Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [39,2,Mod(16,39)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(39, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("39.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 39.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | −1.00000 | 0.500000 | − | 0.866025i | −1.00000 | + | 1.73205i | −3.00000 | −0.500000 | + | 0.866025i | 0.500000 | + | 0.866025i | ||||||||||
22.1 | −0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | −1.00000 | 0.500000 | + | 0.866025i | −1.00000 | − | 1.73205i | −3.00000 | −0.500000 | − | 0.866025i | 0.500000 | − | 0.866025i | |||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 39.2.e.a | ✓ | 2 |
3.b | odd | 2 | 1 | 117.2.g.b | 2 | ||
4.b | odd | 2 | 1 | 624.2.q.c | 2 | ||
5.b | even | 2 | 1 | 975.2.i.f | 2 | ||
5.c | odd | 4 | 2 | 975.2.bb.d | 4 | ||
12.b | even | 2 | 1 | 1872.2.t.j | 2 | ||
13.b | even | 2 | 1 | 507.2.e.c | 2 | ||
13.c | even | 3 | 1 | inner | 39.2.e.a | ✓ | 2 |
13.c | even | 3 | 1 | 507.2.a.c | 1 | ||
13.d | odd | 4 | 2 | 507.2.j.d | 4 | ||
13.e | even | 6 | 1 | 507.2.a.b | 1 | ||
13.e | even | 6 | 1 | 507.2.e.c | 2 | ||
13.f | odd | 12 | 2 | 507.2.b.b | 2 | ||
13.f | odd | 12 | 2 | 507.2.j.d | 4 | ||
39.h | odd | 6 | 1 | 1521.2.a.d | 1 | ||
39.i | odd | 6 | 1 | 117.2.g.b | 2 | ||
39.i | odd | 6 | 1 | 1521.2.a.a | 1 | ||
39.k | even | 12 | 2 | 1521.2.b.c | 2 | ||
52.i | odd | 6 | 1 | 8112.2.a.bc | 1 | ||
52.j | odd | 6 | 1 | 624.2.q.c | 2 | ||
52.j | odd | 6 | 1 | 8112.2.a.w | 1 | ||
65.n | even | 6 | 1 | 975.2.i.f | 2 | ||
65.q | odd | 12 | 2 | 975.2.bb.d | 4 | ||
156.p | even | 6 | 1 | 1872.2.t.j | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
39.2.e.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
39.2.e.a | ✓ | 2 | 13.c | even | 3 | 1 | inner |
117.2.g.b | 2 | 3.b | odd | 2 | 1 | ||
117.2.g.b | 2 | 39.i | odd | 6 | 1 | ||
507.2.a.b | 1 | 13.e | even | 6 | 1 | ||
507.2.a.c | 1 | 13.c | even | 3 | 1 | ||
507.2.b.b | 2 | 13.f | odd | 12 | 2 | ||
507.2.e.c | 2 | 13.b | even | 2 | 1 | ||
507.2.e.c | 2 | 13.e | even | 6 | 1 | ||
507.2.j.d | 4 | 13.d | odd | 4 | 2 | ||
507.2.j.d | 4 | 13.f | odd | 12 | 2 | ||
624.2.q.c | 2 | 4.b | odd | 2 | 1 | ||
624.2.q.c | 2 | 52.j | odd | 6 | 1 | ||
975.2.i.f | 2 | 5.b | even | 2 | 1 | ||
975.2.i.f | 2 | 65.n | even | 6 | 1 | ||
975.2.bb.d | 4 | 5.c | odd | 4 | 2 | ||
975.2.bb.d | 4 | 65.q | odd | 12 | 2 | ||
1521.2.a.a | 1 | 39.i | odd | 6 | 1 | ||
1521.2.a.d | 1 | 39.h | odd | 6 | 1 | ||
1521.2.b.c | 2 | 39.k | even | 12 | 2 | ||
1872.2.t.j | 2 | 12.b | even | 2 | 1 | ||
1872.2.t.j | 2 | 156.p | even | 6 | 1 | ||
8112.2.a.w | 1 | 52.j | odd | 6 | 1 | ||
8112.2.a.bc | 1 | 52.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .