Properties

Label 3864.1.cx.b.125.2
Level $3864$
Weight $1$
Character 3864.125
Analytic conductor $1.928$
Analytic rank $0$
Dimension $40$
Projective image $D_{44}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(125,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 11, 11, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.125");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3864.cx (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.92838720881\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{88})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{44}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{44} - \cdots)\)

Embedding invariants

Embedding label 125.2
Root \(-0.800541 + 0.599278i\) of defining polynomial
Character \(\chi\) \(=\) 3864.125
Dual form 3864.1.cx.b.2813.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.755750 + 0.654861i) q^{2} +(0.707107 - 0.707107i) q^{3} +(0.142315 - 0.989821i) q^{4} +(-0.729202 + 1.59673i) q^{5} +(-0.0713392 + 0.997452i) q^{6} +(-0.281733 + 0.959493i) q^{7} +(0.540641 + 0.841254i) q^{8} -1.00000i q^{9} +(-0.494541 - 1.68425i) q^{10} +(-0.599278 - 0.800541i) q^{12} +(1.91410 - 0.562029i) q^{13} +(-0.415415 - 0.909632i) q^{14} +(0.613435 + 1.64468i) q^{15} +(-0.959493 - 0.281733i) q^{16} +(0.654861 + 0.755750i) q^{18} +(0.691814 + 0.0994679i) q^{19} +(1.47670 + 0.949018i) q^{20} +(0.479249 + 0.877679i) q^{21} +(0.959493 - 0.281733i) q^{23} +(0.977147 + 0.212565i) q^{24} +(-1.36295 - 1.57293i) q^{25} +(-1.07853 + 1.67822i) q^{26} +(-0.707107 - 0.707107i) q^{27} +(0.909632 + 0.415415i) q^{28} +(-1.54064 - 0.841254i) q^{30} +(0.909632 - 0.415415i) q^{32} +(-1.32661 - 1.14952i) q^{35} +(-0.989821 - 0.142315i) q^{36} +(-0.587976 + 0.377869i) q^{38} +(0.956056 - 1.75089i) q^{39} +(-1.73749 + 0.249813i) q^{40} +(-0.936950 - 0.349464i) q^{42} +(1.59673 + 0.729202i) q^{45} +(-0.540641 + 0.841254i) q^{46} +(-0.877679 + 0.479249i) q^{48} +(-0.841254 - 0.540641i) q^{49} +(2.06010 + 0.296197i) q^{50} +(-0.283904 - 1.97460i) q^{52} +(0.997452 + 0.0713392i) q^{54} +(-0.959493 + 0.281733i) q^{56} +(0.559521 - 0.418852i) q^{57} +(0.527938 + 1.79799i) q^{59} +(1.71524 - 0.373128i) q^{60} +(0.764582 + 1.18971i) q^{61} +(0.959493 + 0.281733i) q^{63} +(-0.415415 + 0.909632i) q^{64} +(-0.498354 + 3.46613i) q^{65} +(0.479249 - 0.877679i) q^{69} +1.75536 q^{70} +(-0.989821 + 0.857685i) q^{71} +(0.841254 - 0.540641i) q^{72} +(-2.07598 - 0.148477i) q^{75} +(0.196911 - 0.670617i) q^{76} +(0.424047 + 1.94931i) q^{78} +(0.0801894 + 0.273100i) q^{79} +(1.14952 - 1.32661i) q^{80} -1.00000 q^{81} +(0.665114 + 1.45640i) q^{83} +(0.936950 - 0.349464i) q^{84} +(-1.68425 + 0.494541i) q^{90} +1.99490i q^{91} +(-0.142315 - 0.989821i) q^{92} +(-0.663296 + 1.03211i) q^{95} +(0.349464 - 0.936950i) q^{96} +(0.989821 - 0.142315i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{4} + 4 q^{14} - 4 q^{15} - 4 q^{16} + 4 q^{18} + 4 q^{23} - 4 q^{25} - 40 q^{30} - 4 q^{39} + 4 q^{49} - 4 q^{56} - 4 q^{57} + 4 q^{60} + 4 q^{63} + 4 q^{64} - 8 q^{65} - 4 q^{72} + 4 q^{78}+ \cdots - 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times\).

\(n\) \(967\) \(1289\) \(1933\) \(2761\) \(2857\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{3}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.755750 + 0.654861i −0.755750 + 0.654861i
\(3\) 0.707107 0.707107i 0.707107 0.707107i
\(4\) 0.142315 0.989821i 0.142315 0.989821i
\(5\) −0.729202 + 1.59673i −0.729202 + 1.59673i 0.0713392 + 0.997452i \(0.477273\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(6\) −0.0713392 + 0.997452i −0.0713392 + 0.997452i
\(7\) −0.281733 + 0.959493i −0.281733 + 0.959493i
\(8\) 0.540641 + 0.841254i 0.540641 + 0.841254i
\(9\) 1.00000i 1.00000i
\(10\) −0.494541 1.68425i −0.494541 1.68425i
\(11\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(12\) −0.599278 0.800541i −0.599278 0.800541i
\(13\) 1.91410 0.562029i 1.91410 0.562029i 0.936950 0.349464i \(-0.113636\pi\)
0.977147 0.212565i \(-0.0681818\pi\)
\(14\) −0.415415 0.909632i −0.415415 0.909632i
\(15\) 0.613435 + 1.64468i 0.613435 + 1.64468i
\(16\) −0.959493 0.281733i −0.959493 0.281733i
\(17\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(18\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(19\) 0.691814 + 0.0994679i 0.691814 + 0.0994679i 0.479249 0.877679i \(-0.340909\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(20\) 1.47670 + 0.949018i 1.47670 + 0.949018i
\(21\) 0.479249 + 0.877679i 0.479249 + 0.877679i
\(22\) 0 0
\(23\) 0.959493 0.281733i 0.959493 0.281733i
\(24\) 0.977147 + 0.212565i 0.977147 + 0.212565i
\(25\) −1.36295 1.57293i −1.36295 1.57293i
\(26\) −1.07853 + 1.67822i −1.07853 + 1.67822i
\(27\) −0.707107 0.707107i −0.707107 0.707107i
\(28\) 0.909632 + 0.415415i 0.909632 + 0.415415i
\(29\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(30\) −1.54064 0.841254i −1.54064 0.841254i
\(31\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(32\) 0.909632 0.415415i 0.909632 0.415415i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.32661 1.14952i −1.32661 1.14952i
\(36\) −0.989821 0.142315i −0.989821 0.142315i
\(37\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(38\) −0.587976 + 0.377869i −0.587976 + 0.377869i
\(39\) 0.956056 1.75089i 0.956056 1.75089i
