
773773 1.91410 + 0.562029i 1.91410 + 0.562029i 0.977147 + 0.212565i 0.0681818π0.0681818\pi
0.936950 + 0.349464i 0.113636π0.113636\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0.261255 + 0.0974430i 0.261255 + 0.0974430i
781781 0 0
782782 0 0
783783 0 0
784784 −0.841254 + 0.540641i −0.841254 + 0.540641i
785785 0.264644 + 0.0380500i 0.264644 + 0.0380500i
786786 1.94931 0.424047i 1.94931 0.424047i
787787 0.270040 + 0.919672i 0.270040 + 0.919672i 0.977147 + 0.212565i 0.0681818π0.0681818\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 0.229843 1.05657i 0.229843 1.05657i
790790 −0.0168702 0.117335i −0.0168702 0.117335i
791791 −0.512546 + 1.74557i −0.512546 + 1.74557i
792792 0 0
793793 1.49422 2.32505i 1.49422 2.32505i
794794 −0.229843 + 0.357643i −0.229843 + 0.357643i
795795 0 0
796796 0 0
797797 −0.278125 1.93440i −0.278125 1.93440i −0.349464 0.936950i 0.613636π-0.613636\pi
0.0713392 0.997452i 0.477273π-0.477273\pi
798798 1.71524 + 0.373128i 1.71524 + 0.373128i
799799 0 0
800800 −0.275997 0.939960i −0.275997 0.939960i
801801 0 0
802802 −1.07028 0.153882i −1.07028 0.153882i
803803 0 0
804804 0 0
805805 0.0401971 + 0.136899i 0.0401971 + 0.136899i
806806 0 0
807807 0.613435 1.64468i 0.613435 1.64468i
808808 −0.201264 + 1.39982i −0.201264 + 1.39982i
809809 0.755750 + 0.345139i 0.755750 + 0.345139i 0.755750 0.654861i 0.227273π-0.227273\pi
1.00000i 0.5π0.5\pi
810810 −0.0401971 + 0.136899i −0.0401971 + 0.136899i
811811 −0.729202 1.59673i −0.729202 1.59673i −0.800541 0.599278i 0.795455π-0.795455\pi
0.0713392 0.997452i 0.477273π-0.477273\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 1.64406 + 1.05657i 1.64406 + 1.05657i
820820 0 0
821821 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
822822 −1.68425 0.919672i −1.68425 0.919672i
823823 −0.540641 + 0.158746i −0.540641 + 0.158746i −0.540641 0.841254i 0.681818π-0.681818\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0.518203 + 0.806340i 0.518203 + 0.806340i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −0.989821 0.142315i −0.989821 0.142315i
829829 −1.99490 −1.99490 −0.997452 0.0713392i 0.977273π-0.977273\pi
−0.997452 + 0.0713392i 0.977273π0.977273\pi
830830 −0.0539138 0.0838914i −0.0539138 0.0838914i
831831 0 0
832832 −0.811843 + 1.77769i −0.811843 + 1.77769i
833833 0 0
834834 0.613435 + 0.334961i 0.613435 + 0.334961i
835835 0 0
836836 0 0
837837 0 0
838838 −1.47696 1.27979i −1.47696 1.27979i
839839 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
840840 0.0101786 + 0.142315i 0.0101786 + 0.142315i
841841 0.654861 0.755750i 0.654861 0.755750i
842842 0 0
843843 −0.926113 + 0.926113i −0.926113 + 0.926113i
844844 0 0
845845 −0.167100 0.365898i −0.167100 0.365898i
846846 0 0
847847 0.909632 + 0.415415i 0.909632 + 0.415415i
848848 0 0
849849 −0.148568 + 0.398326i −0.148568 + 0.398326i
850850 0 0
851851 0 0
852852 1.34692 1.00829i 1.34692 1.00829i
853853 1.57642 1.01311i 1.57642 1.01311i 0.599278 0.800541i 0.295455π-0.295455\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
854854 1.39982 + 0.201264i 1.39982 + 0.201264i
855855 0.164011 0.189279i 0.164011 0.189279i
856856 0 0
