Properties

Label 39.2.e.a
Level 3939
Weight 22
Character orbit 39.e
Analytic conductor 0.3110.311
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,2,Mod(16,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 39=313 39 = 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 39.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3114165678830.311416567883
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2+(ζ6+1)q3+ζ6q4q5+ζ6q62ζ6q73q8ζ6q9+(ζ6+1)q10+(2ζ6+2)q11+2q99+O(q100) q + (\zeta_{6} - 1) q^{2} + ( - \zeta_{6} + 1) q^{3} + \zeta_{6} q^{4} - q^{5} + \zeta_{6} q^{6} - 2 \zeta_{6} q^{7} - 3 q^{8} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+q3+q42q5+q62q76q8q9+q10+2q11+2q127q13+4q14q15+q16+7q17+2q18+6q19q204q21+4q99+O(q100) 2 q - q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} - 2 q^{7} - 6 q^{8} - q^{9} + q^{10} + 2 q^{11} + 2 q^{12} - 7 q^{13} + 4 q^{14} - q^{15} + q^{16} + 7 q^{17} + 2 q^{18} + 6 q^{19} - q^{20} - 4 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/39Z)×\left(\mathbb{Z}/39\mathbb{Z}\right)^\times.

nn 1414 2828
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0.500000 + 0.866025i 0.500000 0.866025i −1.00000 0.500000 0.866025i −1.00000 + 1.73205i −3.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
22.1 −0.500000 + 0.866025i 0.500000 0.866025i 0.500000 + 0.866025i −1.00000 0.500000 + 0.866025i −1.00000 1.73205i −3.00000 −0.500000 0.866025i 0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.2.e.a 2
3.b odd 2 1 117.2.g.b 2
4.b odd 2 1 624.2.q.c 2
5.b even 2 1 975.2.i.f 2
5.c odd 4 2 975.2.bb.d 4
12.b even 2 1 1872.2.t.j 2
13.b even 2 1 507.2.e.c 2
13.c even 3 1 inner 39.2.e.a 2
13.c even 3 1 507.2.a.c 1
13.d odd 4 2 507.2.j.d 4
13.e even 6 1 507.2.a.b 1
13.e even 6 1 507.2.e.c 2
13.f odd 12 2 507.2.b.b 2
13.f odd 12 2 507.2.j.d 4
39.h odd 6 1 1521.2.a.d 1
39.i odd 6 1 117.2.g.b 2
39.i odd 6 1 1521.2.a.a 1
39.k even 12 2 1521.2.b.c 2
52.i odd 6 1 8112.2.a.bc 1
52.j odd 6 1 624.2.q.c 2
52.j odd 6 1 8112.2.a.w 1
65.n even 6 1 975.2.i.f 2
65.q odd 12 2 975.2.bb.d 4
156.p even 6 1 1872.2.t.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.e.a 2 1.a even 1 1 trivial
39.2.e.a 2 13.c even 3 1 inner
117.2.g.b 2 3.b odd 2 1
117.2.g.b 2 39.i odd 6 1
507.2.a.b 1 13.e even 6 1
507.2.a.c 1 13.c even 3 1
507.2.b.b 2 13.f odd 12 2
507.2.e.c 2 13.b even 2 1
507.2.e.c 2 13.e even 6 1
507.2.j.d 4 13.d odd 4 2
507.2.j.d 4 13.f odd 12 2
624.2.q.c 2 4.b odd 2 1
624.2.q.c 2 52.j odd 6 1
975.2.i.f 2 5.b even 2 1
975.2.i.f 2 65.n even 6 1
975.2.bb.d 4 5.c odd 4 2
975.2.bb.d 4 65.q odd 12 2
1521.2.a.a 1 39.i odd 6 1
1521.2.a.d 1 39.h odd 6 1
1521.2.b.c 2 39.k even 12 2
1872.2.t.j 2 12.b even 2 1
1872.2.t.j 2 156.p even 6 1
8112.2.a.w 1 52.j odd 6 1
8112.2.a.bc 1 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+T2+1 T_{2}^{2} + T_{2} + 1 acting on S2new(39,[χ])S_{2}^{\mathrm{new}}(39, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T2+7T+13 T^{2} + 7T + 13 Copy content Toggle raw display
1717 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
1919 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2323 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2929 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
4141 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
4343 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4747 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5353 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
6767 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7171 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
7373 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
8989 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
9797 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
show more
show less