\(40\) −1.73749 + 0.249813i −1.73749 + 0.249813i
\(41\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(42\) −0.936950 0.349464i −0.936950 0.349464i
\(43\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(44\) 0 0
\(45\) 1.59673 + 0.729202i 1.59673 + 0.729202i
\(46\) −0.540641 + 0.841254i −0.540641 + 0.841254i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −0.877679 + 0.479249i −0.877679 + 0.479249i
\(49\) −0.841254 0.540641i −0.841254 0.540641i
\(50\) 2.06010 + 0.296197i 2.06010 + 0.296197i
\(51\) 0 0
\(52\) −0.283904 1.97460i −0.283904 1.97460i
\(53\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(54\) 0.997452 + 0.0713392i 0.997452 + 0.0713392i
\(55\) 0 0
\(56\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(57\) 0.559521 0.418852i 0.559521 0.418852i
\(58\) 0 0
\(59\) 0.527938 + 1.79799i 0.527938 + 1.79799i 0.599278 + 0.800541i \(0.295455\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(60\) 1.71524 0.373128i 1.71524 0.373128i
\(61\) 0.764582 + 1.18971i 0.764582 + 1.18971i 0.977147 + 0.212565i \(0.0681818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(62\) 0 0
\(63\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(64\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(65\) −0.498354 + 3.46613i −0.498354 + 3.46613i
\(66\) 0 0
\(67\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(68\) 0 0
\(69\) 0.479249 0.877679i 0.479249 0.877679i
\(70\) 1.75536 1.75536
\(71\) −0.989821 + 0.857685i −0.989821 + 0.857685i −0.989821 0.142315i \(-0.954545\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.841254 0.540641i 0.841254 0.540641i
\(73\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(74\) 0 0
\(75\) −2.07598 0.148477i −2.07598 0.148477i
\(76\) 0.196911 0.670617i 0.196911 0.670617i
\(77\) 0 0
\(78\) 0.424047 + 1.94931i 0.424047 + 1.94931i
\(79\) 0.0801894 + 0.273100i 0.0801894 + 0.273100i 0.989821 0.142315i \(-0.0454545\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(80\) 1.14952 1.32661i 1.14952 1.32661i
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0.665114 + 1.45640i 0.665114 + 1.45640i 0.877679 + 0.479249i \(0.159091\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(84\) 0.936950 0.349464i 0.936950 0.349464i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(90\) −1.68425 + 0.494541i −1.68425 + 0.494541i
\(91\) 1.99490i 1.99490i
\(92\) −0.142315 0.989821i −0.142315 0.989821i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.663296 + 1.03211i −0.663296 + 1.03211i
\(96\) 0.349464 0.936950i 0.349464 0.936950i
\(97\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(98\) 0.989821 0.142315i 0.989821 0.142315i
\(99\) 0 0
\(100\) −1.75089 + 1.12523i −1.75089 + 1.12523i
\(101\) 1.28641 0.587486i 1.28641 0.587486i 0.349464 0.936950i \(-0.386364\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(102\) 0 0
\(103\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(104\) 1.50765 + 1.30638i 1.50765 + 1.30638i
\(105\) −1.75089 + 0.125226i −1.75089 + 0.125226i
\(106\) 0 0
\(107\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(108\) −0.800541 + 0.599278i −0.800541 + 0.599278i
\(109\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.540641 0.841254i 0.540641 0.841254i
\(113\) −1.29639 1.49611i −1.29639 1.49611i −0.755750 0.654861i \(-0.772727\pi\)
−0.540641 0.841254i \(-0.681818\pi\)
\(114\) −0.148568 + 0.682956i −0.148568 + 0.682956i
\(115\) −0.249813 + 1.73749i −0.249813 + 1.73749i
\(116\) 0 0
\(117\) −0.562029 1.91410i −0.562029 1.91410i
\(118\) −1.57642 1.01311i −1.57642 1.01311i
\(119\) 0 0
\(120\) −1.05195 + 1.40524i −1.05195 + 1.40524i
\(121\) −0.142315 0.989821i −0.142315 0.989821i
\(122\) −1.35693 0.398430i −1.35693 0.398430i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.82115 0.534739i 1.82115 0.534739i
\(126\) −0.909632 + 0.415415i −0.909632 + 0.415415i
\(127\) −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i \(0.636364\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(128\) −0.281733 0.959493i −0.281733 0.959493i
\(129\) 0 0
\(130\) −1.89320 2.94588i −1.89320 2.94588i
\(131\) 0.270040 0.919672i 0.270040 0.919672i −0.707107 0.707107i \(-0.750000\pi\)
0.977147 0.212565i \(-0.0681818\pi\)
\(132\) 0 0
\(133\) −0.290345 + 0.635768i −0.290345 + 0.635768i
\(134\) 0 0
\(135\) 1.64468 0.613435i 1.64468 0.613435i
\(136\) 0 0
\(137\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(138\) 0.212565 + 0.977147i 0.212565 + 0.977147i
\(139\) 1.60108 1.60108 0.800541 0.599278i \(-0.204545\pi\)
0.800541 + 0.599278i \(0.204545\pi\)
\(140\) −1.32661 + 1.14952i −1.32661 + 1.14952i
\(141\) 0 0
\(142\) 0.186393 1.29639i 0.186393 1.29639i
\(143\) 0 0
\(144\) −0.281733 + 0.959493i −0.281733 + 0.959493i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.977147 + 0.212565i −0.977147 + 0.212565i
\(148\) 0 0
\(149\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(150\) 1.66615 1.24727i 1.66615 1.24727i
\(151\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(152\) 0.290345 + 0.635768i 0.290345 + 0.635768i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.59700 1.19550i −1.59700 1.19550i
\(157\) 1.18636 + 0.170572i 1.18636 + 0.170572i 0.707107 0.707107i \(-0.250000\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(158\) −0.239446 0.153882i −0.239446 0.153882i
