Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [392,2,Mod(37,392)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(392, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([0, 21, 32]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("392.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 392 = 2^{3} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 392.z (of order \(42\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.13013575923\) |
Analytic rank: | \(0\) |
Dimension: | \(648\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{42})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{42}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.41305 | − | 0.0573510i | 0.882385 | + | 0.950985i | 1.99342 | + | 0.162080i | 0.913727 | − | 2.96223i | −1.19231 | − | 1.39439i | 2.15945 | + | 1.52866i | −2.80751 | − | 0.343351i | 0.0984214 | − | 1.31334i | −1.46103 | + | 4.13337i |
37.2 | −1.41088 | − | 0.0969984i | −1.16192 | − | 1.25225i | 1.98118 | + | 0.273707i | −0.978911 | + | 3.17355i | 1.51787 | + | 1.87949i | −0.0759419 | + | 2.64466i | −2.76867 | − | 0.578340i | 0.00611242 | − | 0.0815645i | 1.68896 | − | 4.38256i |
37.3 | −1.40118 | + | 0.191593i | −2.22424 | − | 2.39716i | 1.92658 | − | 0.536910i | 0.266970 | − | 0.865496i | 3.57583 | + | 2.93269i | 2.06958 | + | 1.64828i | −2.59661 | + | 1.12142i | −0.574944 | + | 7.67209i | −0.208249 | + | 1.26386i |
37.4 | −1.39792 | + | 0.214038i | −0.469951 | − | 0.506487i | 1.90838 | − | 0.598418i | 0.273835 | − | 0.887753i | 0.765363 | + | 0.607442i | 0.528093 | − | 2.59251i | −2.53968 | + | 1.24501i | 0.188515 | − | 2.51556i | −0.192788 | + | 1.29962i |
37.5 | −1.37458 | − | 0.332474i | −0.288166 | − | 0.310569i | 1.77892 | + | 0.914022i | −0.486553 | + | 1.57737i | 0.292850 | + | 0.522709i | −2.63963 | − | 0.179924i | −2.14138 | − | 1.84784i | 0.210777 | − | 2.81262i | 1.19324 | − | 2.00645i |
37.6 | −1.37066 | + | 0.348278i | 1.48945 | + | 1.60524i | 1.75740 | − | 0.954740i | −1.25029 | + | 4.05335i | −2.60059 | − | 1.68150i | 2.55536 | − | 0.685667i | −2.07629 | + | 1.92069i | −0.134159 | + | 1.79023i | 0.302031 | − | 5.99121i |
37.7 | −1.34654 | − | 0.432240i | 1.94533 | + | 2.09656i | 1.62634 | + | 1.16406i | 0.117162 | − | 0.379831i | −1.71324 | − | 3.66395i | −1.64975 | + | 2.06841i | −1.68677 | − | 2.27042i | −0.387093 | + | 5.16539i | −0.321942 | + | 0.460815i |
37.8 | −1.26332 | + | 0.635636i | 1.08411 | + | 1.16839i | 1.19193 | − | 1.60602i | −0.529378 | + | 1.71620i | −2.11224 | − | 0.786948i | −2.34752 | + | 1.22032i | −0.484943 | + | 2.78654i | 0.0343439 | − | 0.458288i | −0.422109 | − | 2.50460i |
37.9 | −1.24570 | − | 0.669503i | −1.67046 | − | 1.80033i | 1.10353 | + | 1.66800i | 0.687205 | − | 2.22786i | 0.875568 | + | 3.36105i | −0.555114 | − | 2.58686i | −0.257941 | − | 2.81664i | −0.226554 | + | 3.02315i | −2.34761 | + | 2.31516i |
37.10 | −1.23135 | + | 0.695533i | 1.73400 | + | 1.86880i | 1.03247 | − | 1.71290i | 0.880547 | − | 2.85466i | −3.43498 | − | 1.09511i | −1.33854 | − | 2.28217i | −0.0799587 | + | 2.82730i | −0.261493 | + | 3.48939i | 0.901247 | + | 4.12755i |
37.11 | −1.19828 | − | 0.751090i | 0.581041 | + | 0.626213i | 0.871727 | + | 1.80003i | −0.147712 | + | 0.478871i | −0.225904 | − | 1.18679i | 2.54532 | − | 0.722043i | 0.307412 | − | 2.81167i | 0.169656 | − | 2.26390i | 0.536675 | − | 0.462874i |
37.12 | −1.09732 | + | 0.892129i | −1.73400 | − | 1.86880i | 0.408212 | − | 1.95790i | −0.880547 | + | 2.85466i | 3.56996 | + | 0.503723i | −1.33854 | − | 2.28217i | 1.29876 | + | 2.51261i | −0.261493 | + | 3.48939i | −1.58049 | − | 3.91803i |
37.13 | −1.07880 | − | 0.914431i | −1.29408 | − | 1.39469i | 0.327631 | + | 1.97298i | 0.498626 | − | 1.61651i | 0.120712 | + | 2.68794i | −0.699420 | + | 2.55163i | 1.45071 | − | 2.42805i | −0.0463173 | + | 0.618061i | −2.01610 | + | 1.28793i |
37.14 | −1.05324 | + | 0.943763i | −1.08411 | − | 1.16839i | 0.218622 | − | 1.98802i | 0.529378 | − | 1.71620i | 2.24451 | + | 0.207452i | −2.34752 | + | 1.22032i | 1.64596 | + | 2.30018i | 0.0343439 | − | 0.458288i | 1.06213 | + | 2.30718i |
37.15 | −0.824960 | + | 1.14867i | −1.48945 | − | 1.60524i | −0.638881 | − | 1.89521i | 1.25029 | − | 4.05335i | 3.07263 | − | 0.386620i | 2.55536 | − | 0.685667i | 2.70402 | + | 0.829613i | −0.134159 | + | 1.79023i | 3.62452 | + | 4.78003i |
37.16 | −0.804026 | − | 1.16342i | 0.264186 | + | 0.284725i | −0.707086 | + | 1.87084i | −1.09949 | + | 3.56447i | 0.118842 | − | 0.536285i | −1.95202 | − | 1.78595i | 2.74508 | − | 0.681563i | 0.212916 | − | 2.84117i | 5.03100 | − | 1.58676i |
37.17 | −0.767597 | − | 1.18777i | −1.83996 | − | 1.98301i | −0.821590 | + | 1.82346i | −0.819891 | + | 2.65802i | −0.943005 | + | 3.70760i | 2.51957 | − | 0.807328i | 2.79649 | − | 0.423820i | −0.322667 | + | 4.30570i | 3.78646 | − | 1.06645i |
37.18 | −0.766412 | − | 1.18853i | 2.16919 | + | 2.33784i | −0.825224 | + | 1.82181i | 0.134837 | − | 0.437132i | 1.11610 | − | 4.36991i | 0.938839 | − | 2.47358i | 2.79775 | − | 0.415453i | −0.535880 | + | 7.15083i | −0.622888 | + | 0.174765i |
37.19 | −0.709961 | + | 1.22309i | 0.469951 | + | 0.506487i | −0.991911 | − | 1.73670i | −0.273835 | + | 0.887753i | −0.953127 | + | 0.215208i | 0.528093 | − | 2.59251i | 2.82836 | + | 0.0197876i | 0.188515 | − | 2.51556i | −0.891391 | − | 0.965196i |
37.20 | −0.690255 | + | 1.23432i | 2.22424 | + | 2.39716i | −1.04710 | − | 1.70399i | −0.266970 | + | 0.865496i | −4.49415 | + | 1.09077i | 2.06958 | + | 1.64828i | 2.82604 | − | 0.116261i | −0.574944 | + | 7.67209i | −0.884022 | − | 0.926940i |
See next 80 embeddings (of 648 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
49.g | even | 21 | 1 | inner |
392.z | even | 42 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 392.2.z.a | ✓ | 648 |
8.b | even | 2 | 1 | inner | 392.2.z.a | ✓ | 648 |
49.g | even | 21 | 1 | inner | 392.2.z.a | ✓ | 648 |
392.z | even | 42 | 1 | inner | 392.2.z.a | ✓ | 648 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
392.2.z.a | ✓ | 648 | 1.a | even | 1 | 1 | trivial |
392.2.z.a | ✓ | 648 | 8.b | even | 2 | 1 | inner |
392.2.z.a | ✓ | 648 | 49.g | even | 21 | 1 | inner |
392.2.z.a | ✓ | 648 | 392.z | even | 42 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(392, [\chi])\).