857857 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
858858 0 0
859859 −0.283904 1.97460i −0.283904 1.97460i −0.212565 0.977147i 0.568182π-0.568182\pi
−0.0713392 0.997452i 0.522727π-0.522727\pi
860860 0 0
861861 0 0
862862 −0.449181 + 0.698939i −0.449181 + 0.698939i
863863 1.03748 1.61435i 1.03748 1.61435i 0.281733 0.959493i 0.409091π-0.409091\pi
0.755750 0.654861i 0.227273π-0.227273\pi
864864 −0.936950 0.349464i −0.936950 0.349464i
865865 −0.0753254 + 0.256535i −0.0753254 + 0.256535i
866866 0 0
867867 0.212565 0.977147i 0.212565 0.977147i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 1.47670 + 0.949018i 1.47670 + 0.949018i
875875 0.282452i 0.282452i
876876 0 0
877877 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
878878 0 0
879879 0.959493 + 0.718267i 0.959493 + 0.718267i
880880 0 0
881881 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
882882 −0.142315 + 0.989821i −0.142315 + 0.989821i
883883 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
884884 0 0
885885 0.136408 0.00975613i 0.136408 0.00975613i
886886 0 0
887887 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
888888 0 0
889889 1.29639 0.186393i 1.29639 0.186393i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −1.00000 −1.00000
897897 1.17116 + 1.56449i 1.17116 + 1.56449i
898898 −0.563465 −0.563465
899899 0 0
900900 −0.891115 0.406958i −0.891115 0.406958i
901901 0 0
902902 0 0
903903 0 0
904904 −1.37491 + 1.19136i −1.37491 + 1.19136i
905905 −0.226115 + 0.0325104i −0.226115 + 0.0325104i
906906 0.266684 0.0994679i 0.266684 0.0994679i
907907 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
908908 −1.57642 1.01311i −1.57642 1.01311i
909909 0.926113 + 1.06879i 0.926113 + 1.06879i
910910 0.182598 0.210730i 0.182598 0.210730i
911911 −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
912912 1.24123 + 1.24123i 1.24123 + 1.24123i
913913 0 0
914914 0.797176 + 1.74557i 0.797176 + 1.74557i
915915 0.120921 0.161531i 0.120921 0.161531i
916916 0.871880 + 0.398174i 0.871880 + 0.398174i
917917 0.283904 1.97460i 0.283904 1.97460i
918918 0 0
919919 1.68251i 1.68251i 0.540641 + 0.841254i 0.318182π0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
920920 −0.0401971 + 0.136899i −0.0401971 + 0.136899i
921921 0.254771 + 0.340335i 0.254771 + 0.340335i
922922 −0.587976 + 0.377869i −0.587976 + 0.377869i
923923 −3.25464 0.467947i −3.25464 0.467947i
924924 0 0
925925 0 0
926926 0.983568 0.449181i 0.983568 0.449181i
927927 0 0
928928 0 0
929929 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
930930 0 0
931931 0.949018 1.47670i 0.949018 1.47670i
932932 −0.983568 + 1.53046i −0.983568 + 1.53046i
933933 0 0
934934 −0.451077 + 1.53623i −0.451077 + 1.53623i
935935 0 0
936936 0.811843 + 1.77769i 0.811843 + 1.77769i
937937 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.587976 + 0.377869i −0.587976 + 0.377869i −0.800541 0.599278i 0.795455π-0.795455\pi
0.212565 + 0.977147i 0.431818π0.431818\pi
942942 1.12299 + 1.50013i 1.12299 + 1.50013i
943943 0 0
944944 0.958498i 0.958498i
945945 0.114220 + 0.0855040i 0.114220 + 0.0855040i
946946 0 0
947947 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