\(159\) 0 0
\(160\) 1.75536i 1.75536i
\(161\) 1.00000i 1.00000i
\(162\) 0.755750 0.654861i 0.755750 0.654861i
\(163\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.45640 0.665114i −1.45640 0.665114i
\(167\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(168\) −0.479249 + 0.877679i −0.479249 + 0.877679i
\(169\) 2.50664 1.61092i 2.50664 1.61092i
\(170\) 0 0
\(171\) 0.0994679 0.691814i 0.0994679 0.691814i
\(172\) 0 0
\(173\) −0.905808 0.784887i −0.905808 0.784887i 0.0713392 0.997452i \(-0.477273\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(174\) 0 0
\(175\) 1.89320 0.864596i 1.89320 0.864596i
\(176\) 0 0
\(177\) 1.64468 + 0.898064i 1.64468 + 0.898064i
\(178\) 0 0
\(179\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(180\) 0.949018 1.47670i 0.949018 1.47670i
\(181\) −1.05657 + 1.64406i −1.05657 + 1.64406i −0.349464 + 0.936950i \(0.613636\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(182\) −1.30638 1.50765i −1.30638 1.50765i
\(183\) 1.38189 + 0.300613i 1.38189 + 0.300613i
\(184\) 0.755750 + 0.654861i 0.755750 + 0.654861i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.877679 0.479249i 0.877679 0.479249i
\(190\) −0.174602 1.21438i −0.174602 1.21438i
\(191\) 1.03748 + 0.304632i 1.03748 + 0.304632i 0.755750 0.654861i \(-0.227273\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(192\) 0.349464 + 0.936950i 0.349464 + 0.936950i
\(193\) 0.234072 + 0.512546i 0.234072 + 0.512546i 0.989821 0.142315i \(-0.0454545\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(194\) 0 0
\(195\) 2.09853 + 2.80331i 2.09853 + 2.80331i
\(196\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(197\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(198\) 0 0
\(199\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(200\) 0.586365 1.99698i 0.586365 1.99698i
\(201\) 0 0
\(202\) −0.587486 + 1.28641i −0.587486 + 1.28641i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.281733 0.959493i −0.281733 0.959493i
\(208\) −1.99490 −1.99490
\(209\) 0 0
\(210\) 1.24123 1.24123i 1.24123 1.24123i
\(211\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(212\) 0 0
\(213\) −0.0934345 + 1.30638i −0.0934345 + 1.30638i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.212565 0.977147i 0.212565 0.977147i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(224\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(225\) −1.57293 + 1.36295i −1.57293 + 1.36295i
\(226\) 1.95949 + 0.281733i 1.95949 + 0.281733i
\(227\) −1.00829 0.647988i −1.00829 0.647988i −0.0713392 0.997452i \(-0.522727\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(228\) −0.334961 0.613435i −0.334961 0.613435i
\(229\) 1.87390i 1.87390i −0.349464 0.936950i \(-0.613636\pi\)
0.349464 0.936950i \(-0.386364\pi\)
\(230\) −0.949018 1.47670i −0.949018 1.47670i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i \(-0.363636\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(234\) 1.67822 + 1.07853i 1.67822 + 1.07853i
\(235\) 0 0
\(236\) 1.85483 0.266684i 1.85483 0.266684i
\(237\) 0.249813 + 0.136408i 0.249813 + 0.136408i
\(238\) 0 0
\(239\) 0.512546 0.234072i 0.512546 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(240\) −0.125226 1.75089i −0.125226 1.75089i
\(241\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(242\) 0.755750 + 0.654861i 0.755750 + 0.654861i
\(243\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(244\) 1.28641 0.587486i 1.28641 0.587486i
\(245\) 1.47670 0.949018i 1.47670 0.949018i
\(246\) 0 0
\(247\) 1.38010 0.198429i 1.38010 0.198429i
\(248\) 0 0
\(249\) 1.50013 + 0.559521i 1.50013 + 0.559521i
\(250\) −1.02616 + 1.59673i −1.02616 + 1.59673i
\(251\) −0.278401 0.321292i −0.278401 0.321292i 0.599278 0.800541i \(-0.295455\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(252\) 0.415415 0.909632i 0.415415 0.909632i
\(253\) 0 0
\(254\) 1.91899i 1.91899i
\(255\) 0 0
\(256\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(257\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.35992 + 0.986563i 3.35992 + 0.986563i
\(261\) 0 0
\(262\) 0.398174 + 0.871880i 0.398174 + 0.871880i
\(263\) −1.45027 + 0.425839i −1.45027 + 0.425839i −0.909632 0.415415i \(-0.863636\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.196911 0.670617i −0.196911 0.670617i
\(267\) 0 0
\(268\) 0 0
\(269\) −0.196911 + 0.670617i −0.196911 + 0.670617i 0.800541 + 0.599278i \(0.204545\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(270\) −0.841254 + 1.54064i −0.841254 + 1.54064i
\(271\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(272\) 0 0
\(273\) 1.41061 + 1.41061i 1.41061 + 1.41061i
\(274\) 0.627899 0.544078i 0.627899 0.544078i
\(275\) 0 0
\(276\) −0.800541 0.599278i −0.800541 0.599278i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −1.21002 + 1.04849i −1.21002 + 1.04849i
\(279\) 0 0
\(280\) 0.249813 1.73749i 0.249813 1.73749i
\(281\) 0.797176 1.74557i 0.797176 1.74557i 0.142315 0.989821i \(-0.454545\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(282\) 0 0
\(283\) −0.0401971 + 0.136899i −0.0401971 + 0.136899i −0.977147 0.212565i \(-0.931818\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(284\) 0.708089 + 1.10181i 0.708089 + 1.10181i
