Properties

Label 393.2.a.e.1.6
Level 393393
Weight 22
Character 393.1
Self dual yes
Analytic conductor 3.1383.138
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [393,2,Mod(1,393)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(393, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("393.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 393=3131 393 = 3 \cdot 131
Weight: k k == 2 2
Character orbit: [χ][\chi] == 393.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.138120799443.13812079944
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.12062776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x57x4+5x3+13x24x5 x^{6} - x^{5} - 7x^{4} + 5x^{3} + 13x^{2} - 4x - 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 2.188012.18801 of defining polynomial
Character χ\chi == 393.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.18801q2+1.00000q3+2.78738q40.982095q5+2.18801q6+1.75537q7+1.72279q8+1.00000q92.14883q10+0.0712998q11+2.78738q121.56066q13+3.84077q140.982095q151.80528q16+3.40814q17+2.18801q186.12422q192.73747q20+1.75537q21+0.156004q22+3.69020q23+1.72279q244.03549q253.41473q26+1.00000q27+4.89289q282.71064q292.14883q30+1.26333q317.39555q32+0.0712998q33+7.45703q341.72394q35+2.78738q362.95494q3713.3998q381.56066q391.69194q40+10.3705q41+3.84077q424.92606q43+0.198739q440.982095q45+8.07419q460.369425q471.80528q483.91866q498.82968q50+3.40814q514.35014q526.75029q53+2.18801q540.0700231q55+3.02414q566.12422q575.93091q581.64029q592.73747q60+9.30265q61+2.76417q62+1.75537q6312.5709q64+1.53271q65+0.156004q663.56331q67+9.49977q68+3.69020q693.77200q70+2.99790q71+1.72279q72+10.0038q736.46543q744.03549q7517.0705q76+0.125158q773.41473q78+7.46316q79+1.77296q80+1.00000q81+22.6907q82+1.78854q83+4.89289q843.34712q8510.7783q862.71064q87+0.122834q88+7.55631q892.14883q902.73954q91+10.2860q92+1.26333q930.808306q94+6.01456q957.39555q963.53954q978.57406q98+0.0712998q99+O(q100)q+2.18801 q^{2} +1.00000 q^{3} +2.78738 q^{4} -0.982095 q^{5} +2.18801 q^{6} +1.75537 q^{7} +1.72279 q^{8} +1.00000 q^{9} -2.14883 q^{10} +0.0712998 q^{11} +2.78738 q^{12} -1.56066 q^{13} +3.84077 q^{14} -0.982095 q^{15} -1.80528 q^{16} +3.40814 q^{17} +2.18801 q^{18} -6.12422 q^{19} -2.73747 q^{20} +1.75537 q^{21} +0.156004 q^{22} +3.69020 q^{23} +1.72279 q^{24} -4.03549 q^{25} -3.41473 q^{26} +1.00000 q^{27} +4.89289 q^{28} -2.71064 q^{29} -2.14883 q^{30} +1.26333 q^{31} -7.39555 q^{32} +0.0712998 q^{33} +7.45703 q^{34} -1.72394 q^{35} +2.78738 q^{36} -2.95494 q^{37} -13.3998 q^{38} -1.56066 q^{39} -1.69194 q^{40} +10.3705 q^{41} +3.84077 q^{42} -4.92606 q^{43} +0.198739 q^{44} -0.982095 q^{45} +8.07419 q^{46} -0.369425 q^{47} -1.80528 q^{48} -3.91866 q^{49} -8.82968 q^{50} +3.40814 q^{51} -4.35014 q^{52} -6.75029 q^{53} +2.18801 q^{54} -0.0700231 q^{55} +3.02414 q^{56} -6.12422 q^{57} -5.93091 q^{58} -1.64029 q^{59} -2.73747 q^{60} +9.30265 q^{61} +2.76417 q^{62} +1.75537 q^{63} -12.5709 q^{64} +1.53271 q^{65} +0.156004 q^{66} -3.56331 q^{67} +9.49977 q^{68} +3.69020 q^{69} -3.77200 q^{70} +2.99790 q^{71} +1.72279 q^{72} +10.0038 q^{73} -6.46543 