948948 0.497898 0.665114i 0.497898 0.665114i
949949 0 0
950950 1.12611 + 1.29961i 1.12611 + 1.29961i
951951 0 0
952952 0 0
953953 −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
954954 0 0
955955 0.237614 + 0.152705i 0.237614 + 0.152705i
956956 1.14231 + 0.989821i 1.14231 + 0.989821i
957957 0 0
958958 0 0
959959 −1.45027 + 1.25667i −1.45027 + 1.25667i
960960 −0.0683785 + 0.125226i −0.0683785 + 0.125226i
961961 −0.959493 + 0.281733i −0.959493 + 0.281733i
962962 0 0
963963 0 0
964964 0 0
965965 0.215658 0.215658
966966 −0.479249 + 0.877679i −0.479249 + 0.877679i
967967 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
968968 0.540641 + 0.841254i 0.540641 + 0.841254i
969969 0 0
970970 0 0
971971 1.91410 0.562029i 1.91410 0.562029i 0.936950 0.349464i 0.113636π-0.113636\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
972972 −0.877679 + 0.479249i −0.877679 + 0.479249i
973973 0.528215 0.457701i 0.528215 0.457701i
974974 1.66538 0.239446i 1.66538 0.239446i
975975 0.669053 + 1.79380i 0.669053 + 1.79380i
976976 1.06879 + 0.926113i 1.06879 + 0.926113i
977977 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
978978 0 0
979979 0 0
980980 0.136899 + 0.0401971i 0.136899 + 0.0401971i
981981 0 0
982982 0 0
983983 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 3.43049i 3.43049i
989989 0 0
990990 0 0
991991 1.27155 0.817178i 1.27155 0.817178i 0.281733 0.959493i 0.409091π-0.409091\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
992992 0 0
993993 0 0
994994 −0.474017 1.61435i −0.474017 1.61435i
995995 0 0
996996 0.148568 0.682956i 0.148568 0.682956i
997997 0.0203052 + 0.141226i 0.0203052 + 0.141226i 0.997452 0.0713392i 0.0227273π-0.0227273\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.cx.a.1805.1 40
3.2 odd 2 3864.1.cx.b.1805.4 yes 40
7.6 odd 2 inner 3864.1.cx.a.1805.2 yes 40
8.5 even 2 inner 3864.1.cx.a.1805.2 yes 40
21.20 even 2 3864.1.cx.b.1805.3 yes 40
23.21 odd 22 3864.1.cx.b.3149.4 yes 40
24.5 odd 2 3864.1.cx.b.1805.3 yes 40
56.13 odd 2 CM 3864.1.cx.a.1805.1 40
69.44 even 22 inner 3864.1.cx.a.3149.1 yes 40
161.90 even 22 3864.1.cx.b.3149.3 yes 40
168.125 even 2 3864.1.cx.b.1805.4 yes 40
184.21 odd 22 3864.1.cx.b.3149.3 yes 40
483.251 odd 22 inner 3864.1.cx.a.3149.2 yes 40
552.389 even 22 inner 3864.1.cx.a.3149.2 yes 40
1288.573 even 22 3864.1.cx.b.3149.4 yes 40
3864.3149 odd 22 inner 3864.1.cx.a.3149.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.cx.a.1805.1 40 1.1 even 1 trivial
3864.1.cx.a.1805.1 40 56.13 odd 2 CM
3864.1.cx.a.1805.2 yes 40 7.6 odd 2 inner
3864.1.cx.a.1805.2 yes 40 8.5 even 2 inner
3864.1.cx.a.3149.1 yes 40 69.44 even 22 inner
3864.1.cx.a.3149.1 yes 40 3864.3149 odd 22 inner
3864.1.cx.a.3149.2 yes 40 483.251 odd 22 inner
3864.1.cx.a.3149.2 yes 40 552.389 even 22 inner
3864.1.cx.b.1805.3 yes 40 21.20 even 2
3864.1.cx.b.1805.3 yes 40 24.5 odd 2
3864.1.cx.b.1805.4 yes 40 3.2 odd 2
3864.1.cx.b.1805.4 yes 40 168.125 even 2
3864.1.cx.b.3149.3 yes 40 161.90 even 22
3864.1.cx.b.3149.3 yes 40 184.21 odd 22
3864.1.cx.b.3149.4 yes 40 23.21 odd 22
3864.1.cx.b.3149.4 yes 40 1288.573 even 22