\(285\) 0.260790 + 1.19883i 0.260790 + 1.19883i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.415415 0.909632i −0.415415 0.909632i
\(289\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.0605024 0.420803i −0.0605024 0.420803i −0.997452 0.0713392i \(-0.977273\pi\)
0.936950 0.349464i \(-0.113636\pi\)
\(294\) 0.599278 0.800541i 0.599278 0.800541i
\(295\) −3.25588 0.468125i −3.25588 0.468125i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.67822 1.07853i 1.67822 1.07853i
\(300\) −0.442408 + 2.03372i −0.442408 + 2.03372i
\(301\) 0 0
\(302\) 0.909632 1.41542i 0.909632 1.41542i
\(303\) 0.494217 1.32505i 0.494217 1.32505i
\(304\) −0.635768 0.290345i −0.635768 0.290345i
\(305\) −2.45718 + 0.353290i −2.45718 + 0.353290i
\(306\) 0 0
\(307\) 0.120029 0.0771377i 0.120029 0.0771377i −0.479249 0.877679i \(-0.659091\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(312\) 1.98982 0.142315i 1.98982 0.142315i
\(313\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(314\) −1.00829 + 0.647988i −1.00829 + 0.647988i
\(315\) −1.14952 + 1.32661i −1.14952 + 1.32661i
\(316\) 0.281733 0.0405070i 0.281733 0.0405070i
\(317\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.14952 1.32661i −1.14952 1.32661i
\(321\) 0 0
\(322\) −0.654861 0.755750i −0.654861 0.755750i
\(323\) 0 0
\(324\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(325\) −3.49285 2.24472i −3.49285 2.24472i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(332\) 1.53623 0.451077i 1.53623 0.451077i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.212565 0.977147i −0.212565 0.977147i
\(337\) 0.708089 + 1.10181i 0.708089 + 1.10181i 0.989821 + 0.142315i \(0.0454545\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(338\) −0.839462 + 2.85895i −0.839462 + 2.85895i
\(339\) −1.97460 0.141226i −1.97460 0.141226i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.377869 + 0.587976i 0.377869 + 0.587976i
\(343\) 0.755750 0.654861i 0.755750 0.654861i
\(344\) 0 0
\(345\) 1.05195 + 1.40524i 1.05195 + 1.40524i
\(346\) 1.19856 1.19856
\(347\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(348\) 0 0
\(349\) −0.201264 + 1.39982i −0.201264 + 1.39982i 0.599278 + 0.800541i \(0.295455\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(350\) −0.864596 + 1.89320i −0.864596 + 1.89320i
\(351\) −1.75089 0.956056i −1.75089 0.956056i
\(352\) 0 0
\(353\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(354\) −1.83107 + 0.398326i −1.83107 + 0.398326i
\(355\) −0.647712 2.20590i −0.647712 2.20590i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(360\) 0.249813 + 1.73749i 0.249813 + 1.73749i
\(361\) −0.490780 0.144106i −0.490780 0.144106i
\(362\) −0.278125 1.93440i −0.278125 1.93440i
\(363\) −0.800541 0.599278i −0.800541 0.599278i
\(364\) 1.97460 + 0.283904i 1.97460 + 0.283904i
\(365\) 0 0
\(366\) −1.24123 + 0.677760i −1.24123 + 0.677760i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −1.00000 −1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(374\) 0 0
\(375\) 0.909632 1.66587i 0.909632 1.66587i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.349464 + 0.936950i −0.349464 + 0.936950i
\(379\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(380\) 0.927206 + 0.803429i 0.927206 + 0.803429i
\(381\) 0.136899 + 1.91410i 0.136899 + 1.91410i
\(382\) −0.983568 + 0.449181i −0.983568 + 0.449181i
\(383\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(384\) −0.877679 0.479249i −0.877679 0.479249i
\(385\) 0 0
\(386\) −0.512546 0.234072i −0.512546 0.234072i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(390\) −3.42174 0.744355i −3.42174 0.744355i
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) −0.459359 0.841254i −0.459359 0.841254i
\(394\) 0 0
\(395\) −0.494541 0.0711043i −0.494541 0.0711043i
\(396\) 0 0
\(397\) 0.0203052 + 0.141226i 0.0203052 + 0.141226i 0.997452 0.0713392i \(-0.0227273\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(398\) 0 0
\(399\) 0.244250 + 0.654861i 0.244250 + 0.654861i
\(400\) 0.864596 + 1.89320i 0.864596 + 1.89320i
\(401\) 1.45027 0.425839i 1.45027 0.425839i 0.540641 0.841254i \(-0.318182\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.398430 1.35693i −0.398430 1.35693i
\(405\) 0.729202 1.59673i 0.729202 1.59673i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(410\) 0 0
\(411\) −0.587486 + 0.587486i −0.587486 + 0.587486i
\(412\) 0 0
\(413\) −1.87390 −1.87390
\(414\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(415\) −2.81047 −2.81047
\(416\) 1.50765 1.30638i 1.50765 1.30638i
\(417\) 1.13214 1.13214i 1.13214 1.13214i
\(418\) 0 0
\(419\) −0.828713 + 1.81463i −0.828713 + 1.81463i −0.349464 + 0.936950i \(0.613636\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(420\) −0.125226 + 1.75089i −0.125226 + 1.75089i
\(421\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −0.784887 1.04849i −0.784887 1.04849i
\(427\) −1.35693 + 0.398430i −1.35693 + 0.398430i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(432\) 0.479249 + 0.877679i 0.479249 + 0.877679i
\(433\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.691814 0.0994679i 0.691814 0.0994679i
\(438\) 0 0
\(439\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(440\) 0 0
\(441\) −0.540641 + 0.841254i −0.540641 + 0.841254i
\(442\) 0 0
\(443\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.755750 0.654861i −0.755750 0.654861i
\(449\) 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i \(0.0909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(450\) 0.296197 2.06010i 0.296197 2.06010i
\(451\) 0 0
\(452\) −1.66538 + 1.07028i −1.66538 + 1.07028i
\(453\) −0.806340 + 1.47670i −0.806340 + 1.47670i
\(454\) 1.18636 0.170572i 1.18636 0.170572i
\(455\) −3.18532 1.45469i −3.18532 1.45469i
\(456\) 0.654861 + 0.244250i 0.654861 + 0.244250i
\(457\) −0.449181 + 0.698939i −0.449181 + 0.698939i −0.989821 0.142315i \(-0.954545\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(458\) 1.22714 + 1.41620i 1.22714 + 1.41620i
\(459\) 0 0
\(460\) 1.68425 + 0.494541i 1.68425 + 0.494541i
\(461\) 1.60108i 1.60108i −0.599278 0.800541i \(-0.704545\pi\)
0.599278 0.800541i \(-0.295455\pi\)
\(462\) 0 0
\(463\) −1.27155 0.817178i −1.27155 0.817178i −0.281733 0.959493i \(-0.590909\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.281733 + 1.95949i 0.281733 + 1.95949i
\(467\) −1.87513 0.550588i −1.87513 0.550588i −0.997452 0.0713392i \(-0.977273\pi\)
−0.877679 0.479249i \(-0.840909\pi\)
\(468\) −1.97460 + 0.283904i −1.97460 + 0.283904i
\(469\) 0 0
\(470\) 0 0
\(471\) 0.959493 0.718267i 0.959493 0.718267i
\(472\) −1.22714 + 1.41620i −1.22714 + 1.41620i
\(473\) 0 0
\(474\) −0.278125 + 0.0605024i −0.278125 + 0.0605024i
\(475\) −0.786452 1.22374i −0.786452 1.22374i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.234072 + 0.512546i −0.234072 + 0.512546i
\(479\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(480\) 1.24123 + 1.24123i 1.24123 + 1.24123i
\(481\) 0 0
\(482\) 0 0
\(483\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) 0.0713392 0.997452i 0.0713392 0.997452i
\(487\) −0.186393 + 1.29639i −0.186393 + 1.29639i 0.654861 + 0.755750i \(0.272727\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(488\) −0.587486 + 1.28641i −0.587486 + 1.28641i
\(489\) 0 0
\(490\) −0.494541 + 1.68425i −0.494541 + 1.68425i
\(491\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.913069 + 1.05374i −0.913069 + 1.05374i
\(495\) 0 0
\(496\) 0 0
\(497\) −0.544078 1.19136i −0.544078 1.19136i
\(498\) −1.50013 + 0.559521i −1.50013 + 0.559521i
\(499\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(500\) −0.270119 1.87872i −0.270119 1.87872i
\(501\) 0 0
\(502\) 0.420803 + 0.0605024i 0.420803 + 0.0605024i
\(503\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(504\) 0.281733 + 0.959493i 0.281733 + 0.959493i
\(505\) 2.48245i 2.48245i
\(506\) 0 0
\(507\) 0.633369 2.91155i 0.633369 2.91155i
\(508\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(509\) 0.518203 0.806340i 0.518203 0.806340i −0.479249 0.877679i \(-0.659091\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.989821 + 0.142315i −0.989821 + 0.142315i
\(513\) −0.418852 0.559521i −0.418852 0.559521i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1.19550 + 0.0855040i −1.19550 + 0.0855040i
\(520\) −3.18532 + 1.45469i −3.18532 + 1.45469i
\(521\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(522\) 0 0
\(523\) 1.58479 0.227858i 1.58479 0.227858i 0.707107 0.707107i \(-0.250000\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(524\) −0.871880 0.398174i −0.871880 0.398174i
\(525\) 0.727333 1.95006i 0.727333 1.95006i
\(526\) 0.817178 1.27155i 0.817178 1.27155i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.841254 0.540641i 0.841254 0.540641i
\(530\) 0 0
\(531\) 1.79799 0.527938i 1.79799 0.527938i
\(532\) 0.587976 + 0.377869i 0.587976 + 0.377869i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.290345 0.635768i −0.290345 0.635768i
\(539\) 0 0
\(540\) −0.373128 1.71524i −0.373128 1.71524i
\(541\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(542\) 0 0
\(543\) 0.415415 + 1.90963i 0.415415 + 1.90963i
\(544\) 0 0
\(545\) 0 0
\(546\) −1.98982 0.142315i −1.98982 0.142315i
\(547\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(548\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(549\) 1.18971 0.764582i 1.18971 0.764582i
\(550\) 0 0
\(551\) 0 0
\(552\) 0.997452 0.0713392i 0.997452 0.0713392i
\(553\) −0.284630 −0.284630
\(554\) 0 0
\(555\) 0 0
\(556\) 0.227858 1.58479i 0.227858 1.58479i
\(557\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.949018 + 1.47670i 0.949018 + 1.47670i
\(561\) 0 0
\(562\) 0.540641 + 1.84125i 0.540641 + 1.84125i
\(563\) −0.0934345 + 0.107829i −0.0934345 + 0.107829i −0.800541 0.599278i \(-0.795455\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 3.33422 0.979016i 3.33422 0.979016i
\(566\) −0.0592707 0.129785i −0.0592707 0.129785i
\(567\) 0.281733 0.959493i 0.281733 0.959493i
\(568\) −1.25667 0.368991i −1.25667 0.368991i
\(569\) −0.153882 1.07028i −0.153882 1.07028i −0.909632 0.415415i \(-0.863636\pi\)
0.755750 0.654861i \(-0.227273\pi\)
\(570\) −0.982160 0.735235i −0.982160 0.735235i
\(571\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(572\) 0 0
\(573\) 0.949018 0.518203i 0.949018 0.518203i
\(574\) 0 0
\(575\) −1.75089 1.12523i −1.75089 1.12523i
\(576\) 0.909632 + 0.415415i 0.909632 + 0.415415i
\(577\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(578\) 0.540641 0.841254i 0.540641 0.841254i
\(579\) 0.527938 + 0.196911i 0.527938 + 0.196911i
\(580\) 0 0
\(581\) −1.58479 + 0.227858i −1.58479 + 0.227858i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 3.46613 + 0.498354i 3.46613 + 0.498354i