q^{74} -4.03549 q^{75} -17.0705 q^{76} +0.125158 q^{77} -3.41473 q^{78} +7.46316 q^{79} +1.77296 q^{80} +1.00000 q^{81} +22.6907 q^{82} +1.78854 q^{83} +4.89289 q^{84} -3.34712 q^{85} -10.7783 q^{86} -2.71064 q^{87} +0.122834 q^{88} +7.55631 q^{89} -2.14883 q^{90} -2.73954 q^{91} +10.2860 q^{92} +1.26333 q^{93} -0.808306 q^{94} +6.01456 q^{95} -7.39555 q^{96} -3.53954 q^{97} -8.57406 q^{98} +0.0712998 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+q2+6q3+3q4+8q5+q6+4q7+3q8+6q93q10+6q11+3q123q13+q14+8q1511q16+4q17+q18q19+4q20+4q21++6q99+O(q100) 6 q + q^{2} + 6 q^{3} + 3 q^{4} + 8 q^{5} + q^{6} + 4 q^{7} + 3 q^{8} + 6 q^{9} - 3 q^{10} + 6 q^{11} + 3 q^{12} - 3 q^{13} + q^{14} + 8 q^{15} - 11 q^{16} + 4 q^{17} + q^{18} - q^{19} + 4 q^{20} + 4 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.18801 1.54716 0.773578 0.633702i 0.218465π-0.218465\pi
0.773578 + 0.633702i 0.218465π0.218465\pi
33 1.00000 0.577350
44 2.78738 1.39369
55 −0.982095 −0.439206 −0.219603 0.975589i 0.570476π-0.570476\pi
−0.219603 + 0.975589i 0.570476π0.570476\pi
66 2.18801 0.893250
77 1.75537 0.663469 0.331735 0.943373i 0.392366π-0.392366\pi
0.331735 + 0.943373i 0.392366π0.392366\pi
88 1.72279 0.609097
99 1.00000 0.333333
1010 −2.14883 −0.679520
1111 0.0712998 0.0214977 0.0107488 0.999942i 0.496578π-0.496578\pi
0.0107488 + 0.999942i 0.496578π0.496578\pi
1212 2.78738 0.804647
1313 −1.56066 −0.432848 −0.216424 0.976299i 0.569439π-0.569439\pi
−0.216424 + 0.976299i 0.569439π0.569439\pi
1414 3.84077 1.02649
1515 −0.982095 −0.253576
1616 −1.80528 −0.451321
1717 3.40814 0.826595 0.413298 0.910596i 0.364377π-0.364377\pi
0.413298 + 0.910596i 0.364377π0.364377\pi
1818 2.18801 0.515718
1919 −6.12422 −1.40499 −0.702496 0.711688i 0.747931π-0.747931\pi
−0.702496 + 0.711688i 0.747931π0.747931\pi
2020 −2.73747 −0.612117
2121 1.75537 0.383054
2222 0.156004 0.0332603
2323 3.69020 0.769460 0.384730 0.923029i 0.374295π-0.374295\pi
0.384730 + 0.923029i 0.374295π0.374295\pi
2424 1.72279 0.351663
2525 −4.03549 −0.807098
2626 −3.41473 −0.669683
2727 1.00000 0.192450
2828 4.89289 0.924669
2929 −2.71064 −0.503354 −0.251677 0.967811i 0.580982π-0.580982\pi
−0.251677 + 0.967811i 0.580982π0.580982\pi
3030 −2.14883 −0.392321
3131 1.26333 0.226901 0.113450 0.993544i 0.463810π-0.463810\pi
0.113450 + 0.993544i 0.463810π0.463810\pi
3232 −7.39555 −1.30736
3333 0.0712998 0.0124117
3434 7.45703 1.27887
3535 −1.72394 −0.291400
3636 2.78738 0.464563
3737 −2.95494 −0.485789 −0.242895 0.970053i 0.578097π-0.578097\pi
−0.242895 + 0.970053i 0.578097π0.578097\pi
3838 −13.3998 −2.17374
3939 −1.56066 −0.249905
4040 −1.69194 −0.267519
4141 10.3705 1.61960 0.809798 0.586709i 0.199577π-0.199577\pi
0.809798 + 0.586709i 0.199577π0.199577\pi
4242 3.84077 0.592644
4343 −4.92606 −0.751217 −0.375609 0.926778i 0.622566π-0.622566\pi
−0.375609 + 0.926778i 0.622566π0.622566\pi
4444 0.198739 0.0299611
4545 −0.982095 −0.146402
4646 8.07419 1.19047
4747 −0.369425 −0.0538862 −0.0269431 0.999637i 0.508577π-0.508577\pi
−0.0269431 + 0.999637i 0.508577π0.508577\pi
4848 −1.80528 −0.260570
4949 −3.91866 −0.559809
