Properties

Label 3864.1.cx.b.1805.2
Level 38643864
Weight 11
Character 3864.1805
Analytic conductor 1.9281.928
Analytic rank 00
Dimension 4040
Projective image D44D_{44}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(125,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 11, 11, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.125");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3864=233723 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3864.cx (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.928387208811.92838720881
Analytic rank: 00
Dimension: 4040
Relative dimension: 44 over Q(ζ22)\Q(\zeta_{22})
Coefficient field: Q(ζ88)\Q(\zeta_{88})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x40x36+x32x28+x24x20+x16x12+x8x4+1 x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D44D_{44}
Projective field: Galois closure of Q[x]/(x44)\mathbb{Q}[x]/(x^{44} - \cdots)

Embedding invariants

Embedding label 1805.2
Root 0.9369500.349464i0.936950 - 0.349464i of defining polynomial
Character χ\chi == 3864.1805
Dual form 3864.1.cx.b.3149.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5406410.841254i)q2+(0.7071070.707107i)q3+(0.415415+0.909632i)q4+(1.914100.562029i)q5+(0.9771470.212565i)q6+(0.755750+0.654861i)q7+(0.9898210.142315i)q81.00000iq9+(1.507651.30638i)q10+(0.349464+0.936950i)q12+(0.278401+0.321292i)q13+(0.959493+0.281733i)q14+(0.9560561.75089i)q15+(0.6548610.755750i)q16+(0.841254+0.540641i)q18+(0.8718800.398174i)q19+(0.283904+1.97460i)q20+(0.0713392+0.997452i)q21+(0.6548610.755750i)q23+(0.5992780.800541i)q24+(2.506641.61092i)q25+(0.420803+0.0605024i)q26+(0.7071070.707107i)q27+(0.2817330.959493i)q28+(1.98982+0.142315i)q30+(0.281733+0.959493i)q32+(1.07853+1.67822i)q35+(0.909632+0.415415i)q36+(0.136408+0.948742i)q38+(0.0303285+0.424047i)q39+(1.814630.828713i)q40+(0.8776790.479249i)q42+(0.5620291.91410i)q45+(0.9898210.142315i)q46+(0.9974520.0713392i)q48+(0.1423150.989821i)q49+(2.710381.23779i)q50+(0.1766060.386712i)q52+(0.212565+0.977147i)q54+(0.654861+0.755750i)q56+(0.898064+0.334961i)q57+(1.326611.14952i)q59+(1.19550+1.59700i)q60+(1.399820.201264i)q61+(0.654861+0.755750i)q63+(0.9594930.281733i)q64+(0.352311+0.771454i)q65+(0.07133920.997452i)q69+1.99490q70+(0.909632+1.41542i)q71+(0.1423150.989821i)q72+(0.6333692.91155i)q75+(0.7243840.627683i)q76+(0.3403350.254771i)q78+(0.6278990.544078i)q79+(1.678221.07853i)q801.00000q81+(1.79799+0.527938i)q83+(0.8776790.479249i)q84+(1.30638+1.50765i)q900.425131iq91+(0.415415+0.909632i)q92+(1.892650.272122i)q95+(0.479249+0.877679i)q96+(0.909632+0.415415i)q98+O(q100)q+(-0.540641 - 0.841254i) q^{2} +(0.707107 - 0.707107i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(1.91410 - 0.562029i) q^{5} +(-0.977147 - 0.212565i) q^{6} +(-0.755750 + 0.654861i) q^{7} +(0.989821 - 0.142315i) q^{8} -1.00000i q^{9} +(-1.50765 - 1.30638i) q^{10} +(0.349464 + 0.936950i) q^{12} +(-0.278401 + 0.321292i) q^{13} +(0.959493 + 0.281733i) q^{14} +(0.956056 - 1.75089i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(-0.841254 + 0.540641i) q^{18} +(-0.871880 - 0.398174i) q^{19} +(-0.283904 + 1.97460i) q^{20} +(-0.0713392 + 0.997452i) q^{21} +(0.654861 - 0.755750i) q^{23} +(0.599278 - 0.800541i) q^{24} +(2.50664 - 1.61092i) q^{25} +(0.420803 + 0.0605024i) q^{26} +(-0.707107 - 0.707107i) q^{27} +(-0.281733 - 0.959493i) q^{28} +(-1.98982 + 0.142315i) q^{30} +(-0.281733 + 0.959493i) q^{32} +(-1.07853 + 1.67822i) q^{35} +(0.909632 + 0.415415i) q^{36} +(0.136408 + 0.948742i) q^{38} +(0.0303285 + 0.424047i) q^{39} +(1.81463 - 0.828713i) q^{40} +(0.877679 - 0.479249i) q^{42} +(-0.562029 - 1.91410i) q^{45} +(-0.989821 - 0.142315i) q^{46} +(-0.997452 - 0.0713392i) q^{48} +(0.142315 - 0.989821i) q^{49} +(-2.71038 - 1.23779i) q^{50} +(-0.176606 - 0.386712i) q^{52} +(-0.212565 + 0.977147i) q^{54} +(-0.654861 + 0.755750i) q^{56} +(-0.898064 + 0.334961i) q^{57} +(-1.32661 - 1.14952i) q^{59} +(1.19550 + 1.59700i) q^{60} +(1.39982 - 0.201264i) q^{61} +(0.654861 + 0.755750i) q^{63} +(0.959493 - 0.281733i) q^{64} +(-0.352311 + 0.771454i) q^{65} +(-0.0713392 - 0.997452i) q^{69} +1.99490 q^{70} +(0.909632 + 1.41542i) q^{71} +(-0.142315 - 0.989821i) q^{72} +(0.633369 - 2.91155i) q^{75} +(0.724384 - 0.627683i) q^{76} +(0.340335 - 0.254771i) q^{78} +(-0.627899 - 0.544078i) q^{79} +(-1.67822 - 1.07853i) q^{80} -1.00000 q^{81} +(1.79799 + 0.527938i) q^{83} +(-0.877679 - 0.479249i) q^{84} +(-1.30638 + 1.50765i) q^{90} -0.425131i q^{91} +(0.415415 + 0.909632i) q^{92} +(-1.89265 - 0.272122i) q^{95} +(0.479249 + 0.877679i) q^{96} +(-0.909632 + 0.415415i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q+4q4+4q144q154q16+4q18+4q234q2540q304q39+4q494q564q57+4q60+4q63+4q648q654q72+4q78+4q92+O(q100) 40 q + 4 q^{4} + 4 q^{14} - 4 q^{15} - 4 q^{16} + 4 q^{18} + 4 q^{23} - 4 q^{25} - 40 q^{30} - 4 q^{39} + 4 q^{49} - 4 q^{56} - 4 q^{57} + 4 q^{60} + 4 q^{63} + 4 q^{64} - 8 q^{65} - 4 q^{72} + 4 q^{78}+ \cdots - 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3864Z)×\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times.

nn 967967 12891289 19331933 27612761 28572857
χ(n)\chi(n) 11 1-1 1-1 1-1 e(922)e\left(\frac{9}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.540641 0.841254i −0.540641 0.841254i
33 0.707107 0.707107i 0.707107 0.707107i
44 −0.415415 + 0.909632i −0.415415 + 0.909632i
55 1.91410 0.562029i 1.91410 0.562029i 0.936950 0.349464i 0.113636π-0.113636\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
66 −0.977147 0.212565i −0.977147 0.212565i
77 −0.755750 + 0.654861i −0.755750 + 0.654861i
88 0.989821 0.142315i 0.989821 0.142315i
99 1.00000i 1.00000i
1010 −1.50765 1.30638i −1.50765 1.30638i
1111 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1212 0.349464 + 0.936950i 0.349464 + 0.936950i
1313 −0.278401 + 0.321292i −0.278401 + 0.321292i −0.877679 0.479249i 0.840909π-0.840909\pi
0.599278 + 0.800541i 0.295455π0.295455\pi
1414 0.959493 + 0.281733i 0.959493 + 0.281733i
1515 0.956056 1.75089i 0.956056 1.75089i
1616 −0.654861 0.755750i −0.654861 0.755750i
1717 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
1818 −0.841254 + 0.540641i −0.841254 + 0.540641i
1919 −0.871880 0.398174i −0.871880 0.398174i −0.0713392 0.997452i 0.522727π-0.522727\pi
−0.800541 + 0.599278i 0.795455π0.795455\pi
2020 −0.283904 + 1.97460i −0.283904 + 1.97460i
2121 −0.0713392 + 0.997452i −0.0713392 + 0.997452i
2222 0 0
2323 0.654861 0.755750i 0.654861 0.755750i
2424 0.599278 0.800541i 0.599278 0.800541i
2525 2.50664 1.61092i 2.50664 1.61092i
2626 0.420803 + 0.0605024i 0.420803 + 0.0605024i
2727 −0.707107 0.707107i −0.707107 0.707107i
2828 −0.281733 0.959493i −0.281733 0.959493i
2929 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
3030 −1.98982 + 0.142315i −1.98982 + 0.142315i
3131 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
3232 −0.281733 + 0.959493i −0.281733 + 0.959493i
3333 0 0
3434 0 0
3535 −1.07853 + 1.67822i −1.07853 + 1.67822i
3636 0.909632 + 0.415415i 0.909632 + 0.415415i
3737 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
3838 0.136408 + 0.948742i 0.136408 + 0.948742i
3939 0.0303285 + 0.424047i 0.0303285 + 0.424047i
4040 1.81463 0.828713i 1.81463 0.828713i
4141 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
4242 0.877679 0.479249i 0.877679 0.479249i
4343 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
4444 0 0
4545 −0.562029 1.91410i −0.562029 1.91410i
4646 −0.989821 0.142315i −0.989821 0.142315i
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 −0.997452 0.0713392i −0.997452 0.0713392i
4949 0.142315 0.989821i 0.142315 0.989821i
5050 −2.71038 1.23779i −2.71038 1.23779i
5151 0 0
5252 −0.176606 0.386712i −0.176606 0.386712i
5353 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
5454 −0.212565 + 0.977147i −0.212565 + 0.977147i
5555 0 0
5656 −0.654861 + 0.755750i −0.654861 + 0.755750i
5757 −0.898064 + 0.334961i −0.898064 + 0.334961i
5858 0 0
5959 −1.32661 1.14952i −1.32661 1.14952i −0.977147 0.212565i 0.931818π-0.931818\pi
−0.349464 0.936950i 0.613636π-0.613636\pi
6060 1.19550 + 1.59700i 1.19550 + 1.59700i
6161 1.39982 0.201264i 1.39982 0.201264i 0.599278 0.800541i 0.295455π-0.295455\pi
0.800541 + 0.599278i 0.204545π0.204545\pi
6262 0 0
6363 0.654861 + 0.755750i 0.654861 + 0.755750i
6464 0.959493 0.281733i 0.959493 0.281733i
6565 −0.352311 + 0.771454i −0.352311 + 0.771454i
6666 0 0
6767 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
6868 0 0
6969 −0.0713392 0.997452i −0.0713392 0.997452i
7070 1.99490 1.99490
7171 0.909632 + 1.41542i 0.909632 + 1.41542i 0.909632 + 0.415415i 0.136364π0.136364\pi
1.00000i 0.5π0.5\pi
7272 −0.142315 0.989821i −0.142315 0.989821i
7373 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
7474 0 0
7575 0.633369 2.91155i 0.633369 2.91155i
7676 0.724384 0.627683i 0.724384 0.627683i
7777 0 0
7878 0.340335 0.254771i 0.340335 0.254771i
7979 −0.627899 0.544078i −0.627899 0.544078i 0.281733 0.959493i 0.409091π-0.409091\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
8080 −1.67822 1.07853i −1.67822 1.07853i
8181 −1.00000 −1.00000
8282 0 0
8383 1.79799 + 0.527938i 1.79799 + 0.527938i 0.997452 0.0713392i 0.0227273π-0.0227273\pi
0.800541 + 0.599278i 0.204545π0.204545\pi
8484 −0.877679 0.479249i −0.877679 0.479249i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
9090 −1.30638 + 1.50765i −1.30638 + 1.50765i
9191 0.425131i 0.425131i
9292 0.415415 + 0.909632i 0.415415 + 0.909632i
9393 0 0
9494 0 0
9595 −1.89265 0.272122i −1.89265 0.272122i
9696 0.479249 + 0.877679i 0.479249 + 0.877679i
9797 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
9898 −0.909632 + 0.415415i −0.909632 + 0.415415i
9999 0 0
100100 0.424047 + 2.94931i 0.424047 + 2.94931i
101101 −0.398430 + 1.35693i −0.398430 + 1.35693i 0.479249 + 0.877679i 0.340909π0.340909\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
102102 0 0
103103 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
104104 −0.229843 + 0.357643i −0.229843 + 0.357643i
105105 0.424047 + 1.94931i 0.424047 + 1.94931i
106106 0 0
107107 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
108108 0.936950 0.349464i 0.936950 0.349464i
109109 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
110110 0 0
111111 0 0
112112 0.989821 + 0.142315i 0.989821 + 0.142315i
113113 −1.53046 + 0.983568i −1.53046 + 0.983568i −0.540641 + 0.841254i 0.681818π0.681818\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
114114 0.767317 + 0.574406i 0.767317 + 0.574406i
115115 0.828713 1.81463i 0.828713 1.81463i
116116 0 0
117117 0.321292 + 0.278401i 0.321292 + 0.278401i
118118 −0.249813 + 1.73749i −0.249813 + 1.73749i
119119 0 0
120120 0.697148 1.86912i 0.697148 1.86912i
121121 0.415415 + 0.909632i 0.415415 + 0.909632i
122122 −0.926113 1.06879i −0.926113 1.06879i
123123 0 0
124124 0 0
125125 2.58617 2.98460i 2.58617 2.98460i
126126 0.281733 0.959493i 0.281733 0.959493i
127127 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
128128 −0.755750 0.654861i −0.755750 0.654861i
129129 0 0
130130 0.839462 0.120696i 0.839462 0.120696i
131131 −0.107829 + 0.0934345i −0.107829 + 0.0934345i −0.707107 0.707107i 0.750000π-0.750000\pi
0.599278 + 0.800541i 0.295455π0.295455\pi
132132 0 0
133133 0.919672 0.270040i 0.919672 0.270040i
134134 0 0
135135 −1.75089 0.956056i −1.75089 0.956056i
136136 0 0
137137 1.91899 1.91899 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
138138 −0.800541 + 0.599278i −0.800541 + 0.599278i
139139 −1.87390 −1.87390 −0.936950 0.349464i 0.886364π-0.886364\pi
−0.936950 + 0.349464i 0.886364π0.886364\pi
140140 −1.07853 1.67822i −1.07853 1.67822i
141141 0 0
142142 0.698939 1.53046i 0.698939 1.53046i
143143 0 0
144144 −0.755750 + 0.654861i −0.755750 + 0.654861i
145145 0 0
146146 0 0
147147 −0.599278 0.800541i −0.599278 0.800541i
148148 0 0
149149 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
150150 −2.79178 + 1.04128i −2.79178 + 1.04128i
151151 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
152152 −0.919672 0.270040i −0.919672 0.270040i
153153 0 0
154154 0 0
155155 0 0
156156 −0.398326 0.148568i −0.398326 0.148568i
157157 0.635768 + 0.290345i 0.635768 + 0.290345i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.0713392 + 0.997452i 0.522727π0.522727\pi
158158 −0.118239 + 0.822373i −0.118239 + 0.822373i
159159 0 0
160160 1.99490i 1.99490i
161161 1.00000i 1.00000i
162162 0.540641 + 0.841254i 0.540641 + 0.841254i
163163 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
164164 0 0
165165 0 0
166166 −0.527938 1.79799i −0.527938 1.79799i
167167 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
168168 0.0713392 + 0.997452i 0.0713392 + 0.997452i
169169 0.116593 + 0.810925i 0.116593 + 0.810925i
170170 0 0
171171 −0.398174 + 0.871880i −0.398174 + 0.871880i
172172 0 0
173173 0.377869 0.587976i 0.377869 0.587976i −0.599278 0.800541i 0.704545π-0.704545\pi
0.977147 + 0.212565i 0.0681818π0.0681818\pi
174174 0 0
175175 −0.839462 + 2.85895i −0.839462 + 2.85895i
176176 0 0
177177 −1.75089 + 0.125226i −1.75089 + 0.125226i
178178 0 0
179179 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
180180 1.97460 + 0.283904i 1.97460 + 0.283904i
181181 −1.18636 0.170572i −1.18636 0.170572i −0.479249 0.877679i 0.659091π-0.659091\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
182182 −0.357643 + 0.229843i −0.357643 + 0.229843i
183183 0.847507 1.13214i 0.847507 1.13214i
184184 0.540641 0.841254i 0.540641 0.841254i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.997452 + 0.0713392i 0.997452 + 0.0713392i
190190 0.794320 + 1.73932i 0.794320 + 1.73932i
191191 1.29639 + 1.49611i 1.29639 + 1.49611i 0.755750 + 0.654861i 0.227273π0.227273\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
192192 0.479249 0.877679i 0.479249 0.877679i
193193 −1.45027 0.425839i −1.45027 0.425839i −0.540641 0.841254i 0.681818π-0.681818\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
194194 0 0
195195 0.296379 + 0.794622i 0.296379 + 0.794622i
196196 0.841254 + 0.540641i 0.841254 + 0.540641i
197197 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
198198 0 0
199199 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
200200 2.25186 1.95125i 2.25186 1.95125i
201201 0 0
202202 1.35693 0.398430i 1.35693 0.398430i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.755750 0.654861i −0.755750 0.654861i
208208 0.425131 0.425131
209209 0 0
210210 1.41061 1.41061i 1.41061 1.41061i
211211 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
212212 0 0
213213 1.64406 + 0.357643i 1.64406 + 0.357643i
214214 0 0
215215 0 0
216216 −0.800541 0.599278i −0.800541 0.599278i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
224224 −0.415415 0.909632i −0.415415 0.909632i
225225 −1.61092 2.50664i −1.61092 2.50664i
226226 1.65486 + 0.755750i 1.65486 + 0.755750i
227227 −0.0994679 + 0.691814i −0.0994679 + 0.691814i 0.877679 + 0.479249i 0.159091π0.159091\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
228228 0.0683785 0.956056i 0.0683785 0.956056i
229229 1.75536i 1.75536i 0.479249 + 0.877679i 0.340909π0.340909\pi
−0.479249 + 0.877679i 0.659091π0.659091\pi
230230 −1.97460 + 0.283904i −1.97460 + 0.283904i
231231 0 0
232232 0 0
233233 −1.80075 0.258908i −1.80075 0.258908i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
234234 0.0605024 0.420803i 0.0605024 0.420803i
235235 0 0
236236 1.59673 0.729202i 1.59673 0.729202i
237237 −0.828713 + 0.0592707i −0.828713 + 0.0592707i
238238 0 0
239239 −0.425839 + 1.45027i −0.425839 + 1.45027i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
240240 −1.94931 + 0.424047i −1.94931 + 0.424047i
241241 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
242242 0.540641 0.841254i 0.540641 0.841254i
243243 −0.707107 + 0.707107i −0.707107 + 0.707107i
244244 −0.398430 + 1.35693i −0.398430 + 1.35693i
245245 −0.283904 1.97460i −0.283904 1.97460i
246246 0 0
247247 0.370663 0.169276i 0.370663 0.169276i
248248 0 0
249249 1.64468 0.898064i 1.64468 0.898064i
250250 −3.90900 0.562029i −3.90900 0.562029i
251251 −1.34692 + 0.865611i −1.34692 + 0.865611i −0.997452 0.0713392i 0.977273π-0.977273\pi
−0.349464 + 0.936950i 0.613636π0.613636\pi
252252 −0.959493 + 0.281733i −0.959493 + 0.281733i
253253 0 0
254254 1.30972i 1.30972i
255255 0 0
256256 −0.142315 + 0.989821i −0.142315 + 0.989821i
257257 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
258258 0 0
259259 0 0
260260 −0.555384 0.640947i −0.555384 0.640947i
261261 0 0
262262 0.136899 + 0.0401971i 0.136899 + 0.0401971i
263263 −0.708089 + 0.817178i −0.708089 + 0.817178i −0.989821 0.142315i 0.954545π-0.954545\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
264264 0 0
265265 0 0
266266 −0.724384 0.627683i −0.724384 0.627683i
267267 0 0
268268 0 0
269269 −0.724384 + 0.627683i −0.724384 + 0.627683i −0.936950 0.349464i 0.886364π-0.886364\pi
0.212565 + 0.977147i 0.431818π0.431818\pi
270270 0.142315 + 1.98982i 0.142315 + 1.98982i
271271 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
272272 0 0
273273 −0.300613 0.300613i −0.300613 0.300613i
274274 −1.03748 1.61435i −1.03748 1.61435i
275275 0 0
276276 0.936950 + 0.349464i 0.936950 + 0.349464i
277277 0 0 1.00000 00
−1.00000 π\pi
278278 1.01311 + 1.57642i 1.01311 + 1.57642i
279279 0 0
280280 −0.828713 + 1.81463i −0.828713 + 1.81463i
281281 −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
282282 0 0
283283 −1.47696 + 1.27979i −1.47696 + 1.27979i −0.599278 + 0.800541i 0.704545π0.704545\pi
−0.877679 + 0.479249i 0.840909π0.840909\pi
284284 −1.66538 + 0.239446i −1.66538 + 0.239446i
285285 −1.53072 + 1.14589i −1.53072 + 1.14589i
286286 0 0
287287 0 0
288288 0.959493 + 0.281733i 0.959493 + 0.281733i
289289 −0.654861 + 0.755750i −0.654861 + 0.755750i
290290 0 0
291291 0 0
292292 0 0
293293 −0.665114 1.45640i −0.665114 1.45640i −0.877679 0.479249i 0.840909π-0.840909\pi
0.212565 0.977147i 0.431818π-0.431818\pi
294294 −0.349464 + 0.936950i −0.349464 + 0.936950i
295295 −3.18532 1.45469i −3.18532 1.45469i
296296 0 0
297297 0 0
298298 0 0
299299 0.0605024 + 0.420803i 0.0605024 + 0.420803i
300300 2.38533 + 1.78563i 2.38533 + 1.78563i
301301 0 0
302302 −0.281733 0.0405070i −0.281733 0.0405070i
303303 0.677760 + 1.24123i 0.677760 + 1.24123i
304304 0.270040 + 0.919672i 0.270040 + 0.919672i
305305 2.56627 1.17198i 2.56627 1.17198i
306306 0 0
307307 −0.278125 1.93440i −0.278125 1.93440i −0.349464 0.936950i 0.613636π-0.613636\pi
0.0713392 0.997452i 0.477273π-0.477273\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
312312 0.0903680 + 0.415415i 0.0903680 + 0.415415i
313313 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
314314 −0.0994679 0.691814i −0.0994679 0.691814i
315315 1.67822 + 1.07853i 1.67822 + 1.07853i
316316 0.755750 0.345139i 0.755750 0.345139i
317317 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
318318 0 0
319319 0 0
320320 1.67822 1.07853i 1.67822 1.07853i
321321 0 0
322322 0.841254 0.540641i 0.841254 0.540641i
323323 0 0
324324 0.415415 0.909632i 0.415415 0.909632i
325325 −0.180276 + 1.25384i −0.180276 + 1.25384i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
332332 −1.22714 + 1.41620i −1.22714 + 1.41620i
333333 0 0
334334 0 0
335335 0 0
336336 0.800541 0.599278i 0.800541 0.599278i
337337 −1.66538 + 0.239446i −1.66538 + 0.239446i −0.909632 0.415415i 0.863636π-0.863636\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
338338 0.619158 0.536504i 0.619158 0.536504i
339339 −0.386712 + 1.77769i −0.386712 + 1.77769i
340340 0 0
341341 0 0
342342 0.948742 0.136408i 0.948742 0.136408i
343343 0.540641 + 0.841254i 0.540641 + 0.841254i
344344 0 0
345345 −0.697148 1.86912i −0.697148 1.86912i
346346 −0.698928 −0.698928
347347 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
348348 0 0
349349 0.587486 1.28641i 0.587486 1.28641i −0.349464 0.936950i 0.613636π-0.613636\pi
0.936950 0.349464i 0.113636π-0.113636\pi
350350 2.85895 0.839462i 2.85895 0.839462i
351351 0.424047 0.0303285i 0.424047 0.0303285i
352352 0 0
353353 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
354354 1.05195 + 1.40524i 1.05195 + 1.40524i
355355 2.53663 + 2.19800i 2.53663 + 2.19800i
356356 0 0
357357 0 0
358358 0 0
359359 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i 0.181818π-0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
360360 −0.828713 1.81463i −0.828713 1.81463i
361361 −0.0532282 0.0614286i −0.0532282 0.0614286i
362362 0.497898 + 1.09024i 0.497898 + 1.09024i
363363 0.936950 + 0.349464i 0.936950 + 0.349464i
364364 0.386712 + 0.176606i 0.386712 + 0.176606i
365365 0 0
366366 −1.41061 0.100889i −1.41061 0.100889i
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 −1.00000 −1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
374374 0 0
375375 −0.281733 3.93914i −0.281733 3.93914i
376376 0 0
377377 0 0
378378 −0.479249 0.877679i −0.479249 0.877679i
379379 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
380380 1.03377 1.60857i 1.03377 1.60857i
381381 1.27979 0.278401i 1.27979 0.278401i
382382 0.557730 1.89945i 0.557730 1.89945i
383383 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
384384 −0.997452 + 0.0713392i −0.997452 + 0.0713392i
385385 0 0
386386 0.425839 + 1.45027i 0.425839 + 1.45027i
387387 0 0
388388 0 0
389389 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
390390 0.508244 0.678935i 0.508244 0.678935i
391391 0 0
392392 1.00000i 1.00000i
393393 −0.0101786 + 0.142315i −0.0101786 + 0.142315i
394394 0 0
395395 −1.50765 0.688520i −1.50765 0.688520i
396396 0 0
397397 −0.811843 1.77769i −0.811843 1.77769i −0.599278 0.800541i 0.704545π-0.704545\pi
−0.212565 0.977147i 0.568182π-0.568182\pi
398398 0 0
399399 0.459359 0.841254i 0.459359 0.841254i
400400 −2.85895 0.839462i −2.85895 0.839462i
401401 0.708089 0.817178i 0.708089 0.817178i −0.281733 0.959493i 0.590909π-0.590909\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
402402 0 0
403403 0 0
404404 −1.06879 0.926113i −1.06879 0.926113i
405405 −1.91410 + 0.562029i −1.91410 + 0.562029i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
410410 0 0
411411 1.35693 1.35693i 1.35693 1.35693i
412412 0 0
413413 1.75536 1.75536
414414 −0.142315 + 0.989821i −0.142315 + 0.989821i
415415 3.73825 3.73825
416416 −0.229843 0.357643i −0.229843 0.357643i
417417 −1.32505 + 1.32505i −1.32505 + 1.32505i
418418 0 0
419419 −0.407910 + 0.119773i −0.407910 + 0.119773i −0.479249 0.877679i 0.659091π-0.659091\pi
0.0713392 + 0.997452i 0.477273π0.477273\pi
420420 −1.94931 0.424047i −1.94931 0.424047i
421421 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 −0.587976 1.57642i −0.587976 1.57642i
427427 −0.926113 + 1.06879i −0.926113 + 1.06879i
428428 0 0
429429 0 0
430430 0 0
431431 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 00
−0.654861 + 0.755750i 0.727273π0.727273\pi
432432 −0.0713392 + 0.997452i −0.0713392 + 0.997452i
433433 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.871880 + 0.398174i −0.871880 + 0.398174i
438438 0 0
439439 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
440440 0 0
441441 −0.989821 0.142315i −0.989821 0.142315i
442442 0 0
443443 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.540641 + 0.841254i −0.540641 + 0.841254i
449449 −0.304632 + 0.474017i −0.304632 + 0.474017i −0.959493 0.281733i 0.909091π-0.909091\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
450450 −1.23779 + 2.71038i −1.23779 + 2.71038i
451451 0 0
452452 −0.258908 1.80075i −0.258908 1.80075i
453453 −0.0203052 0.283904i −0.0203052 0.283904i
454454 0.635768 0.290345i 0.635768 0.290345i
455455 −0.238936 0.813741i −0.238936 0.813741i
456456 −0.841254 + 0.459359i −0.841254 + 0.459359i
457457 1.89945 + 0.273100i 1.89945 + 0.273100i 0.989821 0.142315i 0.0454545π-0.0454545\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
458458 1.47670 0.949018i 1.47670 0.949018i
459459 0 0
460460 1.30638 + 1.50765i 1.30638 + 1.50765i
461461 1.87390i 1.87390i 0.349464 + 0.936950i 0.386364π0.386364\pi
−0.349464 + 0.936950i 0.613636π0.613636\pi
462462 0 0
463463 0.153882 1.07028i 0.153882 1.07028i −0.755750 0.654861i 0.772727π-0.772727\pi
0.909632 0.415415i 0.136364π-0.136364\pi
464464 0 0
465465 0 0
466466 0.755750 + 1.65486i 0.755750 + 1.65486i
467467 −0.784887 0.905808i −0.784887 0.905808i 0.212565 0.977147i 0.431818π-0.431818\pi
−0.997452 + 0.0713392i 0.977273π0.977273\pi
468468 −0.386712 + 0.176606i −0.386712 + 0.176606i
469469 0 0
470470 0 0
471471 0.654861 0.244250i 0.654861 0.244250i
472472 −1.47670 0.949018i −1.47670 0.949018i
473473 0 0
474474 0.497898 + 0.665114i 0.497898 + 0.665114i
475475 −2.82691 + 0.406449i −2.82691 + 0.406449i
476476 0 0
477477 0 0
478478 1.45027 0.425839i 1.45027 0.425839i
479479 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
480480 1.41061 + 1.41061i 1.41061 + 1.41061i
481481 0 0
482482 0 0
483483 0.707107 + 0.707107i 0.707107 + 0.707107i
484484 −1.00000 −1.00000
485485 0 0
486486 0.977147 + 0.212565i 0.977147 + 0.212565i
487487 −0.698939 + 1.53046i −0.698939 + 1.53046i 0.142315 + 0.989821i 0.454545π0.454545\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
488488 1.35693 0.398430i 1.35693 0.398430i
489489 0 0
490490 −1.50765 + 1.30638i −1.50765 + 1.30638i
491491 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
492492 0 0
493493 0 0
494494 −0.342800 0.220304i −0.342800 0.220304i
495495 0 0
496496 0 0
497497 −1.61435 0.474017i −1.61435 0.474017i
498498 −1.64468 0.898064i −1.64468 0.898064i
499499 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
500500 1.64056 + 3.59232i 1.64056 + 3.59232i
501501 0 0
502502 1.45640 + 0.665114i 1.45640 + 0.665114i
503503 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
504504 0.755750 + 0.654861i 0.755750 + 0.654861i
505505 2.82122i 2.82122i
506506 0 0
507507 0.655855 + 0.490967i 0.655855 + 0.490967i
508508 −1.10181 + 0.708089i −1.10181 + 0.708089i
509509 −0.141226 0.0203052i −0.141226 0.0203052i 0.0713392 0.997452i 0.477273π-0.477273\pi
−0.212565 + 0.977147i 0.568182π0.568182\pi
510510 0 0
511511 0 0
512512 0.909632 0.415415i 0.909632 0.415415i
513513 0.334961 + 0.898064i 0.334961 + 0.898064i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.148568 0.682956i −0.148568 0.682956i
520520 −0.238936 + 0.813741i −0.238936 + 0.813741i
521521 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
522522 0 0
523523 1.70456 0.778446i 1.70456 0.778446i 0.707107 0.707107i 0.250000π-0.250000\pi
0.997452 0.0713392i 0.0227273π-0.0227273\pi
524524 −0.0401971 0.136899i −0.0401971 0.136899i
525525 1.42799 + 2.61517i 1.42799 + 2.61517i
526526 1.07028 + 0.153882i 1.07028 + 0.153882i
527527 0 0
528528 0 0
529529 −0.142315 0.989821i −0.142315 0.989821i
530530 0 0
531531 −1.14952 + 1.32661i −1.14952 + 1.32661i
532532 −0.136408 + 0.948742i −0.136408 + 0.948742i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0.919672 + 0.270040i 0.919672 + 0.270040i
539539 0 0
540540 1.59700 1.19550i 1.59700 1.19550i
541541 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
542542 0 0
543543 −0.959493 + 0.718267i −0.959493 + 0.718267i
544544 0 0
545545 0 0
546546 −0.0903680 + 0.415415i −0.0903680 + 0.415415i
547547 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
548548 −0.797176 + 1.74557i −0.797176 + 1.74557i
549549 −0.201264 1.39982i −0.201264 1.39982i
550550 0 0
551551 0 0
552552 −0.212565 0.977147i −0.212565 0.977147i
553553 0.830830 0.830830
554554 0 0
555555 0 0
556556 0.778446 1.70456i 0.778446 1.70456i
557557 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
558558 0 0
559559 0 0
560560 1.97460 0.283904i 1.97460 0.283904i
561561 0 0
562562 0.989821 + 0.857685i 0.989821 + 0.857685i
563563 1.64406 + 1.05657i 1.64406 + 1.05657i 0.936950 + 0.349464i 0.113636π0.113636\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
564564 0 0
565565 −2.37666 + 2.74281i −2.37666 + 2.74281i
566566 1.87513 + 0.550588i 1.87513 + 0.550588i
567567 0.755750 0.654861i 0.755750 0.654861i
