Properties

Label 3864.1.cx.b.125.2
Level 38643864
Weight 11
Character 3864.125
Analytic conductor 1.9281.928
Analytic rank 00
Dimension 4040
Projective image D44D_{44}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(125,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 11, 11, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.125");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3864=233723 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3864.cx (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.928387208811.92838720881
Analytic rank: 00
Dimension: 4040
Relative dimension: 44 over Q(ζ22)\Q(\zeta_{22})
Coefficient field: Q(ζ88)\Q(\zeta_{88})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x40x36+x32x28+x24x20+x16x12+x8x4+1 x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D44D_{44}
Projective field: Galois closure of Q[x]/(x44)\mathbb{Q}[x]/(x^{44} - \cdots)

Embedding invariants

Embedding label 125.2
Root 0.800541+0.599278i-0.800541 + 0.599278i of defining polynomial
Character χ\chi == 3864.125
Dual form 3864.1.cx.b.2813.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.755750+0.654861i)q2+(0.7071070.707107i)q3+(0.1423150.989821i)q4+(0.729202+1.59673i)q5+(0.0713392+0.997452i)q6+(0.281733+0.959493i)q7+(0.540641+0.841254i)q81.00000iq9+(0.4945411.68425i)q10+(0.5992780.800541i)q12+(1.914100.562029i)q13+(0.4154150.909632i)q14+(0.613435+1.64468i)q15+(0.9594930.281733i)q16+(0.654861+0.755750i)q18+(0.691814+0.0994679i)q19+(1.47670+0.949018i)q20+(0.479249+0.877679i)q21+(0.9594930.281733i)q23+(0.977147+0.212565i)q24+(1.362951.57293i)q25+(1.07853+1.67822i)q26+(0.7071070.707107i)q27+(0.909632+0.415415i)q28+(1.540640.841254i)q30+(0.9096320.415415i)q32+(1.326611.14952i)q35+(0.9898210.142315i)q36+(0.587976+0.377869i)q38+(0.9560561.75089i)q39+(1.73749+0.249813i)q40+(0.9369500.349464i)q42+(1.59673+0.729202i)q45+(0.540641+0.841254i)q46+(0.877679+0.479249i)q48+(0.8412540.540641i)q49+(2.06010+0.296197i)q50+(0.2839041.97460i)q52+(0.997452+0.0713392i)q54+(0.959493+0.281733i)q56+(0.5595210.418852i)q57+(0.527938+1.79799i)q59+(1.715240.373128i)q60+(0.764582+1.18971i)q61+(0.959493+0.281733i)q63+(0.415415+0.909632i)q64+(0.498354+3.46613i)q65+(0.4792490.877679i)q69+1.75536q70+(0.989821+0.857685i)q71+(0.8412540.540641i)q72+(2.075980.148477i)q75+(0.1969110.670617i)q76+(0.424047+1.94931i)q78+(0.0801894+0.273100i)q79+(1.149521.32661i)q801.00000q81+(0.665114+1.45640i)q83+(0.9369500.349464i)q84+(1.68425+0.494541i)q90+1.99490iq91+(0.1423150.989821i)q92+(0.663296+1.03211i)q95+(0.3494640.936950i)q96+(0.9898210.142315i)q98+O(q100)q+(-0.755750 + 0.654861i) q^{2} +(0.707107 - 0.707107i) q^{3} +(0.142315 - 0.989821i) q^{4} +(-0.729202 + 1.59673i) q^{5} +(-0.0713392 + 0.997452i) q^{6} +(-0.281733 + 0.959493i) q^{7} +(0.540641 + 0.841254i) q^{8} -1.00000i q^{9} +(-0.494541 - 1.68425i) q^{10} +(-0.599278 - 0.800541i) q^{12} +(1.91410 - 0.562029i) q^{13} +(-0.415415 - 0.909632i) q^{14} +(0.613435 + 1.64468i) q^{15} +(-0.959493 - 0.281733i) q^{16} +(0.654861 + 0.755750i) q^{18} +(0.691814 + 0.0994679i) q^{19} +(1.47670 + 0.949018i) q^{20} +(0.479249 + 0.877679i) q^{21} +(0.959493 - 0.281733i) q^{23} +(0.977147 + 0.212565i) q^{24} +(-1.36295 - 1.57293i) q^{25} +(-1.07853 + 1.67822i) q^{26} +(-0.707107 - 0.707107i) q^{27} +(0.909632 + 0.415415i) q^{28} +(-1.54064 - 0.841254i) q^{30} +(0.909632 - 0.415415i) q^{32} +(-1.32661 - 1.14952i) q^{35} +(-0.989821 - 0.142315i) q^{36} +(-0.587976 + 0.377869i) q^{38} +(0.956056 - 1.75089i) q^{39} +(-1.73749 + 0.249813i) q^{40} +(-0.936950 - 0.349464i) q^{42} +(1.59673 + 0.729202i) q^{45} +(-0.540641 + 0.841254i) q^{46} +(-0.877679 + 0.479249i) q^{48} +(-0.841254 - 0.540641i) q^{49} +(2.06010 + 0.296197i) q^{50} +(-0.283904 - 1.97460i) q^{52} +(0.997452 + 0.0713392i) q^{54} +(-0.959493 + 0.281733i) q^{56} +(0.559521 - 0.418852i) q^{57} +(0.527938 + 1.79799i) q^{59} +(1.71524 - 0.373128i) q^{60} +(0.764582 + 1.18971i) q^{61} +(0.959493 + 0.281733i) q^{63} +(-0.415415 + 0.909632i) q^{64} +(-0.498354 + 3.46613i) q^{65} +(0.479249 - 0.877679i) q^{69} +1.75536 q^{70} +(-0.989821 + 0.857685i) q^{71} +(0.841254 - 0.540641i) q^{72} +(-2.07598 - 0.148477i) q^{75} +(0.196911 - 0.670617i) q^{76} +(0.424047 + 1.94931i) q^{78} +(0.0801894 + 0.273100i) q^{79} +(1.14952 - 1.32661i) q^{80} -1.00000 q^{81} +(0.665114 + 1.45640i) q^{83} +(0.936950 - 0.349464i) q^{84} +(-1.68425 + 0.494541i) q^{90} +1.99490i q^{91} +(-0.142315 - 0.989821i) q^{92} +(-0.663296 + 1.03211i) q^{95} +(0.349464 - 0.936950i) q^{96} +(0.989821 - 0.142315i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q+4q4+4q144q154q16+4q18+4q234q2540q304q39+4q494q564q57+4q60+4q63+4q648q654q72+4q78+4q92+O(q100) 40 q + 4 q^{4} + 4 q^{14} - 4 q^{15} - 4 q^{16} + 4 q^{18} + 4 q^{23} - 4 q^{25} - 40 q^{30} - 4 q^{39} + 4 q^{49} - 4 q^{56} - 4 q^{57} + 4 q^{60} + 4 q^{63} + 4 q^{64} - 8 q^{65} - 4 q^{72} + 4 q^{78}+ \cdots - 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3864Z)×\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times.

nn 967967 12891289 19331933 27612761 28572857
χ(n)\chi(n) 11 1-1 1-1 1-1 e(322)e\left(\frac{3}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.755750 + 0.654861i −0.755750 + 0.654861i
33 0.707107 0.707107i 0.707107 0.707107i
44 0.142315 0.989821i 0.142315 0.989821i
55 −0.729202 + 1.59673i −0.729202 + 1.59673i 0.0713392 + 0.997452i 0.477273π0.477273\pi
−0.800541 + 0.599278i 0.795455π0.795455\pi
66 −0.0713392 + 0.997452i −0.0713392 + 0.997452i
77 −0.281733 + 0.959493i −0.281733 + 0.959493i
88 0.540641 + 0.841254i 0.540641 + 0.841254i
99 1.00000i 1.00000i
1010 −0.494541 1.68425i −0.494541 1.68425i
1111 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
1212 −0.599278 0.800541i −0.599278 0.800541i
1313 1.91410 0.562029i 1.91410 0.562029i 0.936950 0.349464i 0.113636π-0.113636\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
1414 −0.415415 0.909632i −0.415415 0.909632i
1515 0.613435 + 1.64468i 0.613435 + 1.64468i
1616 −0.959493 0.281733i −0.959493 0.281733i
1717 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
1818 0.654861 + 0.755750i 0.654861 + 0.755750i
1919 0.691814 + 0.0994679i 0.691814 + 0.0994679i 0.479249 0.877679i 0.340909π-0.340909\pi
0.212565 + 0.977147i 0.431818π0.431818\pi
2020 1.47670 + 0.949018i 1.47670 + 0.949018i
2121 0.479249 + 0.877679i 0.479249 + 0.877679i
2222 0 0
2323 0.959493 0.281733i 0.959493 0.281733i
2424 0.977147 + 0.212565i 0.977147 + 0.212565i
2525 −1.36295 1.57293i −1.36295 1.57293i
2626 −1.07853 + 1.67822i −1.07853 + 1.67822i
2727 −0.707107 0.707107i −0.707107 0.707107i
2828 0.909632 + 0.415415i 0.909632 + 0.415415i
2929 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
3030 −1.54064 0.841254i −1.54064 0.841254i
3131 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
3232 0.909632 0.415415i 0.909632 0.415415i
3333 0 0
3434 0 0
3535 −1.32661 1.14952i −1.32661 1.14952i
3636 −0.989821 0.142315i −0.989821 0.142315i
3737 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
3838 −0.587976 + 0.377869i −0.587976 + 0.377869i
3939 0.956056 1.75089i 0.956056 1.75089i
4040 −1.73749 + 0.249813i −1.73749 + 0.249813i
4141 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
4242 −0.936950 0.349464i −0.936950 0.349464i
4343 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
4444 0 0
4545 1.59673 + 0.729202i 1.59673 + 0.729202i
4646 −0.540641 + 0.841254i −0.540641 + 0.841254i
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 −0.877679 + 0.479249i −0.877679 + 0.479249i
4949 −0.841254 0.540641i −0.841254 0.540641i
5050 2.06010 + 0.296197i 2.06010 + 0.296197i
5151 0 0
5252 −0.283904 1.97460i −0.283904 1.97460i
5353 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
5454 0.997452 + 0.0713392i 0.997452 + 0.0713392i
5555 0 0
5656 −0.959493 + 0.281733i −0.959493 + 0.281733i
5757 0.559521 0.418852i 0.559521 0.418852i
5858 0 0
5959 0.527938 + 1.79799i 0.527938 + 1.79799i 0.599278 + 0.800541i 0.295455π0.295455\pi
−0.0713392 + 0.997452i 0.522727π0.522727\pi
6060 1.71524 0.373128i 1.71524 0.373128i
6161 0.764582 + 1.18971i 0.764582 + 1.18971i 0.977147 + 0.212565i 0.0681818π0.0681818\pi
−0.212565 + 0.977147i 0.568182π0.568182\pi
6262 0 0
6363 0.959493 + 0.281733i 0.959493 + 0.281733i
6464 −0.415415 + 0.909632i −0.415415 + 0.909632i
6565 −0.498354 + 3.46613i −0.498354 + 3.46613i
6666 0 0
6767 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
6868 0 0
6969 0.479249 0.877679i 0.479249 0.877679i
7070 1.75536 1.75536
7171 −0.989821 + 0.857685i −0.989821 + 0.857685i −0.989821 0.142315i 0.954545π-0.954545\pi
1.00000i 0.5π0.5\pi
7272 0.841254 0.540641i 0.841254 0.540641i
7373 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
7474 0 0
7575 −2.07598 0.148477i −2.07598 0.148477i
7676 0.196911 0.670617i 0.196911 0.670617i
7777 0 0
7878 0.424047 + 1.94931i 0.424047 + 1.94931i
7979 0.0801894 + 0.273100i 0.0801894 + 0.273100i 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
8080 1.14952 1.32661i 1.14952 1.32661i
8181 −1.00000 −1.00000
8282 0 0
8383 0.665114 + 1.45640i 0.665114 + 1.45640i 0.877679 + 0.479249i 0.159091π0.159091\pi
−0.212565 + 0.977147i 0.568182π0.568182\pi
8484 0.936950 0.349464i 0.936950 0.349464i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
9090 −1.68425 + 0.494541i −1.68425 + 0.494541i
9191 1.99490i 1.99490i
9292 −0.142315 0.989821i −0.142315 0.989821i
9393 0 0
9494 0 0
9595 −0.663296 + 1.03211i −0.663296 + 1.03211i
9696 0.349464 0.936950i 0.349464 0.936950i
9797 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
9898 0.989821 0.142315i 0.989821 0.142315i
9999 0 0
100100 −1.75089 + 1.12523i −1.75089 + 1.12523i
101101 1.28641 0.587486i 1.28641 0.587486i 0.349464 0.936950i 0.386364π-0.386364\pi
0.936950 + 0.349464i 0.113636π0.113636\pi
102102 0 0
103103 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
104104 1.50765 + 1.30638i 1.50765 + 1.30638i
105105 −1.75089 + 0.125226i −1.75089 + 0.125226i
106106 0 0
107107 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
108108 −0.800541 + 0.599278i −0.800541 + 0.599278i
109109 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
110110 0 0
111111 0 0
112112 0.540641 0.841254i 0.540641 0.841254i
113113 −1.29639 1.49611i −1.29639 1.49611i −0.755750 0.654861i 0.772727π-0.772727\pi
−0.540641 0.841254i 0.681818π-0.681818\pi
114114 −0.148568 + 0.682956i −0.148568 + 0.682956i
115115 −0.249813 + 1.73749i −0.249813 + 1.73749i
116116 0 0
117117 −0.562029 1.91410i −0.562029 1.91410i
118118 −1.57642 1.01311i −1.57642 1.01311i
119119 0 0
120120 −1.05195 + 1.40524i −1.05195 + 1.40524i
121121 −0.142315 0.989821i −0.142315 0.989821i
122122 −1.35693 0.398430i −1.35693 0.398430i
123123 0 0
