Properties

Label 3872.2.a.r
Level $3872$
Weight $2$
Character orbit 3872.a
Self dual yes
Analytic conductor $30.918$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 3 q^{5} + 2 \beta q^{7} + 2 q^{9} + 6 q^{13} + 3 \beta q^{15} - 2 q^{17} - 2 \beta q^{19} - 10 q^{21} + 3 \beta q^{23} + 4 q^{25} + \beta q^{27} + 4 q^{29} + 3 \beta q^{31} - 6 \beta q^{35} + \cdots - 3 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 4 q^{9} + 12 q^{13} - 4 q^{17} - 20 q^{21} + 8 q^{25} + 8 q^{29} + 6 q^{37} - 4 q^{41} - 12 q^{45} + 26 q^{49} - 12 q^{53} + 20 q^{57} + 24 q^{61} - 36 q^{65} - 30 q^{69} + 12 q^{73} - 22 q^{81}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 −2.23607 0 −3.00000 0 4.47214 0 2.00000 0
1.2 0 2.23607 0 −3.00000 0 −4.47214 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3872.2.a.r yes 2
4.b odd 2 1 inner 3872.2.a.r yes 2
8.b even 2 1 7744.2.a.cj 2
8.d odd 2 1 7744.2.a.cj 2
11.b odd 2 1 3872.2.a.q 2
44.c even 2 1 3872.2.a.q 2
88.b odd 2 1 7744.2.a.ck 2
88.g even 2 1 7744.2.a.ck 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3872.2.a.q 2 11.b odd 2 1
3872.2.a.q 2 44.c even 2 1
3872.2.a.r yes 2 1.a even 1 1 trivial
3872.2.a.r yes 2 4.b odd 2 1 inner
7744.2.a.cj 2 8.b even 2 1
7744.2.a.cj 2 8.d odd 2 1
7744.2.a.ck 2 88.b odd 2 1
7744.2.a.ck 2 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3872))\):

\( T_{3}^{2} - 5 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 20 \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 6)^{2} \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 20 \) Copy content Toggle raw display
$23$ \( T^{2} - 45 \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 45 \) Copy content Toggle raw display
$37$ \( (T - 3)^{2} \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 80 \) Copy content Toggle raw display
$47$ \( T^{2} - 80 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 45 \) Copy content Toggle raw display
$61$ \( (T - 12)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 45 \) Copy content Toggle raw display
$71$ \( T^{2} - 5 \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 80 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 15)^{2} \) Copy content Toggle raw display
$97$ \( (T + 3)^{2} \) Copy content Toggle raw display
show more
show less