Properties

Label 390.2.x.a
Level 390390
Weight 22
Character orbit 390.x
Analytic conductor 3.1143.114
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(49,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 390=23513 390 = 2 \cdot 3 \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 390.x (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.114165678833.11416567883
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x122x118x10+34x9+8x8134x7+98x6+154x5+104x4++2197 x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β61)q2+β4q3+β6q4+(β8β6++β3)q5+(β7β4)q6+(β9β7++β2)q7++(β11β7β6+β1)q99+O(q100) q + ( - \beta_{6} - 1) q^{2} + \beta_{4} q^{3} + \beta_{6} q^{4} + (\beta_{8} - \beta_{6} + \cdots + \beta_{3}) q^{5} + ( - \beta_{7} - \beta_{4}) q^{6} + ( - \beta_{9} - \beta_{7} + \cdots + \beta_{2}) q^{7}+ \cdots + (\beta_{11} - \beta_{7} - \beta_{6} + \cdots - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q26q42q52q7+12q8+6q92q10+6q118q13+4q14+6q156q16+18q1712q186q19+4q206q22+6q2310q25++8q98+O(q100) 12 q - 6 q^{2} - 6 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} - 2 q^{10} + 6 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{15} - 6 q^{16} + 18 q^{17} - 12 q^{18} - 6 q^{19} + 4 q^{20} - 6 q^{22} + 6 q^{23} - 10 q^{25}+ \cdots + 8 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x122x118x10+34x9+8x8134x7+98x6+154x5+104x4++2197 x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + \cdots + 2197 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (203419ν11163110633ν10+591783880ν9+97338749ν8++81183629852)/63907274600 ( - 203419 \nu^{11} - 163110633 \nu^{10} + 591783880 \nu^{9} + 97338749 \nu^{8} + \cdots + 81183629852 ) / 63907274600 Copy content Toggle raw display
β3\beta_{3}== (60968787ν112097063441ν10+2300362460ν9+17147379373ν8++1269272187404)/830794569800 ( 60968787 \nu^{11} - 2097063441 \nu^{10} + 2300362460 \nu^{9} + 17147379373 \nu^{8} + \cdots + 1269272187404 ) / 830794569800 Copy content Toggle raw display
β4\beta_{4}== (120243408ν11+454030419ν10+2051209685ν97036618932ν8++618192439839)/830794569800 ( - 120243408 \nu^{11} + 454030419 \nu^{10} + 2051209685 \nu^{9} - 7036618932 \nu^{8} + \cdots + 618192439839 ) / 830794569800 Copy content Toggle raw display
β5\beta_{5}== (16426431ν11+83789417ν10226795620ν9+267354099ν8++20321135952)/63907274600 ( 16426431 \nu^{11} + 83789417 \nu^{10} - 226795620 \nu^{9} + 267354099 \nu^{8} + \cdots + 20321135952 ) / 63907274600 Copy content Toggle raw display
β6\beta_{6}== (4036ν1137023ν10+57555ν9+233294ν8817691ν7++11867687)/11796200 ( 4036 \nu^{11} - 37023 \nu^{10} + 57555 \nu^{9} + 233294 \nu^{8} - 817691 \nu^{7} + \cdots + 11867687 ) / 11796200 Copy content Toggle raw display
β7\beta_{7}== (20638ν11+28887ν1018833ν991862ν8291763ν7++21764327)/47610004 ( - 20638 \nu^{11} + 28887 \nu^{10} - 18833 \nu^{9} - 91862 \nu^{8} - 291763 \nu^{7} + \cdots + 21764327 ) / 47610004 Copy content Toggle raw display
β8\beta_{8}== (5665538ν117145579ν109226575ν9+110201552ν8247897203ν7+40106339)/12781454920 ( 5665538 \nu^{11} - 7145579 \nu^{10} - 9226575 \nu^{9} + 110201552 \nu^{8} - 247897203 \nu^{7} + \cdots - 40106339 ) / 12781454920 Copy content Toggle raw display
β9\beta_{9}== (680246389ν11845264698ν10+11881898255ν920291622981ν8++1108736562037)/830794569800 ( - 680246389 \nu^{11} - 845264698 \nu^{10} + 11881898255 \nu^{9} - 20291622981 \nu^{8} + \cdots + 1108736562037 ) / 830794569800 Copy content Toggle raw display
β10\beta_{10}== (1202455216ν11+4870077513ν101280213355ν935058222714ν8+1182431604497)/830794569800 ( - 1202455216 \nu^{11} + 4870077513 \nu^{10} - 1280213355 \nu^{9} - 35058222714 \nu^{8} + \cdots - 1182431604497 ) / 830794569800 Copy content Toggle raw display
β11\beta_{11}== (78524401ν11+161812093ν10+556127095ν92253760279ν8++16572567908)/31953637300 ( - 78524401 \nu^{11} + 161812093 \nu^{10} + 556127095 \nu^{9} - 2253760279 \nu^{8} + \cdots + 16572567908 ) / 31953637300 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11+2β10+2β9+β82β7+β53β4+β3+2 -\beta_{11} + 2\beta_{10} + 2\beta_{9} + \beta_{8} - 2\beta_{7} + \beta_{5} - 3\beta_{4} + \beta_{3} + 2 Copy content Toggle raw display
ν3\nu^{3}== 2β11+β10+3β9+β8+2β7β6+β5+4β4+5 - 2 \beta_{11} + \beta_{10} + 3 \beta_{9} + \beta_{8} + 2 \beta_{7} - \beta_{6} + \beta_{5} + 4 \beta_{4} + \cdots - 5 Copy content Toggle raw display
ν4\nu^{4}== 7β11+7β10+12β9+β8+2β7+9β56β4+β23 -7\beta_{11} + 7\beta_{10} + 12\beta_{9} + \beta_{8} + 2\beta_{7} + 9\beta_{5} - 6\beta_{4} + \beta_{2} - 3 Copy content Toggle raw display
ν5\nu^{5}== 4β115β108β9+4β8+29β712β67β5+42 - 4 \beta_{11} - 5 \beta_{10} - 8 \beta_{9} + 4 \beta_{8} + 29 \beta_{7} - 12 \beta_{6} - 7 \beta_{5} + \cdots - 42 Copy content Toggle raw display
ν6\nu^{6}== 6β11+8β102β910β824β6+18β520β4+7 - 6 \beta_{11} + 8 \beta_{10} - 2 \beta_{9} - 10 \beta_{8} - 24 \beta_{6} + 18 \beta_{5} - 20 \beta_{4} + \cdots - 7 Copy content Toggle raw display
ν7\nu^{7}== 50β1170β10162β950β8+54β736β690β5+104 50 \beta_{11} - 70 \beta_{10} - 162 \beta_{9} - 50 \beta_{8} + 54 \beta_{7} - 36 \beta_{6} - 90 \beta_{5} + \cdots - 104 Copy content Toggle raw display
ν8\nu^{8}== 81β11+80β1090β9155β8382β7+114β6++388 81 \beta_{11} + 80 \beta_{10} - 90 \beta_{9} - 155 \beta_{8} - 382 \beta_{7} + 114 \beta_{6} + \cdots + 388 Copy content Toggle raw display
ν9\nu^{9}== 404β11223β10627β9213β8540β7+459β6++249 404 \beta_{11} - 223 \beta_{10} - 627 \beta_{9} - 213 \beta_{8} - 540 \beta_{7} + 459 \beta_{6} + \cdots + 249 Copy content Toggle raw display
ν10\nu^{10}== 327β11+649β10+866β957β82616β7+1480β6++2981 327 \beta_{11} + 649 \beta_{10} + 866 \beta_{9} - 57 \beta_{8} - 2616 \beta_{7} + 1480 \beta_{6} + \cdots + 2981 Copy content Toggle raw display
ν11\nu^{11}== 1120β112139β10614β9+1672β8+195β7+1784β6+288 1120 \beta_{11} - 2139 \beta_{10} - 614 \beta_{9} + 1672 \beta_{8} + 195 \beta_{7} + 1784 \beta_{6} + \cdots - 288 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/390Z)×\left(\mathbb{Z}/390\mathbb{Z}\right)^\times.