124124 0 0
125125 1.82115 0.534739i 1.82115 0.534739i
126126 −0.909632 + 0.415415i −0.909632 + 0.415415i
127127 −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
128128 −0.281733 0.959493i −0.281733 0.959493i
129129 0 0
130130 −1.89320 2.94588i −1.89320 2.94588i
131131 0.270040 0.919672i 0.270040 0.919672i −0.707107 0.707107i 0.750000π-0.750000\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
132132 0 0
133133 −0.290345 + 0.635768i −0.290345 + 0.635768i
134134 0 0
135135 1.64468 0.613435i 1.64468 0.613435i
136136 0 0
137137 −0.830830 −0.830830 −0.415415 0.909632i 0.636364π-0.636364\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
138138 0.212565 + 0.977147i 0.212565 + 0.977147i
139139 1.60108 1.60108 0.800541 0.599278i 0.204545π-0.204545\pi
0.800541 + 0.599278i 0.204545π0.204545\pi
140140 −1.32661 + 1.14952i −1.32661 + 1.14952i
141141 0 0
142142 0.186393 1.29639i 0.186393 1.29639i
143143 0 0
144144 −0.281733 + 0.959493i −0.281733 + 0.959493i
145145 0 0
146146 0 0
147147 −0.977147 + 0.212565i −0.977147 + 0.212565i
148148 0 0
149149 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
150150 1.66615 1.24727i 1.66615 1.24727i
151151 −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
152152 0.290345 + 0.635768i 0.290345 + 0.635768i
153153 0 0
154154 0 0
155155 0 0
156156 −1.59700 1.19550i −1.59700 1.19550i
157157 1.18636 + 0.170572i 1.18636 + 0.170572i 0.707107 0.707107i 0.250000π-0.250000\pi
0.479249 + 0.877679i 0.340909π0.340909\pi
158158 −0.239446 0.153882i −0.239446 0.153882i
159159 0 0
160160 1.75536i 1.75536i
161161 1.00000i 1.00000i
162162 0.755750 0.654861i 0.755750 0.654861i
163163 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
164164 0 0
165165 0 0
166166 −1.45640 0.665114i −1.45640 0.665114i
167167 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
168168 −0.479249 + 0.877679i −0.479249 + 0.877679i
169169 2.50664 1.61092i 2.50664 1.61092i
170170 0 0
171171 0.0994679 0.691814i 0.0994679 0.691814i
172172 0 0
173173 −0.905808 0.784887i −0.905808 0.784887i 0.0713392 0.997452i 0.477273π-0.477273\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
174174 0 0
175175 1.89320 0.864596i 1.89320 0.864596i
176176 0 0
177177 1.64468 + 0.898064i 1.64468 + 0.898064i
178178 0 0
179179 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
180180 0.949018 1.47670i 0.949018 1.47670i
181181 −1.05657 + 1.64406i −1.05657 + 1.64406i −0.349464 + 0.936950i 0.613636π0.613636\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
182182 −1.30638 1.50765i −1.30638 1.50765i
183183 1.38189 + 0.300613i 1.38189 + 0.300613i
184184 0.755750 + 0.654861i 0.755750 + 0.654861i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.877679 0.479249i 0.877679 0.479249i
190190 −0.174602 1.21438i −0.174602 1.21438i
191191 1.03748 + 0.304632i 1.03748 + 0.304632i 0.755750 0.654861i 0.227273π-0.227273\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
192192 0.349464 + 0.936950i 0.349464 + 0.936950i
193193 0.234072 + 0.512546i 0.234072 + 0.512546i 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
194194 0 0
195195 2.09853 + 2.80331i 2.09853 + 2.80331i
196196 −0.654861 + 0.755750i −0.654861 + 0.755750i
197197 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
198198 0 0
199199 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
200200 0.586365 1.99698i 0.586365 1.99698i
201201 0 0
202202 −0.587486 + 1.28641i −0.587486 + 1.28641i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.281733 0.959493i −0.281733 0.959493i
208208 −1.99490 −1.99490
209209 0 0
210210 1.24123 1.24123i 1.24123 1.24123i
211211 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
212212 0 0
213213 −0.0934345 + 1.30638i −0.0934345 + 1.30638i
214214 0 0
215215 0 0
216216 0.212565 0.977147i 0.212565 0.977147i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
224224 0.142315 + 0.989821i 0.142315 + 0.989821i
225225 −1.57293 + 1.36295i −1.57293 + 1.36295i
226226 1.95949 + 0.281733i 1.95949 + 0.281733i
227227 −1.00829 0.647988i −1.00829 0.647988i −0.0713392 0.997452i 0.522727π-0.522727\pi
−0.936950 + 0.349464i 0.886364π0.886364\pi
228228 −0.334961 0.613435i −0.334961 0.613435i
229229 1.87390i 1.87390i −0.349464 0.936950i 0.613636π-0.613636\pi
0.349464 0.936950i 0.386364π-0.386364\pi
230230 −0.949018 1.47670i −0.949018 1.47670i
231231 0 0
232232 0 0
233233 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i 0.363636π-0.363636\pi
0.654861 0.755750i 0.272727π-0.272727\pi
234234 1.67822 + 1.07853i 1.67822 + 1.07853i
235235 0 0
236236 1.85483 0.266684i 1.85483 0.266684i
237237 0.249813 + 0.136408i 0.249813 + 0.136408i
238238 0 0
239239 0.512546 0.234072i 0.512546 0.234072i −0.142315 0.989821i 0.545455π-0.545455\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
240240 −0.125226 1.75089i −0.125226 1.75089i
241241 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
242242 0.755750 + 0.654861i 0.755750 + 0.654861i
243243 −0.707107 + 0.707107i −0.707107 + 0.707107i
244244 1.28641 0.587486i 1.28641 0.587486i
245245 1.47670 0.949018i 1.47670 0.949018i
246246 0 0
247247 1.38010 0.198429i 1.38010 0.198429i
248248 0 0
249249 1.50013 + 0.559521i 1.50013 + 0.559521i
250250 −1.02616 + 1.59673i −1.02616 + 1.59673i
251251 −0.278401 0.321292i −0.278401 0.321292i 0.599278 0.800541i 0.295455π-0.295455\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
252252 0.415415 0.909632i 0.415415 0.909632i
253253 0 0
254254 1.91899i 1.91899i
255255 0 0
256256 0.841254 + 0.540641i 0.841254 + 0.540641i
257257 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
258258 0 0
259259 0 0
260260 3.35992 + 0.986563i 3.35992 + 0.986563i
261261 0 0
262262 0.398174 + 0.871880i 0.398174 + 0.871880i
263263 −1.45027 + 0.425839i −1.45027 + 0.425839i −0.909632 0.415415i 0.863636π-0.863636\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
264264 0 0
265265 0 0
266266 −0.196911 0.670617i −0.196911 0.670617i
267267 0 0
268268 0 0
269269 −0.196911 + 0.670617i −0.196911 + 0.670617i 0.800541 + 0.599278i 0.204545π0.204545\pi
−0.997452 + 0.0713392i 0.977273π0.977273\pi
270270 −0.841254 + 1.54064i −0.841254 + 1.54064i
271271 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
272272 0 0
273273 1.41061 + 1.41061i 1.41061 + 1.41061i
274274 0.627899 0.544078i 0.627899 0.544078i
275275 0 0
276276 −0.800541 0.599278i −0.800541 0.599278i
277277 0 0 1.00000 00
−1.00000 π\pi
278278 −1.21002 + 1.04849i −1.21002 + 1.04849i
279279 0 0
280280 0.249813 1.73749i 0.249813 1.73749i
281281 0.797176 1.74557i 0.797176 1.74557i 0.142315 0.989821i 0.454545π-0.454545\pi
0.654861 0.755750i 0.272727π-0.272727\pi
282282 0 0
283283 −0.0401971 + 0.136899i −0.0401971 + 0.136899i −0.977147 0.212565i 0.931818π-0.931818\pi
0.936950 + 0.349464i 0.113636π0.113636\pi
284284 0.708089 + 1.10181i 0.708089 + 1.10181i
285285 0.260790 + 1.19883i 0.260790 + 1.19883i
286286 0 0
287287 0 0
288288 −0.415415 0.909632i −0.415415 0.909632i
289289 −0.959493 + 0.281733i −0.959493 + 0.281733i
290290 0 0
291291 0 0
292292 0 0
293293 −0.0605024 0.420803i −0.0605024 0.420803i −0.997452 0.0713392i 0.977273π-0.977273\pi
0.936950 0.349464i 0.113636π-0.113636\pi
294294 0.599278 0.800541i 0.599278 0.800541i
295295 −3.25588 0.468125i −3.25588 0.468125i
296296 0 0
297297 0 0
298298 0 0
299299 1.67822 1.07853i 1.67822 1.07853i
300300 −0.442408 + 2.03372i −0.442408 + 2.03372i
301301 0 0
302302 0.909632 1.41542i 0.909632 1.41542i
303303 0.494217 1.32505i 0.494217 1.32505i
304304 −0.635768 0.290345i −0.635768 0.290345i
305305 −2.45718 + 0.353290i −2.45718 + 0.353290i
306306 0 0
307307 0.120029 0.0771377i 0.120029 0.0771377i −0.479249 0.877679i 0.659091π-0.659091\pi
0.599278 + 0.800541i 0.295455π0.295455\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
312312 1.98982 0.142315i 1.98982 0.142315i
313313 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
314314 −1.00829 + 0.647988i −1.00829 + 0.647988i
315315 −1.14952 + 1.32661i −1.14952 + 1.32661i
316316 0.281733 0.0405070i 0.281733 0.0405070i
317317 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
318318 0 0
319319 0 0
320320 −1.14952 1.32661i −1.14952 1.32661i
321321 0 0
322322 −0.654861 0.755750i −0.654861 0.755750i
323323 0 0
324324 −0.142315 + 0.989821i −0.142315 + 0.989821i
325325 −3.49285 2.24472i −3.49285 2.24472i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
332332 1.53623 0.451077i 1.53623 0.451077i
333333 0 0
334334 0 0
335335 0 0
336336 −0.212565 0.977147i −0.212565 0.977147i
337337 0.708089 + 1.10181i 0.708089 + 1.10181i 0.989821 + 0.142315i 0.0454545π0.0454545\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
338338 −0.839462 + 2.85895i −0.839462 + 2.85895i
339339 −1.97460 0.141226i −1.97460 0.141226i
340340 0 0
341341 0 0
342342 0.377869 + 0.587976i 0.377869 + 0.587976i
343343 0.755750 0.654861i 0.755750 0.654861i
344344 0 0
345345 1.05195 + 1.40524i 1.05195 + 1.40524i
346346 1.19856 1.19856
347347 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
348348 0 0
349349 −0.201264 + 1.39982i −0.201264 + 1.39982i 0.599278 + 0.800541i 0.295455π0.295455\pi
−0.800541 + 0.599278i 0.795455π0.795455\pi
350350 −0.864596 + 1.89320i −0.864596 + 1.89320i
351351 −1.75089 0.956056i −1.75089 0.956056i
352352 0 0
353353 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
354354 −1.83107 + 0.398326i −1.83107 + 0.398326i
355355 −0.647712 2.20590i −0.647712 2.20590i
356356 0 0
357357 0 0
358358 0 0
359359 −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
360360 0.249813 + 1.73749i 0.249813 + 1.73749i
361361 −0.490780 0.144106i −0.490780 0.144106i
362362 −0.278125 1.93440i −0.278125 1.93440i
363363 −0.800541 0.599278i −0.800541 0.599278i
364364 1.97460 + 0.283904i 1.97460 + 0.283904i
365365 0 0
366366 −1.24123 + 0.677760i −1.24123 + 0.677760i
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 −1.00000 −1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
374374 0 0
375375 0.909632 1.66587i 0.909632 1.66587i
376376 0 0
377377 0 0
378378 −0.349464 + 0.936950i −0.349464 + 0.936950i
379379 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
380380 0.927206 + 0.803429i 0.927206 + 0.803429i
381381 0.136899 + 1.91410i 0.136899 + 1.91410i
382382 −0.983568 + 0.449181i −0.983568 + 0.449181i
383383 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
384384 −0.877679 0.479249i −0.877679 0.479249i
385385 0 0
386386 −0.512546 0.234072i −0.512546 0.234072i
387387 0 0
388388 0 0
389389 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
390390 −3.42174 0.744355i −3.42174 0.744355i
391391 0 0
392392 1.00000i 1.00000i
393393 −0.459359 0.841254i −0.459359 0.841254i
394394 0 0
395395 −0.494541 0.0711043i −0.494541 0.0711043i
396396 0 0
397397 0.0203052 + 0.141226i 0.0203052 + 0.141226i 0.997452 0.0713392i 0.0227273π-0.0227273\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
398398 0 0
399399 0.244250 + 0.654861i 0.244250 + 0.654861i
400400 0.864596 + 1.89320i 0.864596 + 1.89320i
401401 1.45027 0.425839i 1.45027 0.425839i 0.540641 0.841254i 0.318182π-0.318182\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
402402 0 0
403403 0 0
404404 −0.398430 1.35693i −0.398430 1.35693i
405405 0.729202 1.59673i 0.729202 1.59673i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
410410 0 0
411411 −0.587486 + 0.587486i −0.587486 + 0.587486i
