Properties

Label 390.4.a.d
Level $390$
Weight $4$
Character orbit 390.a
Self dual yes
Analytic conductor $23.011$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,4,Mod(1,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 390.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0107449022\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 5 q^{5} - 6 q^{6} + 2 q^{7} - 8 q^{8} + 9 q^{9} + 10 q^{10} + 12 q^{12} + 13 q^{13} - 4 q^{14} - 15 q^{15} + 16 q^{16} - 60 q^{17} - 18 q^{18} + 50 q^{19} - 20 q^{20}+ \cdots + 678 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 4.00000 −5.00000 −6.00000 2.00000 −8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 390.4.a.d 1
3.b odd 2 1 1170.4.a.p 1
5.b even 2 1 1950.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.4.a.d 1 1.a even 1 1 trivial
1170.4.a.p 1 3.b odd 2 1
1950.4.a.j 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(390))\):

\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T + 60 \) Copy content Toggle raw display
$19$ \( T - 50 \) Copy content Toggle raw display
$23$ \( T - 210 \) Copy content Toggle raw display
$29$ \( T + 228 \) Copy content Toggle raw display
$31$ \( T - 116 \) Copy content Toggle raw display
$37$ \( T - 386 \) Copy content Toggle raw display
$41$ \( T - 378 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 312 \) Copy content Toggle raw display
$53$ \( T + 198 \) Copy content Toggle raw display
$59$ \( T - 624 \) Copy content Toggle raw display
$61$ \( T - 638 \) Copy content Toggle raw display
$67$ \( T - 200 \) Copy content Toggle raw display
$71$ \( T + 408 \) Copy content Toggle raw display
$73$ \( T - 1148 \) Copy content Toggle raw display
$79$ \( T - 824 \) Copy content Toggle raw display
$83$ \( T - 1332 \) Copy content Toggle raw display
$89$ \( T - 54 \) Copy content Toggle raw display
$97$ \( T + 244 \) Copy content Toggle raw display
show more
show less