Properties

Label 392.6.i.l.361.2
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-59})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 14x^{2} - 15x + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(-3.07603 - 2.35330i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.l.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(13.1521 - 22.7800i) q^{3} +(48.7603 + 84.4554i) q^{5} +(-224.454 - 388.765i) q^{9} +(-203.088 + 351.758i) q^{11} -905.594 q^{13} +2565.20 q^{15} +(-179.912 + 311.617i) q^{17} +(-906.626 - 1570.32i) q^{19} +(1081.71 + 1873.58i) q^{23} +(-3192.64 + 5529.82i) q^{25} -5416.22 q^{27} -4090.26 q^{29} +(-2225.77 + 3855.14i) q^{31} +(5342.04 + 9252.69i) q^{33} +(-4467.84 - 7738.53i) q^{37} +(-11910.4 + 20629.5i) q^{39} -3415.04 q^{41} -8694.80 q^{43} +(21888.9 - 37912.7i) q^{45} +(-7102.26 - 12301.5i) q^{47} +(4732.44 + 8196.83i) q^{51} +(7308.18 - 12658.1i) q^{53} -39610.5 q^{55} -47696.1 q^{57} +(-10698.4 + 18530.2i) q^{59} +(-27041.0 - 46836.3i) q^{61} +(-44157.0 - 76482.2i) q^{65} +(-22486.6 + 38947.9i) q^{67} +56907.0 q^{69} +5700.89 q^{71} +(-23825.4 + 41266.8i) q^{73} +(83979.7 + 145457. i) q^{75} +(-2904.60 - 5030.91i) q^{79} +(-16692.2 + 28911.8i) q^{81} +27058.2 q^{83} -35090.4 q^{85} +(-53795.3 + 93176.3i) q^{87} +(48122.6 + 83350.8i) q^{89} +(58546.9 + 101406. i) q^{93} +(88414.8 - 153139. i) q^{95} +101968. q^{97} +182335. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 26 q^{3} + 62 q^{5} - 206 q^{9} - 972 q^{11} + 156 q^{13} + 5152 q^{15} - 560 q^{17} - 2642 q^{19} - 2272 q^{23} - 4522 q^{25} - 11128 q^{27} - 15616 q^{29} - 5444 q^{31} + 10512 q^{33} - 576 q^{37}+ \cdots + 89784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.1521 22.7800i 0.843706 1.46134i −0.0430351 0.999074i \(-0.513703\pi\)
0.886741 0.462267i \(-0.152964\pi\)
\(4\) 0 0
\(5\) 48.7603 + 84.4554i 0.872251 + 1.51078i 0.859662 + 0.510863i \(0.170674\pi\)
0.0125893 + 0.999921i \(0.495993\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −224.454 388.765i −0.923678 1.59986i
\(10\) 0 0
\(11\) −203.088 + 351.758i −0.506060 + 0.876521i 0.493916 + 0.869510i \(0.335565\pi\)
−0.999975 + 0.00701124i \(0.997768\pi\)
\(12\) 0 0
\(13\) −905.594 −1.48619 −0.743096 0.669185i \(-0.766643\pi\)
−0.743096 + 0.669185i \(0.766643\pi\)
\(14\) 0 0
\(15\) 2565.20 2.94369
\(16\) 0 0
\(17\) −179.912 + 311.617i −0.150987 + 0.261517i −0.931590 0.363510i \(-0.881578\pi\)
0.780604 + 0.625026i \(0.214912\pi\)
\(18\) 0 0
\(19\) −906.626 1570.32i −0.576162 0.997941i −0.995914 0.0903028i \(-0.971217\pi\)
0.419753 0.907639i \(-0.362117\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1081.71 + 1873.58i 0.426376 + 0.738504i 0.996548 0.0830210i \(-0.0264569\pi\)
−0.570172 + 0.821525i \(0.693124\pi\)
\(24\) 0 0
\(25\) −3192.64 + 5529.82i −1.02165 + 1.76954i
\(26\) 0 0
\(27\) −5416.22 −1.42984
\(28\) 0 0
\(29\) −4090.26 −0.903141 −0.451571 0.892235i \(-0.649136\pi\)
−0.451571 + 0.892235i \(0.649136\pi\)
\(30\) 0 0
\(31\) −2225.77 + 3855.14i −0.415983 + 0.720504i −0.995531 0.0944341i \(-0.969896\pi\)
0.579548 + 0.814938i \(0.303229\pi\)
\(32\) 0 0
\(33\) 5342.04 + 9252.69i 0.853931 + 1.47905i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4467.84 7738.53i −0.536530 0.929296i −0.999088 0.0427075i \(-0.986402\pi\)
0.462558 0.886589i \(-0.346932\pi\)
\(38\) 0 0
\(39\) −11910.4 + 20629.5i −1.25391 + 2.17183i
\(40\) 0 0
\(41\) −3415.04 −0.317275 −0.158637 0.987337i \(-0.550710\pi\)
−0.158637 + 0.987337i \(0.550710\pi\)
\(42\) 0 0
\(43\) −8694.80 −0.717114 −0.358557 0.933508i \(-0.616731\pi\)
−0.358557 + 0.933508i \(0.616731\pi\)
\(44\) 0 0
\(45\) 21888.9 37912.7i 1.61136 2.79096i
\(46\) 0 0
\(47\) −7102.26 12301.5i −0.468977 0.812293i 0.530394 0.847751i \(-0.322044\pi\)
−0.999371 + 0.0354588i \(0.988711\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4732.44 + 8196.83i 0.254777 + 0.441286i
\(52\) 0 0
\(53\) 7308.18 12658.1i 0.357371 0.618985i −0.630150 0.776474i \(-0.717006\pi\)
0.987521 + 0.157489i \(0.0503397\pi\)
\(54\) 0 0
\(55\) −39610.5 −1.76564
\(56\) 0 0
\(57\) −47696.1 −1.94444
\(58\) 0 0
\(59\) −10698.4 + 18530.2i −0.400119 + 0.693027i −0.993740 0.111718i \(-0.964365\pi\)
0.593620 + 0.804745i \(0.297698\pi\)
\(60\) 0 0
\(61\) −27041.0 46836.3i −0.930460 1.61160i −0.782536 0.622605i \(-0.786074\pi\)
−0.147924 0.988999i \(-0.547259\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −44157.0 76482.2i −1.29633 2.24531i
\(66\) 0 0
\(67\) −22486.6 + 38947.9i −0.611978 + 1.05998i 0.378928 + 0.925426i \(0.376293\pi\)
−0.990907 + 0.134552i \(0.957041\pi\)
\(68\) 0 0
\(69\) 56907.0 1.43894
\(70\) 0 0
\(71\) 5700.89 0.134214 0.0671069 0.997746i \(-0.478623\pi\)
0.0671069 + 0.997746i \(0.478623\pi\)
\(72\) 0 0
\(73\) −23825.4 + 41266.8i −0.523279 + 0.906345i 0.476354 + 0.879253i \(0.341958\pi\)
−0.999633 + 0.0270917i \(0.991375\pi\)
\(74\) 0 0
\(75\) 83979.7 + 145457.i 1.72394 + 2.98594i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2904.60 5030.91i −0.0523623 0.0906941i 0.838656 0.544661i \(-0.183342\pi\)
−0.891018 + 0.453967i \(0.850008\pi\)
\(80\) 0 0
\(81\) −16692.2 + 28911.8i −0.282684 + 0.489623i
\(82\) 0 0
\(83\) 27058.2 0.431126 0.215563 0.976490i \(-0.430841\pi\)
0.215563 + 0.976490i \(0.430841\pi\)
\(84\) 0 0
\(85\) −35090.4 −0.526794
\(86\) 0 0
\(87\) −53795.3 + 93176.3i −0.761985 + 1.31980i
\(88\) 0 0
\(89\) 48122.6 + 83350.8i 0.643982 + 1.11541i 0.984536 + 0.175185i \(0.0560523\pi\)
−0.340553 + 0.940225i \(0.610614\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 58546.9 + 101406.i 0.701935 + 1.21579i
\(94\) 0 0
\(95\) 88414.8 153139.i 1.00512 1.74091i
\(96\) 0 0
\(97\) 101968. 1.10036 0.550182 0.835045i \(-0.314558\pi\)
0.550182 + 0.835045i \(0.314558\pi\)
\(98\) 0 0
\(99\) 182335. 1.86974
\(100\) 0 0
\(101\) 10928.4 18928.6i 0.106599 0.184635i −0.807791 0.589469i \(-0.799337\pi\)
0.914390 + 0.404833i \(0.132670\pi\)
\(102\) 0 0
\(103\) 68053.2 + 117872.i 0.632056 + 1.09475i 0.987131 + 0.159915i \(0.0511219\pi\)
−0.355075 + 0.934838i \(0.615545\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13697.4 23724.5i −0.115658 0.200326i 0.802384 0.596808i \(-0.203564\pi\)
−0.918043 + 0.396481i \(0.870231\pi\)
\(108\) 0 0
\(109\) −44284.8 + 76703.5i −0.357016 + 0.618371i −0.987461 0.157864i \(-0.949539\pi\)
0.630444 + 0.776234i \(0.282873\pi\)
\(110\) 0 0
\(111\) −235046. −1.81069
\(112\) 0 0
\(113\) 18947.6 0.139591 0.0697955 0.997561i \(-0.477765\pi\)
0.0697955 + 0.997561i \(0.477765\pi\)
\(114\) 0 0
\(115\) −105489. + 182713.i −0.743813 + 1.28832i
\(116\) 0 0
\(117\) 203264. + 352063.i 1.37276 + 2.37770i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1963.64 3401.13i −0.0121927 0.0211183i
\(122\) 0 0
\(123\) −44914.8 + 77794.7i −0.267687 + 0.463647i
\(124\) 0 0
\(125\) −317945. −1.82002
\(126\) 0 0
\(127\) −188535. −1.03725 −0.518625 0.855002i \(-0.673556\pi\)
−0.518625 + 0.855002i \(0.673556\pi\)
\(128\) 0 0
\(129\) −114355. + 198068.i −0.605033 + 1.04795i
\(130\) 0 0
\(131\) 107081. + 185469.i 0.545171 + 0.944264i 0.998596 + 0.0529693i \(0.0168686\pi\)
−0.453425 + 0.891294i \(0.649798\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −264097. 457429.i −1.24718 2.16018i
\(136\) 0 0
\(137\) 22451.9 38887.9i 0.102200 0.177016i −0.810391 0.585890i \(-0.800745\pi\)
0.912591 + 0.408874i \(0.134078\pi\)
\(138\) 0 0
\(139\) 262924. 1.15423 0.577116 0.816662i \(-0.304178\pi\)
0.577116 + 0.816662i \(0.304178\pi\)
\(140\) 0 0
\(141\) −373638. −1.58272
\(142\) 0 0
\(143\) 183915. 318550.i 0.752102 1.30268i
\(144\) 0 0
\(145\) −199442. 345444.i −0.787766 1.36445i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −104882. 181661.i −0.387022 0.670342i 0.605025 0.796206i \(-0.293163\pi\)
−0.992047 + 0.125864i \(0.959830\pi\)
\(150\) 0 0
\(151\) −165333. + 286364.i −0.590087 + 1.02206i 0.404133 + 0.914700i \(0.367573\pi\)
−0.994220 + 0.107360i \(0.965760\pi\)
\(152\) 0 0
\(153\) 161528. 0.557853
\(154\) 0 0
\(155\) −434117. −1.45137
\(156\) 0 0
\(157\) 255040. 441742.i 0.825769 1.43027i −0.0755611 0.997141i \(-0.524075\pi\)
0.901330 0.433133i \(-0.142592\pi\)
\(158\) 0 0
\(159\) −192235. 332961.i −0.603032 1.04448i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −69.3984 120.201i −0.000204588 0.000354357i 0.865923 0.500177i \(-0.166732\pi\)
−0.866128 + 0.499823i \(0.833398\pi\)
\(164\) 0 0
\(165\) −520960. + 902329.i −1.48968 + 2.58021i
\(166\) 0 0
\(167\) 527469. 1.46354 0.731772 0.681549i \(-0.238693\pi\)
0.731772 + 0.681549i \(0.238693\pi\)
\(168\) 0 0
\(169\) 448807. 1.20877
\(170\) 0 0
\(171\) −406991. + 704930.i −1.06438 + 1.84355i
\(172\) 0 0
\(173\) 172808. + 299312.i 0.438984 + 0.760342i 0.997611 0.0690762i \(-0.0220052\pi\)
−0.558627 + 0.829419i \(0.688672\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 281413. + 487421.i 0.675166 + 1.16942i
\(178\) 0 0
\(179\) −174764. + 302699.i −0.407679 + 0.706121i −0.994629 0.103502i \(-0.966995\pi\)
0.586950 + 0.809623i \(0.300328\pi\)
\(180\) 0 0
\(181\) −469274. −1.06471 −0.532353 0.846522i \(-0.678692\pi\)
−0.532353 + 0.846522i \(0.678692\pi\)
\(182\) 0 0
\(183\) −1.42258e6 −3.14014
\(184\) 0 0
\(185\) 435707. 754667.i 0.935977 1.62116i
\(186\) 0 0
\(187\) −73076.0 126571.i −0.152817 0.264686i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −425662. 737268.i −0.844270 1.46232i −0.886254 0.463200i \(-0.846701\pi\)
0.0419839 0.999118i \(-0.486632\pi\)
\(192\) 0 0
\(193\) −61442.9 + 106422.i −0.118735 + 0.205655i −0.919267 0.393635i \(-0.871217\pi\)
0.800532 + 0.599290i \(0.204551\pi\)
\(194\) 0 0
\(195\) −2.32303e6 −4.37489
\(196\) 0 0
\(197\) 744847. 1.36742 0.683709 0.729755i \(-0.260366\pi\)
0.683709 + 0.729755i \(0.260366\pi\)
\(198\) 0 0
\(199\) −163369. + 282963.i −0.292440 + 0.506521i −0.974386 0.224882i \(-0.927800\pi\)
0.681946 + 0.731402i \(0.261134\pi\)
\(200\) 0 0
\(201\) 591490. + 1.02449e6i 1.03266 + 1.78862i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −166518. 288418.i −0.276744 0.479334i
\(206\) 0 0
\(207\) 485589. 841065.i 0.787668 1.36428i
\(208\) 0 0
\(209\) 736498. 1.16629
\(210\) 0 0
\(211\) 336421. 0.520209 0.260104 0.965581i \(-0.416243\pi\)
0.260104 + 0.965581i \(0.416243\pi\)
\(212\) 0 0
\(213\) 74978.5 129867.i 0.113237 0.196132i
\(214\) 0 0
\(215\) −423961. 734322.i −0.625504 1.08340i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 626706. + 1.08549e6i 0.882986 + 1.52938i
\(220\) 0 0
\(221\) 162928. 282199.i 0.224395 0.388664i
\(222\) 0 0
\(223\) 633862. 0.853556 0.426778 0.904356i \(-0.359649\pi\)
0.426778 + 0.904356i \(0.359649\pi\)
\(224\) 0 0
\(225\) 2.86640e6 3.77468
\(226\) 0 0
\(227\) 148704. 257563.i 0.191539 0.331756i −0.754221 0.656620i \(-0.771985\pi\)
0.945761 + 0.324864i \(0.105319\pi\)
\(228\) 0 0
\(229\) −297476. 515244.i −0.374855 0.649269i 0.615450 0.788176i \(-0.288974\pi\)
−0.990305 + 0.138907i \(0.955641\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −75447.0 130678.i −0.0910442 0.157693i 0.816907 0.576770i \(-0.195687\pi\)
−0.907951 + 0.419077i \(0.862354\pi\)
\(234\) 0 0
\(235\) 692617. 1.19965e6i 0.818132 1.41705i
\(236\) 0 0
\(237\) −152806. −0.176713
\(238\) 0 0
\(239\) −826500. −0.935941 −0.467970 0.883744i \(-0.655015\pi\)
−0.467970 + 0.883744i \(0.655015\pi\)
\(240\) 0 0
\(241\) −683864. + 1.18449e6i −0.758450 + 1.31367i 0.185191 + 0.982703i \(0.440710\pi\)
−0.943641 + 0.330971i \(0.892624\pi\)
\(242\) 0 0
\(243\) −218996. 379313.i −0.237915 0.412080i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 821035. + 1.42207e6i 0.856287 + 1.48313i
\(248\) 0 0
\(249\) 355872. 616388.i 0.363743 0.630022i
\(250\) 0 0
\(251\) 1.73585e6 1.73911 0.869557 0.493832i \(-0.164404\pi\)
0.869557 + 0.493832i \(0.164404\pi\)
\(252\) 0 0
\(253\) −878730. −0.863086
\(254\) 0 0
\(255\) −461511. + 799360.i −0.444459 + 0.769825i
\(256\) 0 0
\(257\) 1.02337e6 + 1.77253e6i 0.966496 + 1.67402i 0.705540 + 0.708670i \(0.250705\pi\)
0.260957 + 0.965351i \(0.415962\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 918074. + 1.59015e6i 0.834212 + 1.44490i
\(262\) 0 0
\(263\) 202868. 351378.i 0.180853 0.313246i −0.761318 0.648378i \(-0.775448\pi\)
0.942171 + 0.335132i \(0.108781\pi\)
\(264\) 0 0
\(265\) 1.42540e6 1.24687
\(266\) 0 0
\(267\) 2.53165e6 2.17333
\(268\) 0 0
\(269\) 740187. 1.28204e6i 0.623678 1.08024i −0.365117 0.930962i \(-0.618971\pi\)
0.988795 0.149281i \(-0.0476958\pi\)
\(270\) 0 0
\(271\) −228738. 396186.i −0.189198 0.327700i 0.755785 0.654819i \(-0.227255\pi\)
−0.944983 + 0.327120i \(0.893922\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.29677e6 2.24607e6i −1.03403 1.79099i
\(276\) 0 0
\(277\) −729152. + 1.26293e6i −0.570977 + 0.988961i 0.425489 + 0.904964i \(0.360102\pi\)
−0.996466 + 0.0839974i \(0.973231\pi\)
\(278\) 0 0
\(279\) 1.99833e6 1.53694
\(280\) 0 0
\(281\) −1.90172e6 −1.43675 −0.718373 0.695658i \(-0.755113\pi\)
−0.718373 + 0.695658i \(0.755113\pi\)
\(282\) 0 0
\(283\) −505935. + 876305.i −0.375516 + 0.650413i −0.990404 0.138202i \(-0.955868\pi\)
0.614888 + 0.788614i \(0.289201\pi\)
\(284\) 0 0
\(285\) −2.32568e6 4.02819e6i −1.69604 2.93763i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 645192. + 1.11750e6i 0.454406 + 0.787054i
\(290\) 0 0
\(291\) 1.34110e6 2.32285e6i 0.928383 1.60801i
\(292\) 0 0
\(293\) 1.30915e6 0.890882 0.445441 0.895311i \(-0.353047\pi\)
0.445441 + 0.895311i \(0.353047\pi\)
\(294\) 0 0
\(295\) −2.08663e6 −1.39602
\(296\) 0 0
\(297\) 1.09997e6 1.90520e6i 0.723583 1.25328i
\(298\) 0 0
\(299\) −979592. 1.69670e6i −0.633676 1.09756i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −287463. 497900.i −0.179877 0.311556i
\(304\) 0 0
\(305\) 2.63705e6 4.56751e6i 1.62319 2.81145i
\(306\) 0 0
\(307\) −1.83705e6 −1.11244 −0.556219 0.831036i \(-0.687748\pi\)
−0.556219 + 0.831036i \(0.687748\pi\)
\(308\) 0 0
\(309\) 3.58016e6 2.13307
\(310\) 0 0
\(311\) −709767. + 1.22935e6i −0.416116 + 0.720735i −0.995545 0.0942883i \(-0.969942\pi\)
0.579429 + 0.815023i \(0.303276\pi\)
\(312\) 0 0
\(313\) −1.33631e6 2.31455e6i −0.770983 1.33538i −0.937025 0.349264i \(-0.886432\pi\)
0.166041 0.986119i \(-0.446902\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17033.2 29502.3i −0.00952024 0.0164895i 0.861226 0.508222i \(-0.169697\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(318\) 0 0
\(319\) 830681. 1.43878e6i 0.457043 0.791622i
\(320\) 0 0
\(321\) −720595. −0.390327
\(322\) 0 0
\(323\) 652453. 0.347971
\(324\) 0 0
\(325\) 2.89124e6 5.00777e6i 1.51836 2.62988i
\(326\) 0 0
\(327\) 1.16487e6 + 2.01762e6i 0.602434 + 1.04345i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −775251. 1.34277e6i −0.388931 0.673648i 0.603375 0.797458i \(-0.293822\pi\)
−0.992306 + 0.123809i \(0.960489\pi\)
\(332\) 0 0
\(333\) −2.00565e6 + 3.47389e6i −0.991161 + 1.71674i
\(334\) 0 0
\(335\) −4.38581e6 −2.13520
\(336\) 0 0
\(337\) −3.49728e6 −1.67747 −0.838736 0.544539i \(-0.816705\pi\)
−0.838736 + 0.544539i \(0.816705\pi\)
\(338\) 0 0
\(339\) 249200. 431626.i 0.117774 0.203990i
\(340\) 0 0
\(341\) −904052. 1.56586e6i −0.421025 0.729236i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.77481e6 + 4.80611e6i 1.25512 + 2.17393i
\(346\) 0 0
\(347\) −1.62912e6 + 2.82172e6i −0.726323 + 1.25803i 0.232105 + 0.972691i \(0.425439\pi\)
−0.958427 + 0.285337i \(0.907894\pi\)
\(348\) 0 0
\(349\) −1.40547e6 −0.617672 −0.308836 0.951115i \(-0.599940\pi\)
−0.308836 + 0.951115i \(0.599940\pi\)
\(350\) 0 0
\(351\) 4.90489e6 2.12501
\(352\) 0 0
\(353\) −1.18681e6 + 2.05561e6i −0.506924 + 0.878018i 0.493044 + 0.870004i \(0.335884\pi\)
−0.999968 + 0.00801339i \(0.997449\pi\)
\(354\) 0 0
\(355\) 277978. + 481471.i 0.117068 + 0.202768i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 392801. + 680351.i 0.160856 + 0.278610i 0.935176 0.354184i \(-0.115241\pi\)
−0.774320 + 0.632794i \(0.781908\pi\)
\(360\) 0 0
\(361\) −405894. + 703028.i −0.163925 + 0.283926i
\(362\) 0 0
\(363\) −103304. −0.0411481
\(364\) 0 0
\(365\) −4.64694e6 −1.82572
\(366\) 0 0
\(367\) 1.31344e6 2.27494e6i 0.509031 0.881667i −0.490914 0.871208i \(-0.663337\pi\)
0.999945 0.0104596i \(-0.00332945\pi\)
\(368\) 0 0
\(369\) 766518. + 1.32765e6i 0.293060 + 0.507595i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.21737e6 2.10855e6i −0.453056 0.784717i 0.545518 0.838099i \(-0.316333\pi\)
−0.998574 + 0.0533826i \(0.983000\pi\)
\(374\) 0 0
\(375\) −4.18163e6 + 7.24280e6i −1.53556 + 2.65967i
\(376\) 0 0
\(377\) 3.70411e6 1.34224
\(378\) 0 0
\(379\) 83774.3 0.0299580 0.0149790 0.999888i \(-0.495232\pi\)
0.0149790 + 0.999888i \(0.495232\pi\)
\(380\) 0 0
\(381\) −2.47963e6 + 4.29484e6i −0.875133 + 1.51577i
\(382\) 0 0
\(383\) −877048. 1.51909e6i −0.305511 0.529160i 0.671864 0.740674i \(-0.265494\pi\)
−0.977375 + 0.211514i \(0.932160\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.95158e6 + 3.38024e6i 0.662383 + 1.14728i
\(388\) 0 0
\(389\) −1.87797e6 + 3.25274e6i −0.629238 + 1.08987i 0.358467 + 0.933543i \(0.383300\pi\)
−0.987705 + 0.156330i \(0.950034\pi\)
\(390\) 0 0
\(391\) −778454. −0.257508
\(392\) 0 0
\(393\) 5.63333e6 1.83985
\(394\) 0 0
\(395\) 283259. 490618.i 0.0913462 0.158216i
\(396\) 0 0
\(397\) 501332. + 868333.i 0.159643 + 0.276509i 0.934740 0.355333i \(-0.115632\pi\)
−0.775097 + 0.631842i \(0.782299\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.65671e6 4.60156e6i −0.825056 1.42904i −0.901877 0.431994i \(-0.857810\pi\)
0.0768209 0.997045i \(-0.475523\pi\)
\(402\) 0 0
\(403\) 2.01564e6 3.49119e6i 0.618231 1.07081i
\(404\) 0 0
\(405\) −3.25567e6 −0.986286
\(406\) 0 0
\(407\) 3.62945e6 1.08606
\(408\) 0 0
\(409\) 2.29332e6 3.97214e6i 0.677884 1.17413i −0.297732 0.954649i \(-0.596230\pi\)
0.975617 0.219481i \(-0.0704364\pi\)
\(410\) 0 0
\(411\) −590579. 1.02291e6i −0.172454 0.298699i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.31937e6 + 2.28521e6i 0.376050 + 0.651338i
\(416\) 0 0
\(417\) 3.45800e6 5.98942e6i 0.973833 1.68673i
\(418\) 0 0
\(419\) 2.29852e6 0.639607 0.319803 0.947484i \(-0.396383\pi\)
0.319803 + 0.947484i \(0.396383\pi\)
\(420\) 0 0
\(421\) −5554.63 −0.00152739 −0.000763695 1.00000i \(-0.500243\pi\)
−0.000763695 1.00000i \(0.500243\pi\)
\(422\) 0 0
\(423\) −3.18826e6 + 5.52222e6i −0.866368 + 1.50059i
\(424\) 0 0
\(425\) −1.14879e6 1.98977e6i −0.308510 0.534355i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.83772e6 8.37918e6i −1.26910 2.19815i
\(430\) 0 0
\(431\) 2.08596e6 3.61299e6i 0.540895 0.936858i −0.457957 0.888974i \(-0.651419\pi\)
0.998853 0.0478842i \(-0.0152479\pi\)
\(432\) 0 0
\(433\) 1.68030e6 0.430693 0.215347 0.976538i \(-0.430912\pi\)
0.215347 + 0.976538i \(0.430912\pi\)
\(434\) 0 0
\(435\) −1.04923e7 −2.65857
\(436\) 0 0
\(437\) 1.96142e6 3.39728e6i 0.491323 0.850996i
\(438\) 0 0
\(439\) 1.06450e6 + 1.84376e6i 0.263623 + 0.456608i 0.967202 0.254009i \(-0.0817493\pi\)
−0.703579 + 0.710617i \(0.748416\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.73075e6 + 4.72980e6i 0.661108 + 1.14507i 0.980325 + 0.197391i \(0.0632468\pi\)
−0.319217 + 0.947682i \(0.603420\pi\)
\(444\) 0 0
\(445\) −4.69295e6 + 8.12842e6i −1.12343 + 1.94584i
\(446\) 0 0
\(447\) −5.51767e6 −1.30613
\(448\) 0 0
\(449\) 1.17382e6 0.274779 0.137390 0.990517i \(-0.456129\pi\)
0.137390 + 0.990517i \(0.456129\pi\)
\(450\) 0 0
\(451\) 693552. 1.20127e6i 0.160560 0.278098i
\(452\) 0 0
\(453\) 4.34893e6 + 7.53257e6i 0.995719 + 1.72464i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.94116e6 3.36218e6i −0.434780 0.753062i 0.562497 0.826799i \(-0.309841\pi\)
−0.997278 + 0.0737374i \(0.976507\pi\)
\(458\) 0 0
\(459\) 974445. 1.68779e6i 0.215887 0.373926i
\(460\) 0 0
\(461\) −1.13112e6 −0.247889 −0.123945 0.992289i \(-0.539555\pi\)
−0.123945 + 0.992289i \(0.539555\pi\)
\(462\) 0 0
\(463\) −1.74204e6 −0.377664 −0.188832 0.982009i \(-0.560470\pi\)
−0.188832 + 0.982009i \(0.560470\pi\)
\(464\) 0 0
\(465\) −5.70954e6 + 9.88921e6i −1.22453 + 2.12094i
\(466\) 0 0
\(467\) −2.48405e6 4.30251e6i −0.527071 0.912913i −0.999502 0.0315460i \(-0.989957\pi\)
0.472432 0.881367i \(-0.343376\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.70860e6 1.16196e7i −1.39341 2.41346i
\(472\) 0 0
\(473\) 1.76581e6 3.05846e6i 0.362903 0.628566i
\(474\) 0 0
\(475\) 1.15781e7 2.35453
\(476\) 0 0
\(477\) −6.56140e6 −1.32038
\(478\) 0 0
\(479\) −864744. + 1.49778e6i −0.172206 + 0.298270i −0.939191 0.343396i \(-0.888423\pi\)
0.766985 + 0.641665i \(0.221756\pi\)
\(480\) 0 0
\(481\) 4.04605e6 + 7.00797e6i 0.797386 + 1.38111i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.97202e6 + 8.61178e6i 0.959794 + 1.66241i
\(486\) 0 0
\(487\) 1.95131e6 3.37976e6i 0.372824 0.645749i −0.617175 0.786826i \(-0.711723\pi\)
0.989999 + 0.141077i \(0.0450564\pi\)
\(488\) 0 0
\(489\) −3650.93 −0.000690448
\(490\) 0 0
\(491\) −8.62067e6 −1.61375 −0.806877 0.590720i \(-0.798844\pi\)
−0.806877 + 0.590720i \(0.798844\pi\)
\(492\) 0 0
\(493\) 735888. 1.27460e6i 0.136362 0.236187i
\(494\) 0 0
\(495\) 8.89072e6 + 1.53992e7i 1.63089 + 2.82478i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.50893e6 + 6.07765e6i 0.630846 + 1.09266i 0.987379 + 0.158375i \(0.0506256\pi\)
−0.356533 + 0.934283i \(0.616041\pi\)
\(500\) 0 0
\(501\) 6.93731e6 1.20158e7i 1.23480 2.13874i
\(502\) 0 0
\(503\) −3.89602e6 −0.686596 −0.343298 0.939226i \(-0.611544\pi\)
−0.343298 + 0.939226i \(0.611544\pi\)
\(504\) 0 0
\(505\) 2.13149e6 0.371925
\(506\) 0 0
\(507\) 5.90274e6 1.02238e7i 1.01984 1.76642i
\(508\) 0 0
\(509\) −774023. 1.34065e6i −0.132422 0.229361i 0.792188 0.610277i \(-0.208942\pi\)
−0.924610 + 0.380916i \(0.875609\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.91049e6 + 8.50521e6i 0.823818 + 1.42689i
\(514\) 0 0
\(515\) −6.63659e6 + 1.14949e7i −1.10262 + 1.90980i
\(516\) 0 0
\(517\) 5.76952e6 0.949322
\(518\) 0 0
\(519\) 9.09113e6 1.48149
\(520\) 0 0
\(521\) −3.55535e6 + 6.15804e6i −0.573836 + 0.993913i 0.422331 + 0.906442i \(0.361212\pi\)
−0.996167 + 0.0874713i \(0.972121\pi\)
\(522\) 0 0
\(523\) −2.68665e6 4.65341e6i −0.429493 0.743904i 0.567335 0.823487i \(-0.307974\pi\)
−0.996828 + 0.0795831i \(0.974641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −800887. 1.38718e6i −0.125616 0.217573i
\(528\) 0 0
\(529\) 877967. 1.52068e6i 0.136408 0.236265i
\(530\) 0 0
\(531\) 9.60520e6 1.47833
\(532\) 0 0
\(533\) 3.09264e6 0.471532
\(534\) 0 0
\(535\) 1.33578e6 2.31363e6i 0.201767 0.349470i
\(536\) 0 0
\(537\) 4.59701e6 + 7.96225e6i 0.687922 + 1.19152i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.63040e6 4.55598e6i −0.386392 0.669251i 0.605569 0.795793i \(-0.292945\pi\)
−0.991961 + 0.126542i \(0.959612\pi\)
\(542\) 0 0
\(543\) −6.17192e6 + 1.06901e7i −0.898299 + 1.55590i
\(544\) 0 0
\(545\) −8.63736e6 −1.24563
\(546\) 0 0
\(547\) 4.26833e6 0.609943 0.304972 0.952361i \(-0.401353\pi\)
0.304972 + 0.952361i \(0.401353\pi\)
\(548\) 0 0
\(549\) −1.21389e7 + 2.10252e7i −1.71889 + 2.97721i
\(550\) 0 0
\(551\) 3.70834e6 + 6.42303e6i 0.520355 + 0.901282i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.14609e7 1.98509e7i −1.57938 2.73556i
\(556\) 0 0
\(557\) 2.64036e6 4.57323e6i 0.360599 0.624576i −0.627461 0.778648i \(-0.715906\pi\)
0.988060 + 0.154073i \(0.0492390\pi\)
\(558\) 0 0
\(559\) 7.87395e6 1.06577
\(560\) 0 0
\(561\) −3.84440e6 −0.515729
\(562\) 0 0
\(563\) −4.49115e6 + 7.77889e6i −0.597154 + 1.03430i 0.396085 + 0.918214i \(0.370369\pi\)
−0.993239 + 0.116087i \(0.962965\pi\)
\(564\) 0 0
\(565\) 923890. + 1.60022e6i 0.121758 + 0.210892i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.32855e6 9.22931e6i −0.689966 1.19506i −0.971848 0.235608i \(-0.924292\pi\)
0.281882 0.959449i \(-0.409041\pi\)
\(570\) 0 0
\(571\) 1.76406e6 3.05545e6i 0.226425 0.392179i −0.730321 0.683104i \(-0.760630\pi\)
0.956746 + 0.290925i \(0.0939630\pi\)
\(572\) 0 0
\(573\) −2.23933e7 −2.84926
\(574\) 0 0
\(575\) −1.38141e7 −1.74242
\(576\) 0 0
\(577\) −1.31656e6 + 2.28035e6i −0.164627 + 0.285143i −0.936523 0.350607i \(-0.885975\pi\)
0.771896 + 0.635749i \(0.219309\pi\)
\(578\) 0 0
\(579\) 1.61620e6 + 2.79935e6i 0.200355 + 0.347025i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.96840e6 + 5.14142e6i 0.361702 + 0.626487i
\(584\) 0 0
\(585\) −1.98224e7 + 3.43335e7i −2.39479 + 4.14790i
\(586\) 0 0
\(587\) −1.04984e7 −1.25755 −0.628776 0.777586i \(-0.716444\pi\)
−0.628776 + 0.777586i \(0.716444\pi\)
\(588\) 0 0
\(589\) 8.07176e6 0.958694
\(590\) 0 0
\(591\) 9.79627e6 1.69676e7i 1.15370 1.99826i
\(592\) 0 0
\(593\) −2.23477e6 3.87073e6i −0.260973 0.452018i 0.705528 0.708682i \(-0.250710\pi\)
−0.966501 + 0.256664i \(0.917377\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.29728e6 + 7.44310e6i 0.493466 + 0.854709i
\(598\) 0 0
\(599\) −4.22152e6 + 7.31189e6i −0.480731 + 0.832650i −0.999756 0.0221092i \(-0.992962\pi\)
0.519025 + 0.854759i \(0.326295\pi\)
\(600\) 0 0
\(601\) −1.38045e7 −1.55896 −0.779481 0.626426i \(-0.784517\pi\)
−0.779481 + 0.626426i \(0.784517\pi\)
\(602\) 0 0
\(603\) 2.01888e7 2.26108
\(604\) 0 0
\(605\) 191496. 331680.i 0.0212702 0.0368410i
\(606\) 0 0
\(607\) 3.21919e6 + 5.57579e6i 0.354629 + 0.614236i 0.987054 0.160386i \(-0.0512738\pi\)
−0.632425 + 0.774621i \(0.717940\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.43176e6 + 1.11401e7i 0.696990 + 1.20722i
\(612\) 0 0
\(613\) 649869. 1.12561e6i 0.0698513 0.120986i −0.828984 0.559272i \(-0.811081\pi\)
0.898836 + 0.438286i \(0.144414\pi\)
\(614\) 0 0
\(615\) −8.76024e6 −0.933960
\(616\) 0 0
\(617\) −5.51795e6 −0.583532 −0.291766 0.956490i \(-0.594243\pi\)
−0.291766 + 0.956490i \(0.594243\pi\)
\(618\) 0 0
\(619\) 4.68387e6 8.11270e6i 0.491335 0.851018i −0.508615 0.860994i \(-0.669842\pi\)
0.999950 + 0.00997644i \(0.00317565\pi\)
\(620\) 0 0
\(621\) −5.85879e6 1.01477e7i −0.609648 1.05594i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.52610e6 9.57148e6i −0.565872 0.980120i
\(626\) 0 0
\(627\) 9.68648e6 1.67775e7i 0.984004 1.70435i
\(628\) 0 0
\(629\) 3.21528e6 0.324035
\(630\) 0 0
\(631\) 7.50281e6 0.750154 0.375077 0.926994i \(-0.377616\pi\)
0.375077 + 0.926994i \(0.377616\pi\)
\(632\) 0 0
\(633\) 4.42464e6 7.66370e6i 0.438903 0.760202i
\(634\) 0 0
\(635\) −9.19304e6 1.59228e7i −0.904742 1.56706i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.27959e6 2.21631e6i −0.123970 0.214723i
\(640\) 0 0
\(641\) −56350.3 + 97601.5i −0.00541690 + 0.00938235i −0.868721 0.495301i \(-0.835058\pi\)
0.863304 + 0.504684i \(0.168391\pi\)
\(642\) 0 0
\(643\) 453508. 0.0432572 0.0216286 0.999766i \(-0.493115\pi\)
0.0216286 + 0.999766i \(0.493115\pi\)
\(644\) 0 0
\(645\) −2.23039e7 −2.11096
\(646\) 0 0
\(647\) −3.85516e6 + 6.67734e6i −0.362061 + 0.627108i −0.988300 0.152523i \(-0.951260\pi\)
0.626239 + 0.779631i \(0.284593\pi\)
\(648\) 0 0
\(649\) −4.34543e6 7.52651e6i −0.404969 0.701426i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.99333e6 + 5.18459e6i 0.274708 + 0.475808i 0.970061 0.242860i \(-0.0780855\pi\)
−0.695354 + 0.718668i \(0.744752\pi\)
\(654\) 0 0
\(655\) −1.04426e7 + 1.80871e7i −0.951052 + 1.64727i
\(656\) 0 0
\(657\) 2.13908e7 1.93336
\(658\) 0 0
\(659\) −1.44274e7 −1.29412 −0.647058 0.762441i \(-0.724001\pi\)
−0.647058 + 0.762441i \(0.724001\pi\)
\(660\) 0 0
\(661\) 9.01844e6 1.56204e7i 0.802838 1.39056i −0.114903 0.993377i \(-0.536656\pi\)
0.917741 0.397180i \(-0.130011\pi\)
\(662\) 0 0
\(663\) −4.28567e6 7.42299e6i −0.378647 0.655836i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.42448e6 7.66343e6i −0.385077 0.666974i
\(668\) 0 0
\(669\) 8.33659e6 1.44394e7i 0.720150 1.24734i
\(670\) 0 0
\(671\) 2.19667e7 1.88347
\(672\) 0 0
\(673\) −1.58113e7 −1.34564 −0.672820 0.739806i \(-0.734917\pi\)
−0.672820 + 0.739806i \(0.734917\pi\)
\(674\) 0 0
\(675\) 1.72920e7 2.99507e7i 1.46079 2.53016i
\(676\) 0 0
\(677\) 6.39384e6 + 1.10744e7i 0.536154 + 0.928647i 0.999107 + 0.0422633i \(0.0134569\pi\)
−0.462952 + 0.886383i \(0.653210\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.91153e6 6.77497e6i −0.323206 0.559809i
\(682\) 0 0
\(683\) 2.08745e6 3.61558e6i 0.171224 0.296569i −0.767624 0.640901i \(-0.778561\pi\)
0.938848 + 0.344332i \(0.111894\pi\)
\(684\) 0 0
\(685\) 4.37906e6 0.356578
\(686\) 0 0
\(687\) −1.56497e7 −1.26507
\(688\) 0 0
\(689\) −6.61824e6 + 1.14631e7i −0.531122 + 0.919931i
\(690\) 0 0
\(691\) 4.15804e6 + 7.20194e6i 0.331279 + 0.573792i 0.982763 0.184870i \(-0.0591865\pi\)
−0.651484 + 0.758662i \(0.725853\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.28203e7 + 2.22054e7i 1.00678 + 1.74380i
\(696\) 0 0
\(697\) 614408. 1.06419e6i 0.0479043 0.0829727i
\(698\) 0 0
\(699\) −3.96914e6 −0.307258
\(700\) 0 0
\(701\) −1.67718e6 −0.128909 −0.0644546 0.997921i \(-0.520531\pi\)
−0.0644546 + 0.997921i \(0.520531\pi\)
\(702\) 0 0
\(703\) −8.10133e6 + 1.40319e7i −0.618256 + 1.07085i
\(704\) 0 0
\(705\) −1.82187e7 3.15557e7i −1.38053 2.39114i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.30467e6 1.43841e7i −0.620450 1.07465i −0.989402 0.145202i \(-0.953617\pi\)
0.368952 0.929448i \(-0.379717\pi\)
\(710\) 0 0
\(711\) −1.30390e6 + 2.25842e6i −0.0967318 + 0.167544i
\(712\) 0 0
\(713\) −9.63057e6 −0.709460
\(714\) 0 0
\(715\) 3.58710e7 2.62409
\(716\) 0 0
\(717\) −1.08702e7 + 1.88277e7i −0.789658 + 1.36773i
\(718\) 0 0
\(719\) 1.16401e7 + 2.01613e7i 0.839722 + 1.45444i 0.890127 + 0.455712i \(0.150615\pi\)
−0.0504057 + 0.998729i \(0.516051\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.79884e7 + 3.11569e7i 1.27982 + 2.21671i
\(724\) 0 0
\(725\) 1.30587e7 2.26184e7i 0.922690 1.59815i
\(726\) 0 0
\(727\) −1.74527e7 −1.22469 −0.612345 0.790591i \(-0.709774\pi\)
−0.612345 + 0.790591i \(0.709774\pi\)
\(728\) 0 0
\(729\) −1.96334e7 −1.36829
\(730\) 0 0
\(731\) 1.56430e6 2.70945e6i 0.108275 0.187537i
\(732\) 0 0
\(733\) −470338. 814649.i −0.0323333 0.0560029i 0.849406 0.527740i \(-0.176960\pi\)
−0.881739 + 0.471737i \(0.843627\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.13348e6 1.58197e7i −0.619395 1.07282i
\(738\) 0 0
\(739\) −5.69498e6 + 9.86399e6i −0.383602 + 0.664418i −0.991574 0.129540i \(-0.958650\pi\)
0.607972 + 0.793958i \(0.291983\pi\)
\(740\) 0 0
\(741\) 4.31932e7 2.88982
\(742\) 0 0
\(743\) 262087. 0.0174170 0.00870851 0.999962i \(-0.497228\pi\)
0.00870851 + 0.999962i \(0.497228\pi\)
\(744\) 0 0
\(745\) 1.02282e7 1.77157e7i 0.675161 1.16941i
\(746\) 0 0
\(747\) −6.07332e6 1.05193e7i −0.398222 0.689740i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −553382. 958485.i −0.0358035 0.0620134i 0.847568 0.530686i \(-0.178066\pi\)
−0.883372 + 0.468673i \(0.844732\pi\)
\(752\) 0 0
\(753\) 2.28300e7 3.95428e7i 1.46730 2.54144i
\(754\) 0 0
\(755\) −3.22467e7 −2.05882
\(756\) 0 0
\(757\) 3.07218e7 1.94853 0.974264 0.225412i \(-0.0723728\pi\)
0.974264 + 0.225412i \(0.0723728\pi\)
\(758\) 0 0
\(759\) −1.15571e7 + 2.00175e7i −0.728190 + 1.26126i
\(760\) 0 0
\(761\) −5.93175e6 1.02741e7i −0.371297 0.643104i 0.618469 0.785809i \(-0.287753\pi\)
−0.989765 + 0.142705i \(0.954420\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.87616e6 + 1.36419e7i 0.486588 + 0.842795i
\(766\) 0 0
\(767\) 9.68842e6 1.67808e7i 0.594654 1.02997i
\(768\) 0 0
\(769\) 2.08006e7 1.26841 0.634204 0.773166i \(-0.281328\pi\)
0.634204 + 0.773166i \(0.281328\pi\)
\(770\) 0 0
\(771\) 5.38378e7 3.26175
\(772\) 0 0
\(773\) −5.63165e6 + 9.75430e6i −0.338990 + 0.587148i −0.984243 0.176821i \(-0.943419\pi\)
0.645253 + 0.763969i \(0.276752\pi\)
\(774\) 0 0
\(775\) −1.42122e7 2.46162e7i −0.849974 1.47220i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.09616e6 + 5.36271e6i 0.182802 + 0.316622i
\(780\) 0 0
\(781\) −1.15778e6 + 2.00534e6i −0.0679202 + 0.117641i
\(782\) 0 0
\(783\) 2.21537e7 1.29135
\(784\) 0 0
\(785\) 4.97433e7 2.88111
\(786\) 0 0
\(787\) −1.32971e7 + 2.30312e7i −0.765278 + 1.32550i 0.174821 + 0.984600i \(0.444065\pi\)
−0.940099 + 0.340900i \(0.889268\pi\)
\(788\) 0 0
\(789\) −5.33628e6 9.24270e6i −0.305173 0.528575i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.44881e7 + 4.24147e7i 1.38284 + 2.39515i
\(794\) 0 0
\(795\) 1.87469e7 3.24706e7i 1.05199 1.82210i
\(796\) 0 0
\(797\) 1.25159e7 0.697938 0.348969 0.937134i \(-0.386532\pi\)
0.348969 + 0.937134i \(0.386532\pi\)
\(798\) 0 0
\(799\) 5.11114e6 0.283237
\(800\) 0 0
\(801\) 2.16026e7 3.74168e7i 1.18966 2.06056i
\(802\) 0 0
\(803\) −9.67728e6 1.67615e7i −0.529620 0.917329i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.94700e7 3.37230e7i −1.05240 1.82281i
\(808\) 0 0
\(809\) −5.12955e6 + 8.88464e6i −0.275555 + 0.477275i −0.970275 0.242005i \(-0.922195\pi\)
0.694720 + 0.719280i \(0.255528\pi\)
\(810\) 0 0
\(811\) 1.32031e7 0.704892 0.352446 0.935832i \(-0.385350\pi\)
0.352446 + 0.935832i \(0.385350\pi\)
\(812\) 0 0
\(813\) −1.20335e7 −0.638508
\(814\) 0 0
\(815\) 6767.77 11722.1i 0.000356904 0.000618177i
\(816\) 0 0
\(817\) 7.88293e6 + 1.36536e7i 0.413174 + 0.715638i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.44070e7 2.49536e7i −0.745958 1.29204i −0.949746 0.313023i \(-0.898658\pi\)
0.203787 0.979015i \(-0.434675\pi\)
\(822\) 0 0
\(823\) −1.36049e7 + 2.35643e7i −0.700156 + 1.21271i 0.268256 + 0.963348i \(0.413553\pi\)
−0.968411 + 0.249358i \(0.919780\pi\)
\(824\) 0 0
\(825\) −6.82209e7 −3.48966
\(826\) 0 0
\(827\) 3.36307e7 1.70991 0.854954 0.518705i \(-0.173586\pi\)
0.854954 + 0.518705i \(0.173586\pi\)
\(828\) 0 0
\(829\) 1.65417e7 2.86511e7i 0.835978 1.44796i −0.0572543 0.998360i \(-0.518235\pi\)
0.893232 0.449596i \(-0.148432\pi\)
\(830\) 0 0
\(831\) 1.91797e7 + 3.32202e7i 0.963473 + 1.66878i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.57196e7 + 4.45476e7i 1.27658 + 2.21110i
\(836\) 0 0
\(837\) 1.20553e7 2.08803e7i 0.594789 1.03020i
\(838\) 0 0
\(839\) 1.85094e7 0.907796 0.453898 0.891054i \(-0.350033\pi\)
0.453898 + 0.891054i \(0.350033\pi\)
\(840\) 0 0
\(841\) −3.78094e6 −0.184336
\(842\) 0 0
\(843\) −2.50115e7 + 4.33212e7i −1.21219 + 2.09958i
\(844\) 0 0
\(845\) 2.18840e7 + 3.79041e7i 1.05435 + 1.82619i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.33082e7 + 2.30504e7i 0.633650 + 1.09751i
\(850\) 0 0
\(851\) 9.66585e6 1.67417e7i 0.457526 0.792459i
\(852\) 0 0
\(853\) 1.52810e7 0.719086 0.359543 0.933129i \(-0.382933\pi\)
0.359543 + 0.933129i \(0.382933\pi\)
\(854\) 0 0
\(855\) −7.93802e7 −3.71361
\(856\) 0 0
\(857\) −2.55315e6 + 4.42218e6i −0.118747 + 0.205676i −0.919271 0.393624i \(-0.871221\pi\)
0.800524 + 0.599300i \(0.204554\pi\)
\(858\) 0 0
\(859\) 1.16468e7 + 2.01728e7i 0.538546 + 0.932788i 0.998983 + 0.0450959i \(0.0143594\pi\)
−0.460437 + 0.887692i \(0.652307\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.21283e7 2.10069e7i −0.554337 0.960139i −0.997955 0.0639235i \(-0.979639\pi\)
0.443618 0.896216i \(-0.353695\pi\)
\(864\) 0 0
\(865\) −1.68524e7 + 2.91891e7i −0.765809 + 1.32642i
\(866\) 0 0
\(867\) 3.39424e7 1.53354
\(868\) 0 0
\(869\) 2.35955e6 0.105994
\(870\) 0 0
\(871\) 2.03637e7 3.52709e7i 0.909517 1.57533i
\(872\) 0 0
\(873\) −2.28872e7 3.96418e7i −1.01638 1.76043i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.40670e7 + 2.43647e7i 0.617592 + 1.06970i 0.989924 + 0.141601i \(0.0452250\pi\)
−0.372332 + 0.928100i \(0.621442\pi\)
\(878\) 0 0
\(879\) 1.72180e7 2.98225e7i 0.751642 1.30188i
\(880\) 0 0
\(881\) −8.51907e6 −0.369788 −0.184894 0.982759i \(-0.559194\pi\)
−0.184894 + 0.982759i \(0.559194\pi\)
\(882\) 0 0
\(883\) −1.36512e7 −0.589210 −0.294605 0.955619i \(-0.595188\pi\)
−0.294605 + 0.955619i \(0.595188\pi\)
\(884\) 0 0
\(885\) −2.74436e7 + 4.75336e7i −1.17783 + 2.04006i
\(886\) 0 0
\(887\) −5.13749e6 8.89840e6i −0.219251 0.379754i 0.735328 0.677711i \(-0.237028\pi\)
−0.954579 + 0.297957i \(0.903695\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.77996e6 1.17432e7i −0.286110 0.495557i
\(892\) 0 0
\(893\) −1.28782e7 + 2.23057e7i −0.540414 + 0.936024i
\(894\) 0 0
\(895\) −3.40861e7 −1.42239
\(896\) 0 0
\(897\) −5.15346e7 −2.13854
\(898\) 0 0
\(899\) 9.10397e6 1.57685e7i 0.375692 0.650717i
\(900\) 0 0
\(901\) 2.62967e6 + 4.55471e6i 0.107917 + 0.186917i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.28819e7 3.96327e7i −0.928692 1.60854i
\(906\) 0 0
\(907\) −1.54258e7 + 2.67183e7i −0.622630 + 1.07843i 0.366364 + 0.930472i \(0.380603\pi\)
−0.988994 + 0.147955i \(0.952731\pi\)
\(908\) 0 0
\(909\) −9.81170e6 −0.393853
\(910\) 0 0
\(911\) 1.48424e7 0.592525 0.296263 0.955107i \(-0.404260\pi\)
0.296263 + 0.955107i \(0.404260\pi\)
\(912\) 0 0
\(913\) −5.49519e6 + 9.51795e6i −0.218175 + 0.377891i
\(914\) 0 0
\(915\) −6.93654e7 1.20144e8i −2.73899 4.74407i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.57033e7 + 2.71989e7i 0.613340 + 1.06234i 0.990673 + 0.136258i \(0.0435077\pi\)
−0.377333 + 0.926077i \(0.623159\pi\)
\(920\) 0 0
\(921\) −2.41610e7 + 4.18481e7i −0.938569 + 1.62565i
\(922\) 0 0
\(923\) −5.16269e6 −0.199467
\(924\) 0 0
\(925\) 5.70569e7 2.19257
\(926\) 0 0
\(927\) 3.05496e7 5.29134e7i 1.16763 2.02240i
\(928\) 0 0
\(929\) 3.87830e6 + 6.71742e6i 0.147436 + 0.255366i 0.930279 0.366853i \(-0.119565\pi\)
−0.782843 + 0.622219i \(0.786231\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.86698e7 + 3.23371e7i 0.702159 + 1.21618i
\(934\) 0 0
\(935\) 7.12642e6 1.23433e7i 0.266589 0.461746i
\(936\) 0 0
\(937\) 2.51058e7 0.934167 0.467084 0.884213i \(-0.345305\pi\)
0.467084 + 0.884213i \(0.345305\pi\)
\(938\) 0 0
\(939\) −7.03007e7 −2.60193
\(940\) 0 0
\(941\) 2.03888e7 3.53145e7i 0.750617 1.30011i −0.196907 0.980422i \(-0.563090\pi\)
0.947524 0.319684i \(-0.103577\pi\)
\(942\) 0 0
\(943\) −3.69409e6 6.39835e6i −0.135278 0.234309i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.55894e7 2.70017e7i −0.564879 0.978399i −0.997061 0.0766123i \(-0.975590\pi\)
0.432182 0.901786i \(-0.357744\pi\)
\(948\) 0 0
\(949\) 2.15761e7 3.73709e7i 0.777692 1.34700i
\(950\) 0 0
\(951\) −896086. −0.0321291
\(952\) 0 0
\(953\) −2.49371e7 −0.889433 −0.444716 0.895671i \(-0.646696\pi\)
−0.444716 + 0.895671i \(0.646696\pi\)
\(954\) 0 0
\(955\) 4.15108e7 7.18989e7i 1.47283 2.55102i
\(956\) 0 0
\(957\) −2.18503e7 3.78459e7i −0.771220 1.33579i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.40648e6 + 7.63225e6i 0.153916 + 0.266590i
\(962\) 0 0
\(963\) −6.14885e6 + 1.06501e7i −0.213662 + 0.370074i
\(964\) 0 0
\(965\) −1.19839e7 −0.414267
\(966\) 0 0
\(967\) −9.62902e6 −0.331143 −0.165572 0.986198i \(-0.552947\pi\)
−0.165572 + 0.986198i \(0.552947\pi\)
\(968\) 0 0
\(969\) 8.58111e6 1.48629e7i 0.293585 0.508504i
\(970\) 0 0
\(971\) 2.88493e7 + 4.99685e7i 0.981946 + 1.70078i 0.654791 + 0.755810i \(0.272757\pi\)
0.327155 + 0.944971i \(0.393910\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.60514e7 1.31725e8i −2.56210 4.43769i
\(976\) 0 0
\(977\) −1.79167e7 + 3.10326e7i −0.600512 + 1.04012i 0.392231 + 0.919867i \(0.371703\pi\)
−0.992744 + 0.120251i \(0.961630\pi\)
\(978\) 0 0
\(979\) −3.90924e7 −1.30357
\(980\) 0 0
\(981\) 3.97595e7 1.31907
\(982\) 0 0
\(983\) −2.63358e7 + 4.56150e7i −0.869287 + 1.50565i −0.00656114 + 0.999978i \(0.502088\pi\)
−0.862726 + 0.505671i \(0.831245\pi\)
\(984\) 0 0
\(985\) 3.63190e7 + 6.29063e7i 1.19273 + 2.06587i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.40527e6 1.62904e7i −0.305760 0.529592i
\(990\) 0 0
\(991\) −6.84136e6 + 1.18496e7i −0.221288 + 0.383283i −0.955199 0.295963i \(-0.904360\pi\)
0.733911 + 0.679245i \(0.237693\pi\)
\(992\) 0 0
\(993\) −4.07846e7 −1.31257
\(994\) 0 0
\(995\) −3.18637e7 −1.02032
\(996\) 0 0
\(997\) −1.71922e7 + 2.97777e7i −0.547763 + 0.948754i 0.450664 + 0.892694i \(0.351187\pi\)
−0.998427 + 0.0560604i \(0.982146\pi\)
\(998\) 0 0
\(999\) 2.41988e7 + 4.19136e7i 0.767150 + 1.32874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.l.361.2 4
7.2 even 3 inner 392.6.i.l.177.2 4
7.3 odd 6 392.6.a.f.1.2 2
7.4 even 3 56.6.a.c.1.1 2
7.5 odd 6 392.6.i.g.177.1 4
7.6 odd 2 392.6.i.g.361.1 4
21.11 odd 6 504.6.a.s.1.2 2
28.3 even 6 784.6.a.p.1.1 2
28.11 odd 6 112.6.a.k.1.2 2
56.11 odd 6 448.6.a.q.1.1 2
56.53 even 6 448.6.a.z.1.2 2
84.11 even 6 1008.6.a.bt.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.c.1.1 2 7.4 even 3
112.6.a.k.1.2 2 28.11 odd 6
392.6.a.f.1.2 2 7.3 odd 6
392.6.i.g.177.1 4 7.5 odd 6
392.6.i.g.361.1 4 7.6 odd 2
392.6.i.l.177.2 4 7.2 even 3 inner
392.6.i.l.361.2 4 1.1 even 1 trivial
448.6.a.q.1.1 2 56.11 odd 6
448.6.a.z.1.2 2 56.53 even 6
504.6.a.s.1.2 2 21.11 odd 6
784.6.a.p.1.1 2 28.3 even 6
1008.6.a.bt.1.2 2 84.11 even 6