Properties

Label 3888.2.a.be
Level 38883888
Weight 22
Character orbit 3888.a
Self dual yes
Analytic conductor 31.04631.046
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3888,2,Mod(1,3888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3888=2435 3888 = 2^{4} \cdot 3^{5}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,0,0,-6,0,0,0,0,0,6,0,0,0,0,0,-6,0,0,0,0,0,3,0,0,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.045836305931.0458363059
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 486)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q5+(β22)q7+(β2β1)q11+(2β2+2β1+2)q13+2β2q17+(2β12)q19+(2β22β1)q23+(β2+β1+1)q25++(2β2+5β14)q97+O(q100) q - \beta_1 q^{5} + ( - \beta_{2} - 2) q^{7} + (\beta_{2} - \beta_1) q^{11} + ( - 2 \beta_{2} + 2 \beta_1 + 2) q^{13} + 2 \beta_{2} q^{17} + (2 \beta_1 - 2) q^{19} + (2 \beta_{2} - 2 \beta_1) q^{23} + (\beta_{2} + \beta_1 + 1) q^{25}+ \cdots + ( - 2 \beta_{2} + 5 \beta_1 - 4) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q6q7+6q136q19+3q259q296q31+9q35+6q3718q416q43+9q4918q53+9q55+9q5912q6118q65+12q6712q73+12q97+O(q100) 3 q - 6 q^{7} + 6 q^{13} - 6 q^{19} + 3 q^{25} - 9 q^{29} - 6 q^{31} + 9 q^{35} + 6 q^{37} - 18 q^{41} - 6 q^{43} + 9 q^{49} - 18 q^{53} + 9 q^{55} + 9 q^{59} - 12 q^{61} - 18 q^{65} + 12 q^{67} - 12 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ18+ζ181\nu = \zeta_{18} + \zeta_{18}^{-1}:

β1\beta_{1}== ν2+ν2 \nu^{2} + \nu - 2 Copy content Toggle raw display
β2\beta_{2}== ν2+2ν+2 -\nu^{2} + 2\nu + 2 Copy content Toggle raw display
ν\nu== (β2+β1)/3 ( \beta_{2} + \beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β2+2β1+6)/3 ( -\beta_{2} + 2\beta _1 + 6 ) / 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.87939
−1.53209
−0.347296
0 0 0 −3.41147 0 −4.22668 0 0 0
1.2 0 0 0 1.18479 0 1.41147 0 0 0
1.3 0 0 0 2.22668 0 −3.18479 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3888.2.a.be 3
3.b odd 2 1 3888.2.a.bf 3
4.b odd 2 1 486.2.a.h yes 3
12.b even 2 1 486.2.a.g 3
36.f odd 6 2 486.2.c.g 6
36.h even 6 2 486.2.c.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
486.2.a.g 3 12.b even 2 1
486.2.a.h yes 3 4.b odd 2 1
486.2.c.g 6 36.f odd 6 2
486.2.c.h 6 36.h even 6 2
3888.2.a.be 3 1.a even 1 1 trivial
3888.2.a.bf 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3888))S_{2}^{\mathrm{new}}(\Gamma_0(3888)):

T539T5+9 T_{5}^{3} - 9T_{5} + 9 Copy content Toggle raw display
T73+6T72+3T719 T_{7}^{3} + 6T_{7}^{2} + 3T_{7} - 19 Copy content Toggle raw display
T1139T119 T_{11}^{3} - 9T_{11} - 9 Copy content Toggle raw display
T1336T13224T13+136 T_{13}^{3} - 6T_{13}^{2} - 24T_{13} + 136 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T39T+9 T^{3} - 9T + 9 Copy content Toggle raw display
77 T3+6T2+19 T^{3} + 6 T^{2} + \cdots - 19 Copy content Toggle raw display
1111 T39T9 T^{3} - 9T - 9 Copy content Toggle raw display
1313 T36T2++136 T^{3} - 6 T^{2} + \cdots + 136 Copy content Toggle raw display
1717 T336T+72 T^{3} - 36T + 72 Copy content Toggle raw display
1919 T3+6T2+136 T^{3} + 6 T^{2} + \cdots - 136 Copy content Toggle raw display
2323 T336T72 T^{3} - 36T - 72 Copy content Toggle raw display
2929 T3+9T2+153 T^{3} + 9 T^{2} + \cdots - 153 Copy content Toggle raw display
3131 T3+6T2+73 T^{3} + 6 T^{2} + \cdots - 73 Copy content Toggle raw display
3737 T36T2+8 T^{3} - 6 T^{2} + \cdots - 8 Copy content Toggle raw display
4141 T3+18T2+72 T^{3} + 18 T^{2} + \cdots - 72 Copy content Toggle raw display
4343 (T+2)3 (T + 2)^{3} Copy content Toggle raw display
4747 T3108T216 T^{3} - 108T - 216 Copy content Toggle raw display
5353 T3+18T2+153 T^{3} + 18 T^{2} + \cdots - 153 Copy content Toggle raw display
5959 T39T2++981 T^{3} - 9 T^{2} + \cdots + 981 Copy content Toggle raw display
6161 T3+12T2+152 T^{3} + 12 T^{2} + \cdots - 152 Copy content Toggle raw display
6767 (T4)3 (T - 4)^{3} Copy content Toggle raw display
7171 T336T72 T^{3} - 36T - 72 Copy content Toggle raw display
7373 T3+12T2+17 T^{3} + 12 T^{2} + \cdots - 17 Copy content Toggle raw display
7979 T33T2+37 T^{3} - 3 T^{2} + \cdots - 37 Copy content Toggle raw display
8383 T3189T+999 T^{3} - 189T + 999 Copy content Toggle raw display
8989 T336T+72 T^{3} - 36T + 72 Copy content Toggle raw display
9797 T3+12T2+467 T^{3} + 12 T^{2} + \cdots - 467 Copy content Toggle raw display
show more
show less