Properties

Label 39.6
Level 39
Weight 6
Dimension 196
Nonzero newspaces 6
Newform subspaces 13
Sturm bound 672
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 39 = 3 \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 13 \)
Sturm bound: \(672\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(39))\).

Total New Old
Modular forms 304 220 84
Cusp forms 256 196 60
Eisenstein series 48 24 24

Trace form

\( 196 q + 12 q^{2} - 24 q^{3} - 20 q^{4} - 12 q^{5} + 102 q^{6} + 664 q^{7} - 1488 q^{8} - 330 q^{9} - 60 q^{10} + 2196 q^{11} + 2808 q^{12} + 2494 q^{13} + 576 q^{14} - 1302 q^{15} - 7980 q^{16} + 630 q^{17}+ \cdots + 465840 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(39))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
39.6.a \(\chi_{39}(1, \cdot)\) 39.6.a.a 1 1
39.6.a.b 2
39.6.a.c 3
39.6.a.d 4
39.6.b \(\chi_{39}(25, \cdot)\) 39.6.b.a 4 1
39.6.b.b 6
39.6.e \(\chi_{39}(16, \cdot)\) 39.6.e.a 12 2
39.6.e.b 14
39.6.f \(\chi_{39}(5, \cdot)\) 39.6.f.a 44 2
39.6.j \(\chi_{39}(4, \cdot)\) 39.6.j.a 10 2
39.6.j.b 12
39.6.k \(\chi_{39}(2, \cdot)\) 39.6.k.a 4 4
39.6.k.b 80

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(39))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(39)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)