412412 0 0
413413 −1.87390 −1.87390
414414 0.841254 + 0.540641i 0.841254 + 0.540641i
415415 −2.81047 −2.81047
416416 1.50765 1.30638i 1.50765 1.30638i
417417 1.13214 1.13214i 1.13214 1.13214i
418418 0 0
419419 −0.828713 + 1.81463i −0.828713 + 1.81463i −0.349464 + 0.936950i 0.613636π0.613636\pi
−0.479249 + 0.877679i 0.659091π0.659091\pi
420420 −0.125226 + 1.75089i −0.125226 + 1.75089i
421421 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 −0.784887 1.04849i −0.784887 1.04849i
427427 −1.35693 + 0.398430i −1.35693 + 0.398430i
428428 0 0
429429 0 0
430430 0 0
431431 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 00
−0.959493 + 0.281733i 0.909091π0.909091\pi
432432 0.479249 + 0.877679i 0.479249 + 0.877679i
433433 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
434434 0 0
435435 0 0
436436 0 0
437437 0.691814 0.0994679i 0.691814 0.0994679i
438438 0 0
439439 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
440440 0 0
441441 −0.540641 + 0.841254i −0.540641 + 0.841254i
442442 0 0
443443 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.755750 0.654861i −0.755750 0.654861i
449449 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
450450 0.296197 2.06010i 0.296197 2.06010i
451451 0 0
452452 −1.66538 + 1.07028i −1.66538 + 1.07028i
453453 −0.806340 + 1.47670i −0.806340 + 1.47670i
454454 1.18636 0.170572i 1.18636 0.170572i
455455 −3.18532 1.45469i −3.18532 1.45469i
456456 0.654861 + 0.244250i 0.654861 + 0.244250i
457457 −0.449181 + 0.698939i −0.449181 + 0.698939i −0.989821 0.142315i 0.954545π-0.954545\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
458458 1.22714 + 1.41620i 1.22714 + 1.41620i
459459 0 0
460460 1.68425 + 0.494541i 1.68425 + 0.494541i
461461 1.60108i 1.60108i −0.599278 0.800541i 0.704545π-0.704545\pi
0.599278 0.800541i 0.295455π-0.295455\pi
462462 0 0
463463 −1.27155 0.817178i −1.27155 0.817178i −0.281733 0.959493i 0.590909π-0.590909\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
464464 0 0
465465 0 0
466466 0.281733 + 1.95949i 0.281733 + 1.95949i
467467 −1.87513 0.550588i −1.87513 0.550588i −0.997452 0.0713392i 0.977273π-0.977273\pi
−0.877679 0.479249i 0.840909π-0.840909\pi
468468 −1.97460 + 0.283904i −1.97460 + 0.283904i
469469 0 0
470470 0 0
471471 0.959493 0.718267i 0.959493 0.718267i
472472 −1.22714 + 1.41620i −1.22714 + 1.41620i
473473 0 0
474474 −0.278125 + 0.0605024i −0.278125 + 0.0605024i
475475 −0.786452 1.22374i −0.786452 1.22374i
476476 0 0
477477 0 0
478478 −0.234072 + 0.512546i −0.234072 + 0.512546i
479479 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
480480 1.24123 + 1.24123i 1.24123 + 1.24123i
481481 0 0
482482 0 0
483483 0.707107 + 0.707107i 0.707107 + 0.707107i
484484 −1.00000 −1.00000
485485 0 0
486486 0.0713392 0.997452i 0.0713392 0.997452i
487487 −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
488488 −0.587486 + 1.28641i −0.587486 + 1.28641i
489489 0 0
490490 −0.494541 + 1.68425i −0.494541 + 1.68425i
491491 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
492492 0 0
493493 0 0
494494 −0.913069 + 1.05374i −0.913069 + 1.05374i
495495 0 0
496496 0 0
497497 −0.544078 1.19136i −0.544078 1.19136i
498498 −1.50013 + 0.559521i −1.50013 + 0.559521i
499499 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
500500 −0.270119 1.87872i −0.270119 1.87872i
501501 0 0
502502 0.420803 + 0.0605024i 0.420803 + 0.0605024i
503503 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
504504 0.281733 + 0.959493i 0.281733 + 0.959493i
505505 2.48245i 2.48245i
506506 0 0
507507 0.633369 2.91155i 0.633369 2.91155i
508508 1.25667 + 1.45027i 1.25667 + 1.45027i
509509 0.518203 0.806340i 0.518203 0.806340i −0.479249 0.877679i 0.659091π-0.659091\pi
0.997452 + 0.0713392i 0.0227273π0.0227273\pi
510510 0 0
511511 0 0
512512 −0.989821 + 0.142315i −0.989821 + 0.142315i
513513 −0.418852 0.559521i −0.418852 0.559521i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −1.19550 + 0.0855040i −1.19550 + 0.0855040i
520520 −3.18532 + 1.45469i −3.18532 + 1.45469i
521521 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
522522 0 0
523523 1.58479 0.227858i 1.58479 0.227858i 0.707107 0.707107i 0.250000π-0.250000\pi
0.877679 + 0.479249i 0.159091π0.159091\pi
524524 −0.871880 0.398174i −0.871880 0.398174i
525525 0.727333 1.95006i 0.727333 1.95006i
526526 0.817178 1.27155i 0.817178 1.27155i
527527 0 0
528528 0 0
529529 0.841254 0.540641i 0.841254 0.540641i
530530 0 0
531531 1.79799 0.527938i 1.79799 0.527938i
532532 0.587976 + 0.377869i 0.587976 + 0.377869i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −0.290345 0.635768i −0.290345 0.635768i
539539 0 0
540540 −0.373128 1.71524i −0.373128 1.71524i
541541 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
542542 0 0
543543 0.415415 + 1.90963i 0.415415 + 1.90963i
544544 0 0
545545 0 0
546546 −1.98982 0.142315i −1.98982 0.142315i
547547 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
548548 −0.118239 + 0.822373i −0.118239 + 0.822373i
549549 1.18971 0.764582i 1.18971 0.764582i
550550 0 0
551551 0 0
552552 0.997452 0.0713392i 0.997452 0.0713392i
553553 −0.284630 −0.284630
554554 0 0
555555 0 0
556556 0.227858 1.58479i 0.227858 1.58479i
557557 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
558558 0 0
559559 0 0
560560 0.949018 + 1.47670i 0.949018 + 1.47670i
561561 0 0
562562 0.540641 + 1.84125i 0.540641 + 1.84125i
563563 −0.0934345 + 0.107829i −0.0934345 + 0.107829i −0.800541 0.599278i 0.795455π-0.795455\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
564564 0 0
565565 3.33422 0.979016i 3.33422 0.979016i
566566 −0.0592707 0.129785i −0.0592707 0.129785i