568568 1.10181 + 1.27155i 1.10181 + 1.27155i
569569 0.822373 + 1.80075i 0.822373 + 1.80075i 0.540641 + 0.841254i 0.318182π0.318182\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
570570 1.79155 + 0.668215i 1.79155 + 0.668215i
571571 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
572572 0 0
573573 1.97460 + 0.141226i 1.97460 + 0.141226i
574574 0 0
575575 0.424047 2.94931i 0.424047 2.94931i
576576 −0.281733 0.959493i −0.281733 0.959493i
577577 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
578578 0.989821 + 0.142315i 0.989821 + 0.142315i
579579 −1.32661 + 0.724384i −1.32661 + 0.724384i
580580 0 0
581581 −1.70456 + 0.778446i −1.70456 + 0.778446i
582582 0 0
583583 0 0
584584 0 0
585585 0.771454 + 0.352311i 0.771454 + 0.352311i
586586 −0.865611 + 1.34692i −0.865611 + 1.34692i
587587 1.05657 1.64406i 1.05657 1.64406i 0.349464 0.936950i 0.386364π-0.386364\pi
0.707107 0.707107i 0.250000π-0.250000\pi
588588 0.977147 0.212565i 0.977147 0.212565i
589589 0 0
590590 0.498354 + 3.46613i 0.498354 + 3.46613i
591591 0 0
592592 0 0
593593 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0.321292 0.278401i 0.321292 0.278401i
599599 0.284630i 0.284630i 0.989821 + 0.142315i 0.0454545π0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
600600 0.212565 2.97205i 0.212565 2.97205i
601601 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
602602 0 0
603603 0 0
604604 0.118239 + 0.258908i 0.118239 + 0.258908i
605605 1.30638 + 1.50765i 1.30638 + 1.50765i
606606 0.677760 1.24123i 0.677760 1.24123i
607607 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
608608 0.627683 0.724384i 0.627683 0.724384i
609609 0 0
610610 −2.37336 1.52527i −2.37336 1.52527i
611611 0 0
612612 0 0
613613 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
614614 −1.47696 + 1.27979i −1.47696 + 1.27979i
615615 0 0
616616 0 0
617617 0.627899 1.37491i 0.627899 1.37491i −0.281733 0.959493i 0.590909π-0.590909\pi
0.909632 0.415415i 0.136364π-0.136364\pi
618618 0 0
619619 −1.01311 1.57642i −1.01311 1.57642i −0.800541 0.599278i 0.795455π-0.795455\pi
−0.212565 0.977147i 0.568182π-0.568182\pi
620620 0 0
621621 −0.997452 + 0.0713392i −0.997452 + 0.0713392i
622622 0 0
623623 0 0
624624 0.300613 0.300613i 0.300613 0.300613i
625625 2.03496 4.45595i 2.03496 4.45595i
626626 0 0
627627 0 0
628628 −0.528215 + 0.457701i −0.528215 + 0.457701i
629629 0 0
630630 1.99490i 1.99490i
631631 0.215109 + 0.186393i 0.215109 + 0.186393i 0.755750 0.654861i 0.227273π-0.227273\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
632632 −0.698939 0.449181i −0.698939 0.449181i
633633 0 0
634634 0 0
635635 2.50693 + 0.736102i 2.50693 + 0.736102i
636636 0 0
637637 0.278401 + 0.321292i 0.278401 + 0.321292i
638638 0 0
639639 1.41542 0.909632i 1.41542 0.909632i
640640 −1.81463 0.828713i −1.81463 0.828713i
641641 −0.215109 + 1.49611i −0.215109 + 1.49611i 0.540641 + 0.841254i 0.318182π0.318182\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
642642 0 0
643643 1.19856i 1.19856i −0.800541 0.599278i 0.795455π-0.795455\pi
0.800541 0.599278i 0.204545π-0.204545\pi
644644 −0.909632 0.415415i −0.909632 0.415415i
645645 0 0
646646 0 0
647647 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
648648 −0.989821 + 0.142315i −0.989821 + 0.142315i
649649 0 0
650650 1.15226 0.526222i 1.15226 0.526222i
651651 0 0
652652 0 0
653653 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
654654 0 0
655655 −0.153882 + 0.239446i −0.153882 + 0.239446i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
660660 0 0
661661 1.77769 0.811843i 1.77769 0.811843i 0.800541 0.599278i 0.204545π-0.204545\pi
0.977147 0.212565i 0.0681818π-0.0681818\pi
662662 0 0
663663 0 0
664664 1.85483 + 0.266684i 1.85483 + 0.266684i
665665 1.60857 1.03377i 1.60857 1.03377i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 −0.936950 0.349464i −0.936950 0.349464i
673673 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
674674 1.10181 + 1.27155i 1.10181 + 1.27155i
675675 −2.91155 0.633369i −2.91155 0.633369i
676676 −0.786078 0.230813i −0.786078 0.230813i
677677 0.457701 0.528215i 0.457701 0.528215i −0.479249 0.877679i 0.659091π-0.659091\pi
0.936950 + 0.349464i 0.113636π0.113636\pi
678678 1.70456 0.635768i 1.70456 0.635768i
679679 0 0
680680 0 0
681681 0.418852 + 0.559521i 0.418852 + 0.559521i
682682 0 0
683683 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
684684 −0.627683 0.724384i −0.627683 0.724384i
685685 3.67312 1.07853i 3.67312 1.07853i
686686 0.415415 0.909632i 0.415415 0.909632i
687687 1.24123 + 1.24123i 1.24123 + 1.24123i
688688 0 0
689689 0 0
690690 −1.19550 + 1.59700i −1.19550 + 1.59700i
691691 1.75536 1.75536 0.877679 0.479249i 0.159091π-0.159091\pi
0.877679 + 0.479249i 0.159091π0.159091\pi
692692 0.377869 + 0.587976i 0.377869 + 0.587976i
693693 0 0
694694 0 0
695695 −3.58682 + 1.05319i −3.58682 + 1.05319i
696696 0 0
697697 0 0
698698 −1.39982 + 0.201264i −1.39982 + 0.201264i
699699 −1.45640 + 1.09024i −1.45640 + 1.09024i
700700 −2.25186 1.95125i −2.25186 1.95125i
701701 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
702702 −0.254771 0.340335i −0.254771 0.340335i
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 −0.587486 1.28641i −0.587486 1.28641i
708708 0.613435 1.64468i 0.613435 1.64468i
709709 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
710710 0.477671 3.32228i 0.477671 3.32228i
711711 −0.544078 + 0.627899i −0.544078 + 0.627899i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.724384 + 1.32661i 0.724384 + 1.32661i
718718 −0.368991 1.25667i −0.368991 1.25667i
719719 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
720720 −1.07853 + 1.67822i −1.07853 + 1.67822i