nn 131131 157157 301301
χ(n)\chi(n) 11 1-1 β6-\beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
−2.39378 + 0.0429626i
1.75374 + 1.62986i
2.00607 1.30680i
−0.330925 + 1.46916i
−1.44229 + 0.433312i
1.40719 0.536449i
−2.39378 0.0429626i
1.75374 1.62986i
2.00607 + 1.30680i
−0.330925 1.46916i
−1.44229 0.433312i
1.40719 + 0.536449i
−0.500000 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i −2.10012 0.767774i 0.866025 + 0.500000i −0.823063 + 1.42559i 1.00000 0.500000 0.866025i 0.385150 + 2.20265i
49.2 −0.500000 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i −1.40066 + 1.74303i 0.866025 + 0.500000i 0.763837 1.32301i 1.00000 0.500000 0.866025i 2.20984 + 0.341491i
49.3 −0.500000 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i 1.26873 1.84128i 0.866025 + 0.500000i −2.17283 + 3.76344i 1.00000 0.500000 0.866025i −2.22896 0.178114i
49.4 −0.500000 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i −0.571769 2.16173i −0.866025 0.500000i −0.603137 + 1.04466i 1.00000 0.500000 0.866025i −1.58623 + 1.57603i
49.5 −0.500000 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i −0.230377 + 2.22417i −0.866025 0.500000i 0.432713 0.749482i 1.00000 0.500000 0.866025i 2.04138 0.912572i
49.6 −0.500000 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i 2.03420 0.928463i −0.866025 0.500000i 1.40247 2.42916i 1.00000 0.500000 0.866025i −1.82117 1.29743i
199.1 −0.500000 + 0.866025i −0.866025 0.500000i −0.500000 0.866025i −2.10012 + 0.767774i 0.866025 0.500000i −0.823063 1.42559i 1.00000 0.500000 + 0.866025i 0.385150 2.20265i
199.2 −0.500000 + 0.866025i −0.866025 0.500000i −0.500000 0.866025i −1.40066 1.74303i 0.866025 0.500000i 0.763837 + 1.32301i 1.00000 0.500000 + 0.866025i 2.20984 0.341491i
199.3 −0.500000 + 0.866025i −0.866025 0.500000i −0.500000 0.866025i 1.26873 + 1.84128i 0.866025 0.500000i −2.17283 3.76344i 1.00000 0.500000 + 0.866025i −2.22896 + 0.178114i
199.4 −0.500000 + 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i −0.571769 + 2.16173i −0.866025 + 0.500000i −0.603137 1.04466i 1.00000 0.500000 + 0.866025i −1.58623 1.57603i
199.5 −0.500000 + 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i −0.230377 2.22417i −0.866025 + 0.500000i 0.432713 + 0.749482i 1.00000 0.500000 + 0.866025i 2.04138 + 0.912572i
199.6 −0.500000 + 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i 2.03420 + 0.928463i −0.866025 + 0.500000i 1.40247 + 2.42916i 1.00000 0.500000 + 0.866025i −1.82117 + 1.29743i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 390.2.x.a 12
3.b odd 2 1 1170.2.bj.d 12
5.b even 2 1 390.2.x.b yes 12
5.c odd 4 1 1950.2.bc.i 12
5.c odd 4 1 1950.2.bc.j 12
13.e even 6 1 390.2.x.b yes 12
15.d odd 2 1 1170.2.bj.c 12
39.h odd 6 1 1170.2.bj.c 12
65.l even 6 1 inner 390.2.x.a 12
65.r odd 12 1 1950.2.bc.i 12
65.r odd 12 1 1950.2.bc.j 12
195.y odd 6 1 1170.2.bj.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.x.a 12 1.a even 1 1 trivial
390.2.x.a 12 65.l even 6 1 inner
390.2.x.b yes 12 5.b even 2 1
390.2.x.b yes 12 13.e even 6 1
1170.2.bj.c 12 15.d odd 2 1
1170.2.bj.c 12 39.h odd 6 1
1170.2.bj.d 12 3.b odd 2 1
1170.2.bj.d 12 195.y odd 6 1
1950.2.bc.i 12 5.c odd 4 1
1950.2.bc.i 12 65.r odd 12 1
1950.2.bc.j 12 5.c odd 4 1
1950.2.bc.j 12 65.r odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T712+2T711+19T7106T79+205T78+20T77+708T76++1024 T_{7}^{12} + 2 T_{7}^{11} + 19 T_{7}^{10} - 6 T_{7}^{9} + 205 T_{7}^{8} + 20 T_{7}^{7} + 708 T_{7}^{6} + \cdots + 1024 acting on S2new(390,[χ])S_{2}^{\mathrm{new}}(390, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
33 (T4T2+1)3 (T^{4} - T^{2} + 1)^{3} Copy content Toggle raw display
55 T12+2T11++15625 T^{12} + 2 T^{11} + \cdots + 15625 Copy content Toggle raw display
77 T12+2T11++1024 T^{12} + 2 T^{11} + \cdots + 1024 Copy content Toggle raw display
1111 T126T11++16 T^{12} - 6 T^{11} + \cdots + 16 Copy content Toggle raw display
1313 T12+8T11++4826809 T^{12} + 8 T^{11} + \cdots + 4826809 Copy content Toggle raw display
1717 T1218T11++65536 T^{12} - 18 T^{11} + \cdots + 65536 Copy content Toggle raw display
1919 T12+6T11++1982464 T^{12} + 6 T^{11} + \cdots + 1982464 Copy content Toggle raw display
2323 T12++190660864 T^{12} + \cdots + 190660864 Copy content Toggle raw display
2929 T1214T11++21904 T^{12} - 14 T^{11} + \cdots + 21904 Copy content Toggle raw display
3131 T12++177209344 T^{12} + \cdots + 177209344 Copy content Toggle raw display
3737 T12++227195329 T^{12} + \cdots + 227195329 Copy content Toggle raw display
4141 T12+18T11++65536 T^{12} + 18 T^{11} + \cdots + 65536 Copy content Toggle raw display
4343 T12++349241344 T^{12} + \cdots + 349241344 Copy content Toggle raw display
4747 (T68T5++5956)2 (T^{6} - 8 T^{5} + \cdots + 5956)^{2} Copy content Toggle raw display
5353 T12++2473271824 T^{12} + \cdots + 2473271824 Copy content Toggle raw display
5959 T12++4983230464 T^{12} + \cdots + 4983230464 Copy content Toggle raw display
6161 T1210T11++89718784 T^{12} - 10 T^{11} + \cdots + 89718784 Copy content Toggle raw display
6767 T124T11++83759104 T^{12} - 4 T^{11} + \cdots + 83759104 Copy content Toggle raw display
7171 T12+12T11++4194304 T^{12} + 12 T^{11} + \cdots + 4194304 Copy content Toggle raw display
7373 (T614T5+230528)2 (T^{6} - 14 T^{5} + \cdots - 230528)^{2} Copy content Toggle raw display
7979 (T62T5+29312)2 (T^{6} - 2 T^{5} + \cdots - 29312)^{2} Copy content Toggle raw display
8383 (T636T5+6912)2 (T^{6} - 36 T^{5} + \cdots - 6912)^{2} Copy content Toggle raw display
8989 T12++1341001056256 T^{12} + \cdots + 1341001056256 Copy content Toggle raw display
9797 T12++415519473664 T^{12} + \cdots + 415519473664 Copy content Toggle raw display
show more
show less