567567 0.281733 0.959493i 0.281733 0.959493i
568568 −1.25667 0.368991i −1.25667 0.368991i
569569 −0.153882 1.07028i −0.153882 1.07028i −0.909632 0.415415i 0.863636π-0.863636\pi
0.755750 0.654861i 0.227273π-0.227273\pi
570570 −0.982160 0.735235i −0.982160 0.735235i
571571 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
572572 0 0
573573 0.949018 0.518203i 0.949018 0.518203i
574574 0 0
575575 −1.75089 1.12523i −1.75089 1.12523i
576576 0.909632 + 0.415415i 0.909632 + 0.415415i
577577 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
578578 0.540641 0.841254i 0.540641 0.841254i
579579 0.527938 + 0.196911i 0.527938 + 0.196911i
580580 0 0
581581 −1.58479 + 0.227858i −1.58479 + 0.227858i
582582 0 0
583583 0 0
584584 0 0
585585 3.46613 + 0.498354i 3.46613 + 0.498354i
586586 0.321292 + 0.278401i 0.321292 + 0.278401i
587587 0.107829 + 0.0934345i 0.107829 + 0.0934345i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.599278 + 0.800541i 0.704545π0.704545\pi
588588 0.0713392 + 0.997452i 0.0713392 + 0.997452i
589589 0 0
590590 2.76719 1.77836i 2.76719 1.77836i
591591 0 0
592592 0 0
593593 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −0.562029 + 1.91410i −0.562029 + 1.91410i
599599 1.68251i 1.68251i −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 0.841254i 0.318182π-0.318182\pi
600600 −0.997452 1.82670i −0.997452 1.82670i
601601 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
602602 0 0
603603 0 0
604604 0.239446 + 1.66538i 0.239446 + 1.66538i
605605 1.68425 + 0.494541i 1.68425 + 0.494541i
606606 0.494217 + 1.32505i 0.494217 + 1.32505i
607607 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
608608 0.670617 0.196911i 0.670617 0.196911i
609609 0 0
610610 1.62566 1.87611i 1.62566 1.87611i
611611 0 0
612612 0 0
613613 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
614614 −0.0401971 + 0.136899i −0.0401971 + 0.136899i
615615 0 0
616616 0 0
617617 −0.0801894 + 0.557730i −0.0801894 + 0.557730i 0.909632 + 0.415415i 0.136364π0.136364\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
618618 0 0
619619 1.21002 1.04849i 1.21002 1.04849i 0.212565 0.977147i 0.431818π-0.431818\pi
0.997452 0.0713392i 0.0227273π-0.0227273\pi
620620 0 0
621621 −0.877679 0.479249i −0.877679 0.479249i
622622 0 0
623623 0 0
624624 −1.41061 + 1.41061i −1.41061 + 1.41061i
625625 −0.177958 + 1.23772i −0.177958 + 1.23772i
626626 0 0
627627 0 0
628628 0.337672 1.15001i 0.337672 1.15001i
629629 0 0
630630 1.75536i 1.75536i
631631 −0.474017 1.61435i −0.474017 1.61435i −0.755750 0.654861i 0.772727π-0.772727\pi
0.281733 0.959493i 0.409091π-0.409091\pi
632632 −0.186393 + 0.215109i −0.186393 + 0.215109i
633633 0 0
634634 0 0
635635 −1.39933 3.06410i −1.39933 3.06410i
636636 0 0
637637 −1.91410 0.562029i −1.91410 0.562029i
638638 0 0
639639 0.857685 + 0.989821i 0.857685 + 0.989821i
640640 1.73749 + 0.249813i 1.73749 + 0.249813i
641641 0.474017 + 0.304632i 0.474017 + 0.304632i 0.755750 0.654861i 0.227273π-0.227273\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
642642 0 0
643643 1.95429i 1.95429i −0.212565 0.977147i 0.568182π-0.568182\pi
0.212565 0.977147i 0.431818π-0.431818\pi
644644 0.989821 + 0.142315i 0.989821 + 0.142315i
645645 0 0
646646 0 0
647647 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
648648 −0.540641 0.841254i −0.540641 0.841254i
649649 0 0
650650 4.10970 0.590885i 4.10970 0.590885i
651651 0 0
652652 0 0
653653 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
654654 0 0
655655 1.27155 + 1.10181i 1.27155 + 1.10181i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
660660 0 0
661661 −0.141226 + 0.0203052i −0.141226 + 0.0203052i −0.212565 0.977147i 0.568182π-0.568182\pi
0.0713392 + 0.997452i 0.477273π0.477273\pi
662662 0 0
663663 0 0
664664 −0.865611 + 1.34692i −0.865611 + 1.34692i
665665 −0.803429 0.927206i −0.803429 0.927206i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0.800541 + 0.599278i 0.800541 + 0.599278i
673673 −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i 0.727273π-0.727273\pi
0.415415 0.909632i 0.363636π-0.363636\pi
674674 −1.25667 0.368991i −1.25667 0.368991i
675675 −0.148477 + 2.07598i −0.148477 + 2.07598i
676676 −1.23779 2.71038i −1.23779 2.71038i
677677 −1.15001 + 0.337672i −1.15001 + 0.337672i −0.800541 0.599278i 0.795455π-0.795455\pi
−0.349464 + 0.936950i 0.613636π0.613636\pi
678678 1.58479 1.18636i 1.58479 1.18636i
679679 0 0
680680 0 0
681681 −1.17116 + 0.254771i −1.17116 + 0.254771i
682682 0 0
683683 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
684684 −0.670617 0.196911i −0.670617 0.196911i
685685 0.605843 1.32661i 0.605843 1.32661i
686686 −0.142315 + 0.989821i −0.142315 + 0.989821i
687687 −1.32505 1.32505i −1.32505 1.32505i
688688 0 0
689689 0 0
690690 −1.71524 0.373128i −1.71524 0.373128i
691691 −1.87390 −1.87390 −0.936950 0.349464i 0.886364π-0.886364\pi
−0.936950 + 0.349464i 0.886364π0.886364\pi
692692 −0.905808 + 0.784887i −0.905808 + 0.784887i
693693 0 0
694694 0 0
695695 −1.16751 + 2.55650i −1.16751 + 2.55650i
696696 0 0
697697 0 0
698698 −0.764582 1.18971i −0.764582 1.18971i
699699 −0.420803 1.93440i −0.420803 1.93440i
700700 −0.586365 1.99698i −0.586365 1.99698i
701701 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
702702 1.94931 0.424047i 1.94931 0.424047i
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0.201264 + 1.39982i 0.201264 + 1.39982i
708708 1.12299 1.50013i 1.12299 1.50013i
709709 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
710710 1.93407 + 1.24295i 1.93407 + 1.24295i
711711 0.273100 0.0801894i 0.273100 0.0801894i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.196911 0.527938i 0.196911 0.527938i
718718 1.74557 + 0.797176i 1.74557 + 0.797176i
719719 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
720720 −1.32661 1.14952i −1.32661 1.14952i
721721 0 0
722722 0.465276 0.212484i 0.465276 0.212484i
723723 0 0
724724 1.47696 + 1.27979i 1.47696 + 1.27979i
725725 0 0
726726 0.997452 0.0713392i 0.997452 0.0713392i
727727 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
728728 −1.67822 + 1.07853i −1.67822 + 1.07853i
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0.494217 1.32505i 0.494217 1.32505i
733733 −1.07853 + 1.67822i −1.07853 + 1.67822i −0.479249 + 0.877679i 0.659091π0.659091\pi
−0.599278 + 0.800541i 0.704545π0.704545\pi
734734 0 0
735735 0.373128 1.71524i 0.373128 1.71524i
736736 0.755750 0.654861i 0.755750 0.654861i
737737 0 0
738738 0 0
739739 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
740740 0 0
741741 0.835570 1.11619i 0.835570 1.11619i
742742 0 0
743743 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 00
0.841254 + 0.540641i 0.181818π0.181818\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.45640 0.665114i 1.45640 0.665114i
748748 0 0
749749 0 0
750750 0.403457 + 1.85466i 0.403457 + 1.85466i
751751 0.983568 + 1.53046i 0.983568 + 1.53046i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
752752 0 0
753753 −0.424047 0.0303285i −0.424047 0.0303285i
754754 0 0
755755 0.420313 2.92334i 0.420313 2.92334i
756756 −0.349464 0.936950i −0.349464 0.936950i
757757 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
758758 0 0
759759 0 0
760760 −1.22687 −1.22687
761761 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
762762 −1.35693 1.35693i −1.35693 1.35693i
763763 0 0
764764 0.449181 0.983568i 0.449181 0.983568i
765765 0 0
766766 0 0
767767 2.02105 + 3.14482i 2.02105 + 3.14482i
768768 0.977147 0.212565i 0.977147 0.212565i
769769 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
770770 0 0
771771 0 0
772772 0.540641 0.158746i 0.540641 0.158746i
773773 0.398174 + 0.871880i 0.398174 + 0.871880i 0.997452 + 0.0713392i 0.0227273π0.0227273\pi
−0.599278 + 0.800541i 0.704545π0.704545\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 3.07343 1.67822i 3.07343 1.67822i
781781 0 0
782782 0 0
783783 0 0
784784 0.654861 + 0.755750i 0.654861 + 0.755750i
785785 −1.13745 + 1.76991i −1.13745 + 1.76991i
786786 0.898064 + 0.334961i 0.898064 + 0.334961i
787787 −1.70456 0.778446i −1.70456 0.778446i −0.997452 0.0713392i 0.977273π-0.977273\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
788788 0 0
789789 −0.724384 + 1.32661i −0.724384 + 1.32661i
790790 0.420313 0.270119i 0.420313 0.270119i
791791 1.80075 0.822373i 1.80075 0.822373i
792792 0 0
793793 2.13214 + 1.84751i 2.13214 + 1.84751i
794794 −0.107829 0.0934345i −0.107829 0.0934345i
795795 0 0
796796 0 0
797797 1.67822 1.07853i 1.67822 1.07853i 0.800541 0.599278i 0.204545π-0.204545\pi
0.877679 0.479249i 0.159091π-0.159091\pi
798798 −0.613435 0.334961i −0.613435 0.334961i
799799 0 0
800800 −1.89320 0.864596i −1.89320 0.864596i
801801 0 0
802802 −0.817178 + 1.27155i −0.817178 + 1.27155i
803803 0 0
804804 0 0
805805 −1.59673 0.729202i −1.59673 0.729202i
806806 0 0
807807 0.334961 + 0.613435i 0.334961 + 0.613435i
808808 1.18971 + 0.764582i 1.18971 + 0.764582i
809809 0.281733 + 0.0405070i 0.281733 + 0.0405070i 0.281733 0.959493i 0.409091π-0.409091\pi
1.00000i 0.5π0.5\pi
810810 0.494541 + 1.68425i 0.494541 + 1.68425i
811811 0.0994679 + 0.691814i 0.0994679 + 0.691814i 0.977147 + 0.212565i 0.0681818π0.0681818\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 1.99490 1.99490
820820 0 0
821821 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
822822 0.0592707 0.828713i 0.0592707 0.828713i
823823 0.755750 1.65486i 0.755750 1.65486i 1.00000i 0.5π-0.5\pi
0.755750 0.654861i 0.227273π-0.227273\pi
824824 0 0
825825 0 0
826826 1.41620 1.22714i 1.41620 1.22714i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −0.989821 + 0.142315i −0.989821 + 0.142315i
829829 −0.958498 −0.958498 −0.479249 0.877679i 0.659091π-0.659091\pi
−0.479249 + 0.877679i 0.659091π0.659091\pi
830830 2.12401 1.84047i 2.12401 1.84047i
831831 0 0
832832 −0.283904 + 1.97460i −0.283904 + 1.97460i
833833 0 0
834834 −0.114220 + 1.59700i −0.114220 + 1.59700i
835835 0 0
836836 0 0
837837 0 0
838838 −0.562029 1.91410i −0.562029 1.91410i
839839 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
840840 −1.05195 1.40524i −1.05195 1.40524i
841841 0.959493 0.281733i 0.959493 0.281733i
842842 0 0
843843 −0.670617 1.79799i −0.670617 1.79799i
844844 0 0
845845 0.744355 + 5.17710i 0.744355 + 5.17710i
846846 0 0
847847 0.989821 + 0.142315i 0.989821 + 0.142315i
848848 0 0
849849 0.0683785 + 0.125226i 0.0683785 + 0.125226i
850850 0 0
851851 0 0
852852 1.27979 + 0.278401i 1.27979 + 0.278401i
853853 −0.784887 0.905808i −0.784887 0.905808i 0.212565 0.977147i 0.431818π-0.431818\pi
−0.997452 + 0.0713392i 0.977273π0.977273\pi
854854 0.764582 1.18971i 0.764582 1.18971i
855855 1.03211 + 0.663296i 1.03211 + 0.663296i
856856 0 0
857857 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
858858 0 0
859859 0.806340 0.518203i 0.806340 0.518203i −0.0713392 0.997452i 0.522727π-0.522727\pi
0.877679 + 0.479249i 0.159091π0.159091\pi
860860 0 0
861861 0 0
862862 −0.215109 0.186393i −0.215109 0.186393i
863863 −0.627899 0.544078i −0.627899 0.544078i 0.281733 0.959493i 0.409091π-0.409091\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
864864 −0.936950 0.349464i −0.936950 0.349464i
865865 1.91377 0.873989i 1.91377 0.873989i
866866 0 0
867867 −0.479249 + 0.877679i −0.479249 + 0.877679i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −0.457701 + 0.528215i −0.457701 + 0.528215i
875875 1.89804i 1.89804i
876876 0 0
877877 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
878878 0 0
879879 −0.340335 0.254771i −0.340335 0.254771i
880880 0 0
881881 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
882882 −0.142315 0.989821i −0.142315 0.989821i
883883 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
884884 0 0
885885 −2.63327 + 1.97124i −2.63327 + 1.97124i
886886 0 0
887887 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
888888 0 0
889889 −1.03748 1.61435i −1.03748 1.61435i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 1.00000 1.00000
897897 0.424047 1.94931i 0.424047 1.94931i
898898 −1.81926 −1.81926
899899 0 0
900900 1.12523 + 1.75089i 1.12523 + 1.75089i
901901 0 0
902902 0 0
903903 0 0
904904 0.557730 1.89945i 0.557730 1.89945i
905905 −1.85466 2.88591i −1.85466 2.88591i
906906 −0.357643 1.64406i −0.357643 1.64406i
907907 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
908908 −0.784887 + 0.905808i −0.784887 + 0.905808i
909909 −0.587486 1.28641i −0.587486 1.28641i
910910 3.35992 0.986563i 3.35992 0.986563i
911911 0.118239 + 0.258908i 0.118239 + 0.258908i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
912912 −0.654861 + 0.244250i −0.654861 + 0.244250i
913913 0 0
914914 −0.118239 0.822373i −0.118239 0.822373i
915915 −1.48768 + 1.98730i −1.48768 + 1.98730i
916916 −1.85483 0.266684i −1.85483 0.266684i
917917 0.806340 + 0.518203i 0.806340 + 0.518203i
918918 0 0
919919 1.30972i 1.30972i 0.755750 + 0.654861i 0.227273π0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
920920 −1.59673 + 0.729202i −1.59673 + 0.729202i
921921 0.0303285 0.139418i 0.0303285 0.139418i
922922 1.04849 + 1.21002i 1.04849 + 1.21002i
923923 −1.41257 + 2.19800i −1.41257 + 2.19800i
924924 0 0
925925 0 0
926926 1.49611 0.215109i 1.49611 0.215109i
927927 0 0
928928 0 0
929929 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
930930 0 0
931931 −0.528215 0.457701i −0.528215 0.457701i
932932 −1.49611 1.29639i −1.49611 1.29639i
933933 0 0
934934 1.77769 0.811843i 1.77769 0.811843i
935935 0 0
936936 1.30638 1.50765i 1.30638 1.50765i
937937 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.04849 1.21002i −1.04849 1.21002i −0.977147 0.212565i 0.931818π-0.931818\pi
−0.0713392 0.997452i 0.522727π-0.522727\pi
942942 −0.254771 + 1.17116i −0.254771 + 1.17116i
943943 0 0
944944 1.87390i 1.87390i
945945 0.125226 + 1.75089i 0.125226 + 1.75089i
946946 0 0
947947 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
948948 0.170572 0.227858i 0.170572 0.227858i
949949 0 0
950950 1.39574 + 0.409827i 1.39574 + 0.409827i
951951 0 0
952952 0 0
953953 −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
954954 0 0
955955 −1.24295 + 1.43444i −1.24295 + 1.43444i
956956 −0.158746 0.540641i −0.158746 0.540641i
957957 0 0
958958 0 0
959959 0.234072 0.797176i 0.234072 0.797176i
960960 −1.75089 0.125226i −1.75089 0.125226i
961961 0.415415 0.909632i 0.415415 0.909632i
962962 0 0
963963 0 0
964964 0 0
965965 −0.989083 −0.989083
966966 −0.997452 0.0713392i −0.997452 0.0713392i
967967 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
968968 0.755750 0.654861i 0.755750 0.654861i
969969 0 0
970970 0 0
971971 0.398174 0.871880i 0.398174 0.871880i −0.599278 0.800541i 0.704545π-0.704545\pi
0.997452 0.0713392i 0.0227273π-0.0227273\pi
972972 0.599278 + 0.800541i 0.599278 + 0.800541i
973973 −0.451077 + 1.53623i −0.451077 + 1.53623i
974974 −0.708089 1.10181i −0.708089 1.10181i
975975 −4.05707 + 0.882562i −4.05707 + 0.882562i
976976 −0.398430 1.35693i −0.398430 1.35693i
977977 −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
978978 0 0
979979 0 0
980980 −0.729202 1.59673i −0.729202 1.59673i
981981 0 0
982982 0 0
983983 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 1.39430i 1.39430i
989989 0 0
990990 0 0
991991 0.368991 + 0.425839i 0.368991 + 0.425839i 0.909632 0.415415i 0.136364π-0.136364\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
992992 0 0
993993 0 0
994994 1.19136 + 0.544078i 1.19136 + 0.544078i
995995 0 0
996996 0.767317 1.40524i 0.767317 1.40524i
997997 1.47670 0.949018i 1.47670 0.949018i 0.479249 0.877679i 0.340909π-0.340909\pi
0.997452 0.0713392i 0.0227273π-0.0227273\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.cx.b.125.2 yes 40
3.2 odd 2 3864.1.cx.a.125.3 40
7.6 odd 2 inner 3864.1.cx.b.125.1 yes 40
8.5 even 2 inner 3864.1.cx.b.125.1 yes 40
21.20 even 2 3864.1.cx.a.125.4 yes 40
23.7 odd 22 3864.1.cx.a.2813.3 yes 40
24.5 odd 2 3864.1.cx.a.125.4 yes 40
56.13 odd 2 CM 3864.1.cx.b.125.2 yes 40
69.53 even 22 inner 3864.1.cx.b.2813.2 yes 40
161.76 even 22 3864.1.cx.a.2813.4 yes 40
168.125 even 2 3864.1.cx.a.125.3 40
184.53 odd 22 3864.1.cx.a.2813.4 yes 40
483.398 odd 22 inner 3864.1.cx.b.2813.1 yes 40
552.53 even 22 inner 3864.1.cx.b.2813.1 yes 40
1288.237 even 22 3864.1.cx.a.2813.3 yes 40
3864.2813 odd 22 inner 3864.1.cx.b.2813.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.cx.a.125.3 40 3.2 odd 2
3864.1.cx.a.125.3 40 168.125 even 2
3864.1.cx.a.125.4 yes 40 21.20 even 2
3864.1.cx.a.125.4 yes 40 24.5 odd 2
3864.1.cx.a.2813.3 yes 40 23.7 odd 22
3864.1.cx.a.2813.3 yes 40 1288.237 even 22
3864.1.cx.a.2813.4 yes 40 161.76 even 22
3864.1.cx.a.2813.4 yes 40 184.53 odd 22
3864.1.cx.b.125.1 yes 40 7.6 odd 2 inner
3864.1.cx.b.125.1 yes 40 8.5 even 2 inner
3864.1.cx.b.125.2 yes 40 1.1 even 1 trivial
3864.1.cx.b.125.2 yes 40 56.13 odd 2 CM
3864.1.cx.b.2813.1 yes 40 483.398 odd 22 inner
3864.1.cx.b.2813.1 yes 40 552.53 even 22 inner
3864.1.cx.b.2813.2 yes 40 69.53 even 22 inner
3864.1.cx.b.2813.2 yes 40 3864.2813 odd 22 inner