\(586\) 0.321292 + 0.278401i 0.321292 + 0.278401i
\(587\) 0.107829 + 0.0934345i 0.107829 + 0.0934345i 0.707107 0.707107i \(-0.250000\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(588\) 0.0713392 + 0.997452i 0.0713392 + 0.997452i
\(589\) 0 0
\(590\) 2.76719 1.77836i 2.76719 1.77836i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.562029 + 1.91410i −0.562029 + 1.91410i
\(599\) 1.68251i 1.68251i −0.540641 0.841254i \(-0.681818\pi\)
0.540641 0.841254i \(-0.318182\pi\)
\(600\) −0.997452 1.82670i −0.997452 1.82670i
\(601\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.239446 + 1.66538i 0.239446 + 1.66538i
\(605\) 1.68425 + 0.494541i 1.68425 + 0.494541i
\(606\) 0.494217 + 1.32505i 0.494217 + 1.32505i
\(607\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(608\) 0.670617 0.196911i 0.670617 0.196911i
\(609\) 0 0
\(610\) 1.62566 1.87611i 1.62566 1.87611i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(614\) −0.0401971 + 0.136899i −0.0401971 + 0.136899i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.0801894 + 0.557730i −0.0801894 + 0.557730i 0.909632 + 0.415415i \(0.136364\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(618\) 0 0
\(619\) 1.21002 1.04849i 1.21002 1.04849i 0.212565 0.977147i \(-0.431818\pi\)
0.997452 0.0713392i \(-0.0227273\pi\)
\(620\) 0 0
\(621\) −0.877679 0.479249i −0.877679 0.479249i
\(622\) 0 0
\(623\) 0 0
\(624\) −1.41061 + 1.41061i −1.41061 + 1.41061i
\(625\) −0.177958 + 1.23772i −0.177958 + 1.23772i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.337672 1.15001i 0.337672 1.15001i
\(629\) 0 0
\(630\) 1.75536i 1.75536i
\(631\) −0.474017 1.61435i −0.474017 1.61435i −0.755750 0.654861i \(-0.772727\pi\)
0.281733 0.959493i \(-0.409091\pi\)
\(632\) −0.186393 + 0.215109i −0.186393 + 0.215109i
\(633\) 0 0
\(634\) 0 0
\(635\) −1.39933 3.06410i −1.39933 3.06410i
\(636\) 0 0
\(637\) −1.91410 0.562029i −1.91410 0.562029i
\(638\) 0 0
\(639\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(640\) 1.73749 + 0.249813i 1.73749 + 0.249813i
\(641\) 0.474017 + 0.304632i 0.474017 + 0.304632i 0.755750 0.654861i \(-0.227273\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(642\) 0 0
\(643\) 1.95429i 1.95429i −0.212565 0.977147i \(-0.568182\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(644\) 0.989821 + 0.142315i 0.989821 + 0.142315i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(648\) −0.540641 0.841254i −0.540641 0.841254i
\(649\) 0 0
\(650\) 4.10970 0.590885i 4.10970 0.590885i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(654\) 0 0
\(655\) 1.27155 + 1.10181i 1.27155 + 1.10181i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(660\) 0 0
\(661\) −0.141226 + 0.0203052i −0.141226 + 0.0203052i −0.212565 0.977147i \(-0.568182\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.865611 + 1.34692i −0.865611 + 1.34692i
\(665\) −0.803429 0.927206i −0.803429 0.927206i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.800541 + 0.599278i 0.800541 + 0.599278i
\(673\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(674\) −1.25667 0.368991i −1.25667 0.368991i
\(675\) −0.148477 + 2.07598i −0.148477 + 2.07598i
\(676\) −1.23779 2.71038i −1.23779 2.71038i
\(677\) −1.15001 + 0.337672i −1.15001 + 0.337672i −0.800541 0.599278i \(-0.795455\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(678\) 1.58479 1.18636i 1.58479 1.18636i
\(679\) 0 0
\(680\) 0 0
\(681\) −1.17116 + 0.254771i −1.17116 + 0.254771i
\(682\) 0 0
\(683\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(684\) −0.670617 0.196911i −0.670617 0.196911i
\(685\) 0.605843 1.32661i 0.605843 1.32661i
\(686\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(687\) −1.32505 1.32505i −1.32505 1.32505i
\(688\) 0 0
\(689\) 0 0
\(690\) −1.71524 0.373128i −1.71524 0.373128i
\(691\) −1.87390 −1.87390 −0.936950 0.349464i \(-0.886364\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(692\) −0.905808 + 0.784887i −0.905808 + 0.784887i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.16751 + 2.55650i −1.16751 + 2.55650i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.764582 1.18971i −0.764582 1.18971i
\(699\) −0.420803 1.93440i −0.420803 1.93440i
\(700\) −0.586365 1.99698i −0.586365 1.99698i
\(701\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(702\) 1.94931 0.424047i 1.94931 0.424047i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.201264 + 1.39982i 0.201264 + 1.39982i
\(708\) 1.12299 1.50013i 1.12299 1.50013i
\(709\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(710\) 1.93407 + 1.24295i 1.93407 + 1.24295i
\(711\) 0.273100 0.0801894i 0.273100 0.0801894i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.196911 0.527938i 0.196911 0.527938i
\(718\) 1.74557 + 0.797176i 1.74557 + 0.797176i
\(719\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(720\) −1.32661 1.14952i −1.32661 1.14952i
\(721\) 0 0
\(722\) 0.465276 0.212484i 0.465276 0.212484i
\(723\) 0 0
\(724\) 1.47696 + 1.27979i 1.47696 + 1.27979i
\(725\) 0 0
\(726\) 0.997452 0.0713392i 0.997452 0.0713392i
\(727\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(728\) −1.67822 + 1.07853i −1.67822 + 1.07853i
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.494217 1.32505i 0.494217 1.32505i
\(733\) −1.07853 + 1.67822i −1.07853 + 1.67822i −0.479249 + 0.877679i \(0.659091\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(734\) 0 0
\(735\) 0.373128 1.71524i 0.373128 1.71524i
\(736\) 0.755750 0.654861i 0.755750 0.654861i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(740\) 0 0
\(741\) 0.835570 1.11619i 0.835570 1.11619i
\(742\) 0 0
\(743\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.45640 0.665114i 1.45640 0.665114i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.403457 + 1.85466i 0.403457 + 1.85466i
\(751\) 0.983568 + 1.53046i 0.983568 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(752\) 0 0
\(753\) −0.424047 0.0303285i −0.424047 0.0303285i
\(754\) 0 0
\(755\) 0.420313 2.92334i 0.420313 2.92334i
\(756\) −0.349464 0.936950i −0.349464 0.936950i
\(757\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −1.22687 −1.22687
\(761\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(762\) −1.35693 1.35693i −1.35693 1.35693i
\(763\) 0 0
\(764\) 0.449181 0.983568i 0.449181 0.983568i
\(765\) 0 0
\(766\) 0 0
\(767\) 2.02105 + 3.14482i 2.02105 + 3.14482i
\(768\) 0.977147 0.212565i 0.977147 0.212565i
\(769\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.540641 0.158746i 0.540641 0.158746i
\(773\) 0.398174 + 0.871880i 0.398174 + 0.871880i 0.997452 + 0.0713392i \(0.0227273\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 3.07343 1.67822i 3.07343 1.67822i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(785\) −1.13745 + 1.76991i −1.13745 + 1.76991i
\(786\) 0.898064 + 0.334961i 0.898064 + 0.334961i
\(787\) −1.70456 0.778446i −1.70456 0.778446i −0.997452 0.0713392i \(-0.977273\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(788\) 0 0
\(789\) −0.724384 + 1.32661i −0.724384 + 1.32661i
\(790\) 0.420313 0.270119i 0.420313 0.270119i
\(791\) 1.80075 0.822373i 1.80075 0.822373i
\(792\) 0 0
\(793\) 2.13214 + 1.84751i 2.13214 + 1.84751i
\(794\) −0.107829 0.0934345i −0.107829 0.0934345i
\(795\) 0 0
\(796\) 0 0
\(797\) 1.67822 1.07853i 1.67822 1.07853i 0.800541 0.599278i \(-0.204545\pi\)
0.877679 0.479249i \(-0.159091\pi\)
\(798\) −0.613435 0.334961i −0.613435 0.334961i
\(799\) 0 0
\(800\) −1.89320 0.864596i −1.89320 0.864596i
\(801\) 0 0
\(802\) −0.817178 + 1.27155i −0.817178 + 1.27155i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.59673 0.729202i −1.59673 0.729202i
\(806\) 0 0
\(807\) 0.334961 + 0.613435i 0.334961 + 0.613435i
\(808\) 1.18971 + 0.764582i 1.18971 + 0.764582i
\(809\) 0.281733 + 0.0405070i 0.281733 + 0.0405070i 0.281733 0.959493i \(-0.409091\pi\)
1.00000i \(0.5\pi\)
\(810\) 0.494541 + 1.68425i 0.494541 + 1.68425i
\(811\) 0.0994679 + 0.691814i 0.0994679 + 0.691814i 0.977147 + 0.212565i \(0.0681818\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.99490 1.99490
\(820\) 0 0
\(821\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(822\) 0.0592707 0.828713i 0.0592707 0.828713i
\(823\) 0.755750 1.65486i 0.755750 1.65486i 1.00000i \(-0.5\pi\)
0.755750 0.654861i \(-0.227273\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.41620 1.22714i 1.41620 1.22714i
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −0.989821 + 0.142315i −0.989821 + 0.142315i
\(829\) −0.958498 −0.958498 −0.479249 0.877679i \(-0.659091\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(830\) 2.12401 1.84047i 2.12401 1.84047i
\(831\) 0 0
\(832\) −0.283904 + 1.97460i −0.283904 + 1.97460i
\(833\) 0 0
\(834\) −0.114220 + 1.59700i −0.114220 + 1.59700i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.562029 1.91410i −0.562029 1.91410i
\(839\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(840\) −1.05195 1.40524i −1.05195 1.40524i
\(841\) 0.959493 0.281733i 0.959493 0.281733i
\(842\) 0 0
\(843\) −0.670617 1.79799i −0.670617 1.79799i
\(844\) 0 0
\(845\) 0.744355 + 5.17710i 0.744355 + 5.17710i
\(846\) 0 0
\(847\) 0.989821 + 0.142315i 0.989821 + 0.142315i
\(848\) 0 0
\(849\) 0.0683785 + 0.125226i 0.0683785 + 0.125226i
\(850\) 0 0
\(851\) 0 0
\(852\) 1.27979 + 0.278401i 1.27979 + 0.278401i
\(853\) −0.784887 0.905808i −0.784887 0.905808i 0.212565 0.977147i \(-0.431818\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(854\) 0.764582 1.18971i 0.764582 1.18971i
\(855\) 1.03211 + 0.663296i 1.03211 + 0.663296i
\(856\) 0 0
\(857\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(858\) 0 0
\(859\) 0.806340 0.518203i 0.806340 0.518203i −0.0713392 0.997452i \(-0.522727\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.215109 0.186393i −0.215109 0.186393i
\(863\) −0.627899 0.544078i −0.627899 0.544078i 0.281733 0.959493i \(-0.409091\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(864\) −0.936950 0.349464i −0.936950 0.349464i
\(865\) 1.91377 0.873989i 1.91377 0.873989i
\(866\) 0 0
\(867\) −0.479249 + 0.877679i −0.479249 + 0.877679i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −0.457701 + 0.528215i −0.457701 + 0.528215i
\(875\) 1.89804i 1.89804i
\(876\) 0 0
\(877\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(878\) 0 0
\(879\) −0.340335 0.254771i −0.340335 0.254771i
\(880\) 0 0
\(881\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(882\) −0.142315 0.989821i −0.142315 0.989821i
\(883\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(884\) 0 0
\(885\) −2.63327 + 1.97124i −2.63327 + 1.97124i
\(886\) 0 0
\(887\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(888\) 0 0
\(889\) −1.03748 1.61435i −1.03748 1.61435i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0.424047 1.94931i 0.424047 1.94931i
\(898\) −1.81926 −1.81926
\(899\) 0 0
\(900\) 1.12523 + 1.75089i 1.12523 + 1.75089i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.557730 1.89945i 0.557730 1.89945i
\(905\) −1.85466 2.88591i −1.85466 2.88591i
\(906\) −0.357643 1.64406i −0.357643 1.64406i
\(907\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(908\) −0.784887 + 0.905808i −0.784887 + 0.905808i
\(909\) −0.587486 1.28641i −0.587486 1.28641i
\(910\) 3.35992 0.986563i 3.35992 0.986563i
\(911\) 0.118239 + 0.258908i 0.118239 + 0.258908i 0.959493 0.281733i \(-0.0909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(912\) −0.654861 + 0.244250i −0.654861 + 0.244250i
\(913\) 0 0
\(914\) −0.118239 0.822373i −0.118239 0.822373i
\(915\) −1.48768 + 1.98730i −1.48768 + 1.98730i
\(916\) −1.85483 0.266684i −1.85483 0.266684i
\(917\) 0.806340 + 0.518203i 0.806340 + 0.518203i
\(918\) 0 0
\(919\) 1.30972i 1.30972i 0.755750 + 0.654861i \(0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(920\) −1.59673 + 0.729202i −1.59673 + 0.729202i
\(921\) 0.0303285 0.139418i 0.0303285 0.139418i
\(922\) 1.04849 + 1.21002i 1.04849 + 1.21002i
\(923\) −1.41257 + 2.19800i −1.41257 + 2.19800i
\(924\) 0 0
\(925\) 0 0
\(926\) 1.49611 0.215109i 1.49611 0.215109i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(930\) 0 0
\(931\) −0.528215 0.457701i −0.528215 0.457701i
\(932\) −1.49611 1.29639i −1.49611 1.29639i
\(933\) 0 0
\(934\) 1.77769 0.811843i 1.77769 0.811843i
\(935\) 0 0
\(936\) 1.30638 1.50765i 1.30638 1.50765i
\(937\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.04849 1.21002i −1.04849 1.21002i −0.977147 0.212565i \(-0.931818\pi\)
−0.0713392 0.997452i \(-0.522727\pi\)
\(942\) −0.254771 + 1.17116i −0.254771 + 1.17116i
\(943\) 0 0
\(944\) 1.87390i 1.87390i
\(945\) 0.125226 + 1.75089i 0.125226 + 1.75089i
\(946\) 0 0
\(947\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(948\) 0.170572 0.227858i 0.170572 0.227858i
\(949\) 0 0
\(950\) 1.39574 + 0.409827i 1.39574 + 0.409827i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i \(-0.818182\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(954\) 0 0
\(955\) −1.24295 + 1.43444i −1.24295 + 1.43444i
\(956\) −0.158746 0.540641i −0.158746 0.540641i
\(957\) 0 0
\(958\) 0 0
\(959\) 0.234072 0.797176i 0.234072 0.797176i
\(960\) −1.75089 0.125226i −1.75089 0.125226i
\(961\) 0.415415 0.909632i 0.415415 0.909632i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.989083 −0.989083
\(966\) −0.997452 0.0713392i −0.997452 0.0713392i
\(967\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(968\) 0.755750 0.654861i 0.755750 0.654861i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.398174 0.871880i 0.398174 0.871880i −0.599278 0.800541i \(-0.704545\pi\)
0.997452 0.0713392i \(-0.0227273\pi\)
\(972\) 0.599278 + 0.800541i 0.599278 + 0.800541i
\(973\) −0.451077 + 1.53623i −0.451077 + 1.53623i
\(974\) −0.708089 1.10181i −0.708089 1.10181i
\(975\) −4.05707 + 0.882562i −4.05707 + 0.882562i
\(976\) −0.398430 1.35693i −0.398430 1.35693i
\(977\) −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i \(0.636364\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.729202 1.59673i −0.729202 1.59673i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.39430i 1.39430i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.368991 + 0.425839i 0.368991 + 0.425839i 0.909632 0.415415i \(-0.136364\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 1.19136 + 0.544078i 1.19136 + 0.544078i
\(995\) 0 0
\(996\) 0.767317 1.40524i 0.767317 1.40524i
\(997\) 1.47670 0.949018i 1.47670 0.949018i 0.479249 0.877679i \(-0.340909\pi\)
0.997452 0.0713392i \(-0.0227273\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.cx.b.125.2 yes 40
3.2 odd 2 3864.1.cx.a.125.3 40
7.6 odd 2 inner 3864.1.cx.b.125.1 yes 40
8.5 even 2 inner 3864.1.cx.b.125.1 yes 40
21.20 even 2 3864.1.cx.a.125.4 yes 40
23.7 odd 22 3864.1.cx.a.2813.3 yes 40
24.5 odd 2 3864.1.cx.a.125.4 yes 40
56.13 odd 2 CM 3864.1.cx.b.125.2 yes 40
69.53 even 22 inner 3864.1.cx.b.2813.2 yes 40
161.76 even 22 3864.1.cx.a.2813.4 yes 40
168.125 even 2 3864.1.cx.a.125.3 40
184.53 odd 22 3864.1.cx.a.2813.4 yes 40
483.398 odd 22 inner 3864.1.cx.b.2813.1 yes 40
552.53 even 22 inner 3864.1.cx.b.2813.1 yes 40
1288.237 even 22 3864.1.cx.a.2813.3 yes 40
3864.2813 odd 22 inner 3864.1.cx.b.2813.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.cx.a.125.3 40 3.2 odd 2
3864.1.cx.a.125.3 40 168.125 even 2
3864.1.cx.a.125.4 yes 40 21.20 even 2
3864.1.cx.a.125.4 yes 40 24.5 odd 2
3864.1.cx.a.2813.3 yes 40 23.7 odd 22
3864.1.cx.a.2813.3 yes 40 1288.237 even 22
3864.1.cx.a.2813.4 yes 40 161.76 even 22
3864.1.cx.a.2813.4 yes 40 184.53 odd 22
3864.1.cx.b.125.1 yes 40 7.6 odd 2 inner
3864.1.cx.b.125.1 yes 40 8.5 even 2 inner
3864.1.cx.b.125.2 yes 40 1.1 even 1 trivial
3864.1.cx.b.125.2 yes 40 56.13 odd 2 CM
3864.1.cx.b.2813.1 yes 40 483.398 odd 22 inner
3864.1.cx.b.2813.1 yes 40 552.53 even 22 inner
3864.1.cx.b.2813.2 yes 40 69.53 even 22 inner
3864.1.cx.b.2813.2 yes 40 3864.2813 odd 22 inner