721721 0 0
722722 −0.0228997 + 0.0779892i −0.0228997 + 0.0779892i
723723 0 0
724724 0.647988 1.00829i 0.647988 1.00829i
725725 0 0
726726 −0.212565 0.977147i −0.212565 0.977147i
727727 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
728728 −0.0605024 0.420803i −0.0605024 0.420803i
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0.677760 + 1.24123i 0.677760 + 1.24123i
733733 0.420803 + 0.0605024i 0.420803 + 0.0605024i 0.349464 0.936950i 0.386364π-0.386364\pi
0.0713392 + 0.997452i 0.477273π0.477273\pi
734734 0 0
735735 −1.59700 1.19550i −1.59700 1.19550i
736736 0.540641 + 0.841254i 0.540641 + 0.841254i
737737 0 0
738738 0 0
739739 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
740740 0 0
741741 0.142402 0.381795i 0.142402 0.381795i
742742 0 0
743743 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 00
−0.142315 + 0.989821i 0.545455π0.545455\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.527938 1.79799i 0.527938 1.79799i
748748 0 0
749749 0 0
750750 −3.16150 + 2.36667i −3.16150 + 2.36667i
751751 −0.557730 + 0.0801894i −0.557730 + 0.0801894i −0.415415 0.909632i 0.636364π-0.636364\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
752752 0 0
753753 −0.340335 + 1.56449i −0.340335 + 1.56449i
754754 0 0
755755 0.235876 0.516497i 0.235876 0.516497i
756756 −0.479249 + 0.877679i −0.479249 + 0.877679i
757757 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
758758 0 0
759759 0 0
760760 −1.91211 −1.91211
761761 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
762762 −0.926113 0.926113i −0.926113 0.926113i
763763 0 0
764764 −1.89945 + 0.557730i −1.89945 + 0.557730i
765765 0 0
766766 0 0
767767 0.738661 0.106203i 0.738661 0.106203i
768768 0.599278 + 0.800541i 0.599278 + 0.800541i
769769 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
770770 0 0
771771 0 0
772772 0.989821 1.14231i 0.989821 1.14231i
773773 0.136899 + 0.0401971i 0.136899 + 0.0401971i 0.349464 0.936950i 0.386364π-0.386364\pi
−0.212565 + 0.977147i 0.568182π0.568182\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 −0.845934 0.0605024i −0.845934 0.0605024i
781781 0 0
782782 0 0
783783 0 0
784784 −0.841254 + 0.540641i −0.841254 + 0.540641i
785785 1.38010 + 0.198429i 1.38010 + 0.198429i
786786 0.125226 0.0683785i 0.125226 0.0683785i
787787 −0.494541 1.68425i −0.494541 1.68425i −0.707107 0.707107i 0.750000π-0.750000\pi
0.212565 0.977147i 0.431818π-0.431818\pi
788788 0 0
789789 0.0771377 + 1.07853i 0.0771377 + 1.07853i
790790 0.235876 + 1.64056i 0.235876 + 1.64056i
791791 0.512546 1.74557i 0.512546 1.74557i
792792 0 0
793793 −0.325047 + 0.505783i −0.325047 + 0.505783i
794794 −1.05657 + 1.64406i −1.05657 + 1.64406i
795795 0 0
796796 0 0
797797 0.0605024 + 0.420803i 0.0605024 + 0.420803i 0.997452 + 0.0713392i 0.0227273π0.0227273\pi
−0.936950 + 0.349464i 0.886364π0.886364\pi
798798 −0.956056 + 0.0683785i −0.956056 + 0.0683785i
799799 0 0
800800 0.839462 + 2.85895i 0.839462 + 2.85895i
801801 0 0
802802 −1.07028 0.153882i −1.07028 0.153882i
803803 0 0
804804 0 0
805805 0.562029 + 1.91410i 0.562029 + 1.91410i
806806 0 0
807807 −0.0683785 + 0.956056i −0.0683785 + 0.956056i
808808 −0.201264 + 1.39982i −0.201264 + 1.39982i
809809 0.755750 + 0.345139i 0.755750 + 0.345139i 0.755750 0.654861i 0.227273π-0.227273\pi
1.00000i 0.5π0.5\pi
810810 1.50765 + 1.30638i 1.50765 + 1.30638i
811811 −0.398174 0.871880i −0.398174 0.871880i −0.997452 0.0713392i 0.977273π-0.977273\pi
0.599278 0.800541i 0.295455π-0.295455\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 −0.425131 −0.425131
820820 0 0
821821 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
822822 −1.87513 0.407910i −1.87513 0.407910i
823823 0.540641 0.158746i 0.540641 0.158746i 1.00000i 0.5π-0.5\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
824824 0 0
825825 0 0
826826 −0.949018 1.47670i −0.949018 1.47670i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0.909632 0.415415i 0.909632 0.415415i
829829 0.142678 0.142678 0.0713392 0.997452i 0.477273π-0.477273\pi
0.0713392 + 0.997452i 0.477273π0.477273\pi
830830 −2.02105 3.14482i −2.02105 3.14482i
831831 0 0
832832 −0.176606 + 0.386712i −0.176606 + 0.386712i
833833 0 0
834834 1.83107 + 0.398326i 1.83107 + 0.398326i
835835 0 0
836836 0 0
837837 0 0
838838 0.321292 + 0.278401i 0.321292 + 0.278401i
839839 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
840840 0.697148 + 1.86912i 0.697148 + 1.86912i
841841 0.654861 0.755750i 0.654861 0.755750i
842842 0 0
843843 −0.627683 + 1.14952i −0.627683 + 1.14952i
844844 0 0
845845 0.678935 + 1.48666i 0.678935 + 1.48666i
846846 0 0
847847 −0.909632 0.415415i −0.909632 0.415415i
848848 0 0
849849 −0.139418 + 1.94931i −0.139418 + 1.94931i
850850 0 0
851851 0 0
852852 −1.00829 + 1.34692i −1.00829 + 1.34692i
853853 −0.587976 + 0.377869i −0.587976 + 0.377869i −0.800541 0.599278i 0.795455π-0.795455\pi
0.212565 + 0.977147i 0.431818π0.431818\pi
854854 1.39982 + 0.201264i 1.39982 + 0.201264i
855855 −0.272122 + 1.89265i −0.272122 + 1.89265i
856856 0 0
857857 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
858858 0 0
859859 0.0203052 + 0.141226i 0.0203052 + 0.141226i 0.997452 0.0713392i 0.0227273π-0.0227273\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
860860 0 0
861861 0 0
862862 0.449181 0.698939i 0.449181 0.698939i
863863 1.03748 1.61435i 1.03748 1.61435i 0.281733 0.959493i 0.409091π-0.409091\pi
0.755750 0.654861i 0.227273π-0.227273\pi
864864 0.877679 0.479249i 0.877679 0.479249i
865865 0.392818 1.33782i 0.392818 1.33782i
866866 0 0
867867 0.0713392 + 0.997452i 0.0713392 + 0.997452i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0.806340 + 0.518203i 0.806340 + 0.518203i
875875 3.94920i 3.94920i
876876 0 0
877877 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
878878 0 0
879879 −1.50013 0.559521i −1.50013 0.559521i
880880 0 0
881881 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
882882 0.415415 + 0.909632i 0.415415 + 0.909632i
883883 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
884884 0 0
885885 −3.28098 + 1.22374i −3.28098 + 1.22374i
886886 0 0
887887 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
888888 0 0
889889 −1.29639 + 0.186393i −1.29639 + 0.186393i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 1.00000 1.00000
897897 0.340335 + 0.254771i 0.340335 + 0.254771i
898898 0.563465 0.563465
899899 0 0
900900 2.94931 0.424047i 2.94931 0.424047i
901901 0 0
902902 0 0
903903 0 0
904904 −1.37491 + 1.19136i −1.37491 + 1.19136i
905905 −2.36667 + 0.340275i −2.36667 + 0.340275i
906906 −0.227858 + 0.170572i −0.227858 + 0.170572i
907907 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
908908 −0.587976 0.377869i −0.587976 0.377869i
909909 1.35693 + 0.398430i 1.35693 + 0.398430i
910910 −0.555384 + 0.640947i −0.555384 + 0.640947i
911911 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i 0.272727π-0.272727\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
912912 0.841254 + 0.459359i 0.841254 + 0.459359i
913913 0 0
914914 −0.797176 1.74557i −0.797176 1.74557i
915915 0.985916 2.64334i 0.985916 2.64334i
916916 −1.59673 0.729202i −1.59673 0.729202i
917917 0.0203052 0.141226i 0.0203052 0.141226i
918918 0 0
919919 1.68251i 1.68251i −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 0.841254i 0.318182π-0.318182\pi
920920 0.562029 1.91410i 0.562029 1.91410i
921921 −1.56449 1.17116i −1.56449 1.17116i
922922 1.57642 1.01311i 1.57642 1.01311i
923923 −0.708005 0.101796i −0.708005 0.101796i
924924 0 0
925925 0 0
926926 −0.983568 + 0.449181i −0.983568 + 0.449181i
927927 0 0
928928 0 0
929929 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
930930 0 0
931931 −0.518203 + 0.806340i −0.518203 + 0.806340i
932932 0.983568 1.53046i 0.983568 1.53046i
933933 0 0
934934 −0.337672 + 1.15001i −0.337672 + 1.15001i
935935 0 0
936936 0.357643 + 0.229843i 0.357643 + 0.229843i
937937 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.57642 + 1.01311i −1.57642 + 1.01311i −0.599278 + 0.800541i 0.704545π0.704545\pi
−0.977147 + 0.212565i 0.931818π0.931818\pi
942942 −0.559521 0.418852i −0.559521 0.418852i
943943 0 0
944944 1.75536i 1.75536i
945945 1.94931 0.424047i 1.94931 0.424047i
946946 0 0
947947 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
948948 0.290345 0.778446i 0.290345 0.778446i
949949 0 0
950950 1.87027 + 2.15841i 1.87027 + 2.15841i
951951 0 0
952952 0 0
953953 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
954954 0 0
955955 3.32228 + 2.13510i 3.32228 + 2.13510i
956956 −1.14231 0.989821i −1.14231 0.989821i
957957 0 0
958958 0 0
959959 −1.45027 + 1.25667i −1.45027 + 1.25667i
960960 0.424047 1.94931i 0.424047 1.94931i
961961 −0.959493 + 0.281733i −0.959493 + 0.281733i
962962 0 0
963963 0 0
964964 0 0
965965 −3.01530 −3.01530
966966 0.212565 0.977147i 0.212565 0.977147i
967967 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
968968 0.540641 + 0.841254i 0.540641 + 0.841254i
969969 0 0
970970 0 0
971971 0.136899 0.0401971i 0.136899 0.0401971i −0.212565 0.977147i 0.568182π-0.568182\pi
0.349464 + 0.936950i 0.386364π0.386364\pi
972972 −0.349464 0.936950i −0.349464 0.936950i
973973 1.41620 1.22714i 1.41620 1.22714i
974974 1.66538 0.239446i 1.66538 0.239446i
975975 0.759127 + 1.01408i 0.759127 + 1.01408i
976976 −1.06879 0.926113i −1.06879 0.926113i
977977 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
978978 0 0
979979 0 0
980980 1.91410 + 0.562029i 1.91410 + 0.562029i
981981 0 0
982982 0 0
983983 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0.407487i 0.407487i
989989 0 0
990990 0 0
991991 −1.27155 + 0.817178i −1.27155 + 0.817178i −0.989821 0.142315i 0.954545π-0.954545\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
992992 0 0
993993 0 0
994994 0.474017 + 1.61435i 0.474017 + 1.61435i
995995 0 0
996996 0.133682 + 1.86912i 0.133682 + 1.86912i
997997 −0.283904 1.97460i −0.283904 1.97460i −0.212565 0.977147i 0.568182π-0.568182\pi
−0.0713392 0.997452i 0.522727π-0.522727\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.cx.b.1805.2 yes 40
3.2 odd 2 3864.1.cx.a.1805.3 40
7.6 odd 2 inner 3864.1.cx.b.1805.1 yes 40
8.5 even 2 inner 3864.1.cx.b.1805.1 yes 40
21.20 even 2 3864.1.cx.a.1805.4 yes 40
23.21 odd 22 3864.1.cx.a.3149.3 yes 40
24.5 odd 2 3864.1.cx.a.1805.4 yes 40
56.13 odd 2 CM 3864.1.cx.b.1805.2 yes 40
69.44 even 22 inner 3864.1.cx.b.3149.2 yes 40
161.90 even 22 3864.1.cx.a.3149.4 yes 40
168.125 even 2 3864.1.cx.a.1805.3 40
184.21 odd 22 3864.1.cx.a.3149.4 yes 40
483.251 odd 22 inner 3864.1.cx.b.3149.1 yes 40
552.389 even 22 inner 3864.1.cx.b.3149.1 yes 40
1288.573 even 22 3864.1.cx.a.3149.3 yes 40
3864.3149 odd 22 inner 3864.1.cx.b.3149.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.cx.a.1805.3 40 3.2 odd 2
3864.1.cx.a.1805.3 40 168.125 even 2
3864.1.cx.a.1805.4 yes 40 21.20 even 2
3864.1.cx.a.1805.4 yes 40 24.5 odd 2
3864.1.cx.a.3149.3 yes 40 23.21 odd 22
3864.1.cx.a.3149.3 yes 40 1288.573 even 22
3864.1.cx.a.3149.4 yes 40 161.90 even 22
3864.1.cx.a.3149.4 yes 40 184.21 odd 22
3864.1.cx.b.1805.1 yes 40 7.6 odd 2 inner
3864.1.cx.b.1805.1 yes 40 8.5 even 2 inner
3864.1.cx.b.1805.2 yes 40 1.1 even 1 trivial
3864.1.cx.b.1805.2 yes 40 56.13 odd 2 CM
3864.1.cx.b.3149.1 yes 40 483.251 odd 22 inner
3864.1.cx.b.3149.1 yes 40 552.389 even 22 inner
3864.1.cx.b.3149.2 yes 40 69.44 even 22 inner
3864.1.cx.b.3149.2 yes 40 3864.3149 odd 22 inner