Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [390,2,Mod(49,390)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(390, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("390.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 390.x (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | −2.10012 | − | 0.767774i | 0.866025 | + | 0.500000i | −0.823063 | + | 1.42559i | 1.00000 | 0.500000 | − | 0.866025i | 0.385150 | + | 2.20265i | ||||||||||||||||||||||||||||||||||||||
49.2 | −0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | −1.40066 | + | 1.74303i | 0.866025 | + | 0.500000i | 0.763837 | − | 1.32301i | 1.00000 | 0.500000 | − | 0.866025i | 2.20984 | + | 0.341491i | |||||||||||||||||||||||||||||||||||||||
49.3 | −0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | 1.26873 | − | 1.84128i | 0.866025 | + | 0.500000i | −2.17283 | + | 3.76344i | 1.00000 | 0.500000 | − | 0.866025i | −2.22896 | − | 0.178114i | |||||||||||||||||||||||||||||||||||||||
49.4 | −0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | −0.571769 | − | 2.16173i | −0.866025 | − | 0.500000i | −0.603137 | + | 1.04466i | 1.00000 | 0.500000 | − | 0.866025i | −1.58623 | + | 1.57603i | |||||||||||||||||||||||||||||||||||||||
49.5 | −0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | −0.230377 | + | 2.22417i | −0.866025 | − | 0.500000i | 0.432713 | − | 0.749482i | 1.00000 | 0.500000 | − | 0.866025i | 2.04138 | − | 0.912572i | |||||||||||||||||||||||||||||||||||||||
49.6 | −0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | 2.03420 | − | 0.928463i | −0.866025 | − | 0.500000i | 1.40247 | − | 2.42916i | 1.00000 | 0.500000 | − | 0.866025i | −1.82117 | − | 1.29743i | |||||||||||||||||||||||||||||||||||||||
199.1 | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | −2.10012 | + | 0.767774i | 0.866025 | − | 0.500000i | −0.823063 | − | 1.42559i | 1.00000 | 0.500000 | + | 0.866025i | 0.385150 | − | 2.20265i | |||||||||||||||||||||||||||||||||||||||
199.2 | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | −1.40066 | − | 1.74303i | 0.866025 | − | 0.500000i | 0.763837 | + | 1.32301i | 1.00000 | 0.500000 | + | 0.866025i | 2.20984 | − | 0.341491i | |||||||||||||||||||||||||||||||||||||||
199.3 | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | 1.26873 | + | 1.84128i | 0.866025 | − | 0.500000i | −2.17283 | − | 3.76344i | 1.00000 | 0.500000 | + | 0.866025i | −2.22896 | + | 0.178114i | |||||||||||||||||||||||||||||||||||||||
199.4 | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | −0.571769 | + | 2.16173i | −0.866025 | + | 0.500000i | −0.603137 | − | 1.04466i | 1.00000 | 0.500000 | + | 0.866025i | −1.58623 | − | 1.57603i | |||||||||||||||||||||||||||||||||||||||
199.5 | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | −0.230377 | − | 2.22417i | −0.866025 | + | 0.500000i | 0.432713 | + | 0.749482i | 1.00000 | 0.500000 | + | 0.866025i | 2.04138 | + | 0.912572i | |||||||||||||||||||||||||||||||||||||||
199.6 | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | 2.03420 | + | 0.928463i | −0.866025 | + | 0.500000i | 1.40247 | + | 2.42916i | 1.00000 | 0.500000 | + | 0.866025i | −1.82117 | + | 1.29743i | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 390.2.x.a | ✓ | 12 |
3.b | odd | 2 | 1 | 1170.2.bj.d | 12 | ||
5.b | even | 2 | 1 | 390.2.x.b | yes | 12 | |
5.c | odd | 4 | 1 | 1950.2.bc.i | 12 | ||
5.c | odd | 4 | 1 | 1950.2.bc.j | 12 | ||
13.e | even | 6 | 1 | 390.2.x.b | yes | 12 | |
15.d | odd | 2 | 1 | 1170.2.bj.c | 12 | ||
39.h | odd | 6 | 1 | 1170.2.bj.c | 12 | ||
65.l | even | 6 | 1 | inner | 390.2.x.a | ✓ | 12 |
65.r | odd | 12 | 1 | 1950.2.bc.i | 12 | ||
65.r | odd | 12 | 1 | 1950.2.bc.j | 12 | ||
195.y | odd | 6 | 1 | 1170.2.bj.d | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
390.2.x.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
390.2.x.a | ✓ | 12 | 65.l | even | 6 | 1 | inner |
390.2.x.b | yes | 12 | 5.b | even | 2 | 1 | |
390.2.x.b | yes | 12 | 13.e | even | 6 | 1 | |
1170.2.bj.c | 12 | 15.d | odd | 2 | 1 | ||
1170.2.bj.c | 12 | 39.h | odd | 6 | 1 | ||
1170.2.bj.d | 12 | 3.b | odd | 2 | 1 | ||
1170.2.bj.d | 12 | 195.y | odd | 6 | 1 | ||
1950.2.bc.i | 12 | 5.c | odd | 4 | 1 | ||
1950.2.bc.i | 12 | 65.r | odd | 12 | 1 | ||
1950.2.bc.j | 12 | 5.c | odd | 4 | 1 | ||
1950.2.bc.j | 12 | 65.r | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .