Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [392,2,Mod(9,392)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(392, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("392.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 392.y (of order \(21\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.13013575923\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{21})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −3.25332 | − | 0.490359i | 0 | −1.54958 | − | 3.94826i | 0 | −1.43068 | − | 2.22557i | 0 | 7.47690 | + | 2.30632i | 0 | ||||||||||
9.2 | 0 | −1.78890 | − | 0.269634i | 0 | 1.38358 | + | 3.52530i | 0 | −2.47527 | − | 0.934375i | 0 | 0.260753 | + | 0.0804317i | 0 | ||||||||||
9.3 | 0 | −1.51640 | − | 0.228560i | 0 | −0.147325 | − | 0.375377i | 0 | 0.926271 | + | 2.47831i | 0 | −0.619491 | − | 0.191088i | 0 | ||||||||||
9.4 | 0 | −0.739962 | − | 0.111531i | 0 | −0.0672440 | − | 0.171335i | 0 | 2.12593 | − | 1.57494i | 0 | −2.33161 | − | 0.719207i | 0 | ||||||||||
9.5 | 0 | 1.51578 | + | 0.228466i | 0 | −1.31786 | − | 3.35786i | 0 | −2.27390 | + | 1.35254i | 0 | −0.621339 | − | 0.191658i | 0 | ||||||||||
9.6 | 0 | 1.89105 | + | 0.285030i | 0 | 0.866493 | + | 2.20779i | 0 | 0.189580 | + | 2.63895i | 0 | 0.628115 | + | 0.193748i | 0 | ||||||||||
9.7 | 0 | 3.16923 | + | 0.477685i | 0 | −0.596962 | − | 1.52103i | 0 | 1.36565 | − | 2.26605i | 0 | 6.94914 | + | 2.14352i | 0 | ||||||||||
25.1 | 0 | −1.07048 | − | 2.72753i | 0 | −0.873295 | − | 0.131628i | 0 | 2.12690 | − | 1.57362i | 0 | −4.09433 | + | 3.79898i | 0 | ||||||||||
25.2 | 0 | −0.633206 | − | 1.61338i | 0 | −2.32382 | − | 0.350259i | 0 | −2.63088 | + | 0.280091i | 0 | −0.00290016 | + | 0.00269096i | 0 | ||||||||||
25.3 | 0 | −0.600191 | − | 1.52926i | 0 | 0.454269 | + | 0.0684701i | 0 | 0.704180 | + | 2.55032i | 0 | 0.220740 | − | 0.204817i | 0 | ||||||||||
25.4 | 0 | 0.0317720 | + | 0.0809538i | 0 | 2.96234 | + | 0.446501i | 0 | 1.79423 | + | 1.94442i | 0 | 2.19361 | − | 2.03537i | 0 | ||||||||||
25.5 | 0 | 0.247413 | + | 0.630398i | 0 | −2.43262 | − | 0.366659i | 0 | −0.00945262 | − | 2.64573i | 0 | 1.86297 | − | 1.72858i | 0 | ||||||||||
25.6 | 0 | 0.281171 | + | 0.716412i | 0 | 3.30995 | + | 0.498894i | 0 | −1.64091 | − | 2.07543i | 0 | 1.76497 | − | 1.63765i | 0 | ||||||||||
25.7 | 0 | 1.02100 | + | 2.60146i | 0 | −0.568892 | − | 0.0857466i | 0 | 2.62933 | + | 0.294332i | 0 | −3.52599 | + | 3.27164i | 0 | ||||||||||
65.1 | 0 | −0.173239 | − | 2.31172i | 0 | −3.33484 | + | 2.27366i | 0 | 1.12122 | − | 2.39643i | 0 | −2.34753 | + | 0.353833i | 0 | ||||||||||
65.2 | 0 | −0.118310 | − | 1.57873i | 0 | 1.24081 | − | 0.845971i | 0 | 2.07415 | + | 1.64252i | 0 | 0.488092 | − | 0.0735680i | 0 | ||||||||||
65.3 | 0 | −0.0337386 | − | 0.450211i | 0 | 3.66755 | − | 2.50050i | 0 | −1.88168 | − | 1.85991i | 0 | 2.76494 | − | 0.416748i | 0 | ||||||||||
65.4 | 0 | −0.0247290 | − | 0.329985i | 0 | −1.09829 | + | 0.748802i | 0 | −2.39796 | − | 1.11795i | 0 | 2.85821 | − | 0.430806i | 0 | ||||||||||
65.5 | 0 | 0.100350 | + | 1.33908i | 0 | −0.499334 | + | 0.340440i | 0 | 2.50671 | − | 0.846419i | 0 | 1.18344 | − | 0.178375i | 0 | ||||||||||
65.6 | 0 | 0.137858 | + | 1.83959i | 0 | −2.15672 | + | 1.47042i | 0 | −0.660063 | + | 2.56209i | 0 | −0.398603 | + | 0.0600797i | 0 | ||||||||||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.g | even | 21 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 392.2.y.a | ✓ | 84 |
4.b | odd | 2 | 1 | 784.2.bg.f | 84 | ||
49.g | even | 21 | 1 | inner | 392.2.y.a | ✓ | 84 |
196.o | odd | 42 | 1 | 784.2.bg.f | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
392.2.y.a | ✓ | 84 | 1.a | even | 1 | 1 | trivial |
392.2.y.a | ✓ | 84 | 49.g | even | 21 | 1 | inner |
784.2.bg.f | 84 | 4.b | odd | 2 | 1 | ||
784.2.bg.f | 84 | 196.o | odd | 42 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{84} + 8 T_{3}^{83} + T_{3}^{82} - 168 T_{3}^{81} - 426 T_{3}^{80} + 1016 T_{3}^{79} + \cdots + 782376841 \) acting on \(S_{2}^{\mathrm{new}}(392, [\chi])\).