5050 −8.82968 −1.24871
5151 3.40814 0.477235
5252 −4.35014 −0.603256
5353 −6.75029 −0.927224 −0.463612 0.886038i 0.653447π-0.653447\pi
−0.463612 + 0.886038i 0.653447π0.653447\pi
5454 2.18801 0.297750
5555 −0.0700231 −0.00944192
5656 3.02414 0.404117
5757 −6.12422 −0.811172
5858 −5.93091 −0.778767
5959 −1.64029 −0.213548 −0.106774 0.994283i 0.534052π-0.534052\pi
−0.106774 + 0.994283i 0.534052π0.534052\pi
6060 −2.73747 −0.353406
6161 9.30265 1.19108 0.595541 0.803325i 0.296938π-0.296938\pi
0.595541 + 0.803325i 0.296938π0.296938\pi
6262 2.76417 0.351050
6363 1.75537 0.221156
6464 −12.5709 −1.57137
6565 1.53271 0.190110
6666 0.156004 0.0192028
6767 −3.56331 −0.435328 −0.217664 0.976024i 0.569844π-0.569844\pi
−0.217664 + 0.976024i 0.569844π0.569844\pi
6868 9.49977 1.15202
6969 3.69020 0.444248
7070 −3.77200 −0.450841
7171 2.99790 0.355785 0.177892 0.984050i 0.443072π-0.443072\pi
0.177892 + 0.984050i 0.443072π0.443072\pi
7272 1.72279 0.203032
7373 10.0038 1.17086 0.585428 0.810724i 0.300926π-0.300926\pi
0.585428 + 0.810724i 0.300926π0.300926\pi
7474 −6.46543 −0.751592
7575 −4.03549 −0.465978
7676 −17.0705 −1.95812
7777 0.125158 0.0142631
7878 −3.41473 −0.386642
7979 7.46316 0.839671 0.419836 0.907600i 0.362088π-0.362088\pi
0.419836 + 0.907600i 0.362088π0.362088\pi
8080 1.77296 0.198223
8181 1.00000 0.111111
8282 22.6907 2.50576
8383 1.78854 0.196318 0.0981591 0.995171i 0.468705π-0.468705\pi
0.0981591 + 0.995171i 0.468705π0.468705\pi
8484 4.89289 0.533858
8585 −3.34712 −0.363046
8686 −10.7783 −1.16225
8787 −2.71064 −0.290612
8888 0.122834 0.0130942
8989 7.55631 0.800968 0.400484 0.916304i 0.368842π-0.368842\pi
0.400484 + 0.916304i 0.368842π0.368842\pi
9090 −2.14883 −0.226507
9191 −2.73954 −0.287181
9292 10.2860 1.07239
9393 1.26333 0.131001
9494 −0.808306 −0.0833703
9595 6.01456 0.617081
9696 −7.39555 −0.754805
9797 −3.53954 −0.359386 −0.179693 0.983723i 0.557510π-0.557510\pi
−0.179693 + 0.983723i 0.557510π0.557510\pi
9898 −8.57406 −0.866111
9999 0.0712998 0.00716590
100100 −11.2484 −1.12484
101101 8.98488 0.894029 0.447014 0.894527i 0.352487π-0.352487\pi
0.447014 + 0.894527i 0.352487π0.352487\pi
102102 7.45703 0.738356
103103 −5.93497 −0.584790 −0.292395 0.956298i 0.594452π-0.594452\pi
−0.292395 + 0.956298i 0.594452π0.594452\pi
104104 −2.68868 −0.263647
105105 −1.72394 −0.168240
106106 −14.7697 −1.43456
107107 8.53190 0.824810 0.412405 0.911001i 0.364689π-0.364689\pi
0.412405 + 0.911001i 0.364689π0.364689\pi
108108 2.78738 0.268216
109109 −4.90026 −0.469359 −0.234680 0.972073i 0.575404π-0.575404\pi
−0.234680 + 0.972073i 0.575404π0.575404\pi
110110 −0.153211 −0.0146081
111111 −2.95494 −0.280471
112112 −3.16895 −0.299437
113113 8.58547 0.807653 0.403827 0.914836i 0.367680π-0.367680\pi
0.403827 + 0.914836i 0.367680π0.367680\pi
114114 −13.3998 −1.25501
115115 −3.62413 −0.337952
116116 −7.55559 −0.701519
117117 −1.56066 −0.144283
118118 −3.58897 −0.330392
119119 5.98256 0.548420
120120 −1.69194 −0.154452
121121 −10.9949 −0.999538
122122 20.3543 1.84279
123123 10.3705 0.935074
124124 3.52138 0.316229
125125 8.87371 0.793689
126126 3.84077 0.342163
127127 17.0084 1.50926 0.754628 0.656153i 0.227817π-0.227817\pi
0.754628 + 0.656153i 0.227817π0.227817\pi
128128 −12.7142 −1.12379
129129 −4.92606 −0.433715
130130 3.35359 0.294129
131131 −1.00000 −0.0873704
132132 0.198739 0.0172980
133133 −10.7503 −0.932168
134134 −7.79656 −0.673520
135135 −0.982095 −0.0845253
136136 5.87150 0.503477
137137 −3.57762 −0.305657 −0.152828 0.988253i 0.548838π-0.548838\pi
−0.152828 + 0.988253i 0.548838π0.548838\pi
138138 8.07419 0.687320
139139 −11.1841 −0.948621 −0.474311 0.880358i 0.657303π-0.657303\pi
−0.474311 + 0.880358i 0.657303π0.657303\pi
140140 −4.80528 −0.406120
141141 −0.369425 −0.0311112
142142 6.55942 0.550454
143143 −0.111274 −0.00930524
144144 −1.80528 −0.150440
145145 2.66211 0.221076
146146 21.8884 1.81150
147147 −3.91866 −0.323206
148148 −8.23654 −0.677039
149149 10.1204 0.829093 0.414546 0.910028i 0.363940π-0.363940\pi
0.414546 + 0.910028i 0.363940π0.363940\pi
150150 −8.82968 −0.720941
151151 3.45909 0.281497 0.140749 0.990045i 0.455049π-0.455049\pi
0.140749 + 0.990045i 0.455049π0.455049\pi
152152 −10.5507 −0.855777
153153 3.40814 0.275532
154154 0.273846 0.0220672
155155 −1.24071 −0.0996562
156156 −4.35014 −0.348290
157157 0.374706 0.0299048 0.0149524 0.999888i 0.495240π-0.495240\pi
0.0149524 + 0.999888i 0.495240π0.495240\pi
158158 16.3294 1.29910
159159 −6.75029 −0.535333
160160 7.26313 0.574201
161161 6.47768 0.510513
162162 2.18801 0.171906
163163 16.4849 1.29120 0.645599 0.763677i 0.276608π-0.276608\pi
0.645599 + 0.763677i 0.276608π0.276608\pi
164164 28.9064 2.25721
165165 −0.0700231 −0.00545129
166166 3.91335 0.303735
167167 2.46568 0.190800 0.0954002 0.995439i 0.469587π-0.469587\pi
0.0954002 + 0.995439i 0.469587π0.469587\pi
168168 3.02414 0.233317
169169 −10.5644 −0.812642
170170 −7.32351 −0.561688
171171 −6.12422 −0.468331
172172 −13.7308 −1.04696
173173 −18.5372 −1.40936 −0.704679 0.709526i 0.748909π-0.748909\pi
−0.704679 + 0.709526i 0.748909π0.748909\pi
174174 −5.93091 −0.449621
175175 −7.08379 −0.535484
176176 −0.128716 −0.00970235
177177 −1.64029 −0.123292
178178 16.5333 1.23922
179179 4.76645 0.356261 0.178131 0.984007i 0.442995π-0.442995\pi
0.178131 + 0.984007i 0.442995π0.442995\pi
180180 −2.73747 −0.204039
181181 8.10391 0.602359 0.301179 0.953567i 0.402620π-0.402620\pi
0.301179 + 0.953567i 0.402620π0.402620\pi
182182 −5.99413 −0.444314
183183 9.30265 0.687672
184184 6.35743 0.468676
185185 2.90203 0.213362
186186 2.76417 0.202679
187187 0.243000 0.0177699
188188 −1.02973 −0.0751006
189189 1.75537 0.127685
190190 13.1599 0.954720
191191 18.4208 1.33288 0.666440 0.745559i 0.267817π-0.267817\pi
0.666440 + 0.745559i 0.267817π0.267817\pi
192192 −12.5709 −0.907230
193193 −26.8519 −1.93284 −0.966419 0.256970i 0.917276π-0.917276\pi
−0.966419 + 0.256970i 0.917276π0.917276\pi
194194 −7.74455 −0.556026
195195 1.53271 0.109760
196196 −10.9228 −0.780199
197197 −17.2088 −1.22607 −0.613037 0.790054i 0.710052π-0.710052\pi
−0.613037 + 0.790054i 0.710052π0.710052\pi
198198 0.156004 0.0110868
199199 8.73022 0.618869 0.309435 0.950921i 0.399860π-0.399860\pi
0.309435 + 0.950921i 0.399860π0.399860\pi
200200 −6.95229 −0.491601
201201 −3.56331 −0.251337
202202 19.6590 1.38320
203203 −4.75819 −0.333960
204204 9.49977 0.665117
205205 −10.1848 −0.711336
206206 −12.9858 −0.904761
207207 3.69020 0.256487
208208 2.81743 0.195353
209209 −0.436655 −0.0302041
210210 −3.77200 −0.260293
211211 −8.77268 −0.603936 −0.301968 0.953318i 0.597644π-0.597644\pi
−0.301968 + 0.953318i 0.597644π0.597644\pi
212212 −18.8156 −1.29226
213213 2.99790 0.205412
214214 18.6679 1.27611
215215 4.83786 0.329939
216216 1.72279 0.117221
217217 2.21762 0.150542
218218 −10.7218 −0.726172
219219 10.0038 0.675995
220220 −0.195181 −0.0131591
221221 −5.31893 −0.357790
222222 −6.46543 −0.433932
223223 9.65707 0.646685 0.323343 0.946282i 0.395193π-0.395193\pi
0.323343 + 0.946282i 0.395193π0.395193\pi
224224 −12.9820 −0.867393
225225 −4.03549 −0.269033
226226 18.7851 1.24956
227227 7.25213 0.481341 0.240671 0.970607i 0.422633π-0.422633\pi
0.240671 + 0.970607i 0.422633π0.422633\pi
228228 −17.0705 −1.13052
229229 1.14442 0.0756253 0.0378126 0.999285i 0.487961π-0.487961\pi
0.0378126 + 0.999285i 0.487961π0.487961\pi
230230 −7.92962 −0.522864
231231 0.125158 0.00823478
232232 −4.66986 −0.306592
233233 −9.96373 −0.652746 −0.326373 0.945241i 0.605827π-0.605827\pi
−0.326373 + 0.945241i 0.605827π0.605827\pi
234234 −3.41473 −0.223228
235235 0.362811 0.0236672
236236 −4.57211 −0.297619
237237 7.46316 0.484784
238238 13.0899 0.848491
239239 12.9401 0.837025 0.418513 0.908211i 0.362552π-0.362552\pi
0.418513 + 0.908211i 0.362552π0.362552\pi
240240 1.77296 0.114444
241241 −7.88922 −0.508189 −0.254095 0.967179i 0.581777π-0.581777\pi
−0.254095 + 0.967179i 0.581777π0.581777\pi
242242 −24.0570 −1.54644
243243 1.00000 0.0641500
244244 25.9300 1.66000
245245 3.84850 0.245871
246246 22.6907 1.44670
247247 9.55780 0.608148
248248 2.17645 0.138205
249249 1.78854 0.113344
250250 19.4157 1.22796
251251 13.0595 0.824307 0.412153 0.911114i 0.364777π-0.364777\pi
0.412153 + 0.911114i 0.364777π0.364777\pi
252252 4.89289 0.308223
253253 0.263111 0.0165416
254254 37.2146 2.33505
255255 −3.34712 −0.209605
256256 −2.67695 −0.167309
257257 6.53801 0.407830 0.203915 0.978989i 0.434633π-0.434633\pi
0.203915 + 0.978989i 0.434633π0.434633\pi
258258 −10.7783 −0.671025
259259 −5.18703 −0.322306
260260 4.27225 0.264954
261261 −2.71064 −0.167785
262262 −2.18801 −0.135176
263263 −22.6754 −1.39823 −0.699113 0.715011i 0.746422π-0.746422\pi
−0.699113 + 0.715011i 0.746422π0.746422\pi
264264 0.122834 0.00755993
265265 6.62943 0.407242
266266 −23.5217 −1.44221
267267 7.55631 0.462439
268268 −9.93230 −0.606712
269269 −10.3264 −0.629611 −0.314805 0.949156i 0.601939π-0.601939\pi
−0.314805 + 0.949156i 0.601939π0.601939\pi
270270 −2.14883 −0.130774
271271 24.0929 1.46354 0.731770 0.681552i 0.238694π-0.238694\pi
0.731770 + 0.681552i 0.238694π0.238694\pi
272272 −6.15265 −0.373059
273273 −2.73954 −0.165804
274274 −7.82786 −0.472898
275275 −0.287730 −0.0173507
276276 10.2860 0.619143
277277 8.02160 0.481971 0.240985 0.970529i 0.422529π-0.422529\pi
0.240985 + 0.970529i 0.422529π0.422529\pi
278278 −24.4709 −1.46766
279279 1.26333 0.0756335
280280 −2.96999 −0.177491
281281 −32.2015 −1.92098 −0.960491 0.278311i 0.910225π-0.910225\pi
−0.960491 + 0.278311i 0.910225π0.910225\pi
282282 −0.808306 −0.0481339
283283 2.20717 0.131203 0.0656014 0.997846i 0.479103π-0.479103\pi
0.0656014 + 0.997846i 0.479103π0.479103\pi
284284 8.35627 0.495853
285285 6.01456 0.356272
286286 −0.243469 −0.0143966
287287 18.2041 1.07455
288288 −7.39555 −0.435787
289289 −5.38459 −0.316741
290290 5.82472 0.342039
291291 −3.53954 −0.207492
292292 27.8844 1.63181
293293 29.3883 1.71688 0.858441 0.512913i 0.171434π-0.171434\pi
0.858441 + 0.512913i 0.171434π0.171434\pi
294294 −8.57406 −0.500049
295295 1.61092 0.0937916
296296 −5.09074 −0.295893
297297 0.0712998 0.00413723
298298 22.1434 1.28273
299299 −5.75914 −0.333059
300300 −11.2484 −0.649429
301301 −8.64708 −0.498409
302302 7.56852 0.435520
303303 8.98488 0.516168
304304 11.0559 0.634102
305305 −9.13609 −0.523131
306306 7.45703 0.426290
307307 29.8391 1.70301 0.851505 0.524347i 0.175690π-0.175690\pi
0.851505 + 0.524347i 0.175690π0.175690\pi
308308 0.348862 0.0198783
309309 −5.93497 −0.337629
310310 −2.71468 −0.154184
311311 −10.9460 −0.620690 −0.310345 0.950624i 0.600445π-0.600445\pi
−0.310345 + 0.950624i 0.600445π0.600445\pi
312312 −2.68868 −0.152217
313313 9.94061 0.561877 0.280938 0.959726i 0.409354π-0.409354\pi
0.280938 + 0.959726i 0.409354π0.409354\pi
314314 0.819859 0.0462673
315315 −1.72394 −0.0971332
316316 20.8026 1.17024
317317 15.4388 0.867132 0.433566 0.901122i 0.357255π-0.357255\pi
0.433566 + 0.901122i 0.357255π0.357255\pi
318318 −14.7697 −0.828243
319319 −0.193268 −0.0108209
320320 12.3459 0.690155
321321 8.53190 0.476204
322322 14.1732 0.789843
323323 −20.8722 −1.16136
324324 2.78738 0.154854
325325 6.29801 0.349351
326326 36.0691 1.99768
327327 −4.90026 −0.270985
328328 17.8661 0.986491
329329 −0.648480 −0.0357518
330330 −0.153211 −0.00843400
331331 −22.2466 −1.22279 −0.611393 0.791327i 0.709390π-0.709390\pi
−0.611393 + 0.791327i 0.709390π0.709390\pi
332332 4.98535 0.273606
333333 −2.95494 −0.161930
334334 5.39493 0.295198
335335 3.49951 0.191199
336336 −3.16895 −0.172880
337337 5.13082 0.279494 0.139747 0.990187i 0.455371π-0.455371\pi
0.139747 + 0.990187i 0.455371π0.455371\pi
338338 −23.1149 −1.25728
339339 8.58547 0.466299
340340 −9.32967 −0.505973
341341 0.0900751 0.00487784
342342 −13.3998 −0.724580
343343 −19.1663 −1.03488
344344 −8.48655 −0.457564
345345 −3.62413 −0.195116
346346 −40.5596 −2.18049
347347 −30.7748 −1.65208 −0.826039 0.563613i 0.809411π-0.809411\pi
−0.826039 + 0.563613i 0.809411π0.809411\pi
348348 −7.55559 −0.405022
349349 −29.0567 −1.55537 −0.777685 0.628654i 0.783606π-0.783606\pi
−0.777685 + 0.628654i 0.783606π0.783606\pi
350350 −15.4994 −0.828478
351351 −1.56066 −0.0833017
352352 −0.527301 −0.0281052
353353 −33.7641 −1.79708 −0.898540 0.438891i 0.855372π-0.855372\pi
−0.898540 + 0.438891i 0.855372π0.855372\pi
354354 −3.58897 −0.190752
355355 −2.94422 −0.156263
356356 21.0623 1.11630
357357 5.98256 0.316631
358358 10.4290 0.551191
359359 −18.8846 −0.996693 −0.498346 0.866978i 0.666059π-0.666059\pi
−0.498346 + 0.866978i 0.666059π0.666059\pi
360360 −1.69194 −0.0891731
361361 18.5060 0.974001
362362 17.7314 0.931942
363363 −10.9949 −0.577083
364364 −7.63612 −0.400241
365365 −9.82469 −0.514248
366366 20.3543 1.06394
367367 21.9289 1.14468 0.572340 0.820016i 0.306036π-0.306036\pi
0.572340 + 0.820016i 0.306036π0.306036\pi
368368 −6.66185 −0.347273
369369 10.3705 0.539865
370370 6.34967 0.330104
371371 −11.8493 −0.615184
372372 3.52138 0.182575
373373 −22.0932 −1.14394 −0.571972 0.820273i 0.693821π-0.693821\pi
−0.571972 + 0.820273i 0.693821π0.693821\pi
374374 0.531685 0.0274928
375375 8.87371 0.458236
376376 −0.636441 −0.0328220
377377 4.23038 0.217876
378378 3.84077 0.197548
379379 −35.8391 −1.84093 −0.920467 0.390821i 0.872191π-0.872191\pi
−0.920467 + 0.390821i 0.872191π0.872191\pi
380380 16.7649 0.860019
381381 17.0084 0.871369
382382 40.3048 2.06217
383383 −29.6573 −1.51542 −0.757710 0.652592i 0.773682π-0.773682\pi
−0.757710 + 0.652592i 0.773682π0.773682\pi
384384 −12.7142 −0.648821
385385 −0.122917 −0.00626442
386386 −58.7521 −2.99040
387387 −4.92606 −0.250406
388388 −9.86604 −0.500872
389389 34.5039 1.74942 0.874708 0.484651i 0.161053π-0.161053\pi
0.874708 + 0.484651i 0.161053π0.161053\pi
390390 3.35359 0.169815
391391 12.5767 0.636032
392392 −6.75102 −0.340978
393393 −1.00000 −0.0504433
394394 −37.6529 −1.89693
395395 −7.32953 −0.368789
396396 0.198739 0.00998703
397397 −36.1895 −1.81630 −0.908150 0.418646i 0.862505π-0.862505\pi
−0.908150 + 0.418646i 0.862505π0.862505\pi
398398 19.1018 0.957487
399399 −10.7503 −0.538188
400400 7.28520 0.364260
401401 −39.2359 −1.95935 −0.979673 0.200602i 0.935710π-0.935710\pi
−0.979673 + 0.200602i 0.935710π0.935710\pi
402402 −7.79656 −0.388857
403403 −1.97162 −0.0982135
404404 25.0442 1.24600
405405 −0.982095 −0.0488007
406406 −10.4110 −0.516688
407407 −0.210687 −0.0104434
408408 5.87150 0.290682
409409 −26.0833 −1.28974 −0.644869 0.764293i 0.723088π-0.723088\pi
−0.644869 + 0.764293i 0.723088π0.723088\pi
410410 −22.2844 −1.10055
411411 −3.57762 −0.176471
412412 −16.5430 −0.815015
413413 −2.87933 −0.141682
414414 8.07419 0.396825
415415 −1.75652 −0.0862242
416416 11.5419 0.565889
417417 −11.1841 −0.547687
418418 −0.955405 −0.0467304
419419 −5.32441 −0.260115 −0.130057 0.991506i 0.541516π-0.541516\pi
−0.130057 + 0.991506i 0.541516π0.541516\pi
420420 −4.80528 −0.234474
421421 −6.52344 −0.317933 −0.158967 0.987284i 0.550816π-0.550816\pi
−0.158967 + 0.987284i 0.550816π0.550816\pi
422422 −19.1947 −0.934383
423423 −0.369425 −0.0179621
424424 −11.6293 −0.564770
425425 −13.7535 −0.667143
426426 6.55942 0.317805
427427 16.3296 0.790247
428428 23.7816 1.14953
429429 −0.111274 −0.00537238
430430 10.5853 0.510467
431431 4.10434 0.197699 0.0988495 0.995102i 0.468484π-0.468484\pi
0.0988495 + 0.995102i 0.468484π0.468484\pi
432432 −1.80528 −0.0868567
433433 −38.0982 −1.83088 −0.915441 0.402453i 0.868158π-0.868158\pi
−0.915441 + 0.402453i 0.868158π0.868158\pi
434434 4.85216 0.232911
435435 2.66211 0.127638
436436 −13.6589 −0.654141
437437 −22.5996 −1.08108
438438 21.8884 1.04587
439439 16.7089 0.797472 0.398736 0.917066i 0.369449π-0.369449\pi
0.398736 + 0.917066i 0.369449π0.369449\pi
440440 −0.120635 −0.00575105
441441 −3.91866 −0.186603
442442 −11.6379 −0.553557
443443 27.0469 1.28504 0.642519 0.766270i 0.277889π-0.277889\pi
0.642519 + 0.766270i 0.277889π0.277889\pi
444444 −8.23654 −0.390889
445445 −7.42102 −0.351790
446446 21.1297 1.00052
447447 10.1204 0.478677
448448 −22.0667 −1.04255
449449 39.0600 1.84335 0.921677 0.387959i 0.126820π-0.126820\pi
0.921677 + 0.387959i 0.126820π0.126820\pi
450450 −8.82968 −0.416235
451451 0.739412 0.0348176
452452 23.9309 1.12562
453453 3.45909 0.162522
454454 15.8677 0.744709
455455 2.69048 0.126132
456456 −10.5507 −0.494083
457457 −27.6221 −1.29211 −0.646053 0.763292i 0.723582π-0.723582\pi
−0.646053 + 0.763292i 0.723582π0.723582\pi
458458 2.50400 0.117004
459459 3.40814 0.159078
460460 −10.1018 −0.470999
461461 −20.6202 −0.960378 −0.480189 0.877165i 0.659432π-0.659432\pi
−0.480189 + 0.877165i 0.659432π0.659432\pi
462462 0.273846 0.0127405
463463 −16.8533 −0.783241 −0.391621 0.920127i 0.628085π-0.628085\pi
−0.391621 + 0.920127i 0.628085π0.628085\pi
464464 4.89348 0.227174
465465 −1.24071 −0.0575365
466466 −21.8007 −1.00990
467467 4.84225 0.224073 0.112036 0.993704i 0.464263π-0.464263\pi
0.112036 + 0.993704i 0.464263π0.464263\pi
468468 −4.35014 −0.201085
469469 −6.25495 −0.288827
470470 0.793833 0.0366168
471471 0.374706 0.0172655
472472 −2.82588 −0.130071
473473 −0.351227 −0.0161494
474474 16.3294 0.750036
475475 24.7142 1.13397
476476 16.6756 0.764327
477477 −6.75029 −0.309075
478478 28.3130 1.29501
479479 4.89854 0.223820 0.111910 0.993718i 0.464303π-0.464303\pi
0.111910 + 0.993718i 0.464303π0.464303\pi
480480 7.26313 0.331515
481481 4.61165 0.210273
482482 −17.2617 −0.786248
483483 6.47768 0.294745
484484 −30.6470 −1.39304
485485 3.47617 0.157845
486486 2.18801 0.0992500
487487 40.7307 1.84568 0.922842 0.385179i 0.125860π-0.125860\pi
0.922842 + 0.385179i 0.125860π0.125860\pi
488488 16.0265 0.725485
489489 16.4849 0.745473
490490 8.42054 0.380401
491491 −5.80655 −0.262046 −0.131023 0.991379i 0.541826π-0.541826\pi
−0.131023 + 0.991379i 0.541826π0.541826\pi
492492 28.9064 1.30320
493493 −9.23825 −0.416070
494494 20.9125 0.940899
495495 −0.0700231 −0.00314731
496496 −2.28067 −0.102405
497497 5.26243 0.236052
498498 3.91335 0.175361
499499 −26.4723 −1.18506 −0.592532 0.805547i 0.701871π-0.701871\pi
−0.592532 + 0.805547i 0.701871π0.701871\pi
500500 24.7344 1.10615
501501 2.46568 0.110159
502502 28.5742 1.27533
503503 7.07069 0.315266 0.157633 0.987498i 0.449614π-0.449614\pi
0.157633 + 0.987498i 0.449614π0.449614\pi
504504 3.02414 0.134706
505505 −8.82400 −0.392663
506506 0.575688 0.0255924
507507 −10.5644 −0.469179
508508 47.4090 2.10343
509509 12.1085 0.536700 0.268350 0.963322i 0.413522π-0.413522\pi
0.268350 + 0.963322i 0.413522π0.413522\pi
510510 −7.32351 −0.324291
511511 17.5604 0.776827
512512 19.5713 0.864937
513513 −6.12422 −0.270391
514514 14.3052 0.630976
515515 5.82870 0.256843
516516 −13.7308 −0.604464
517517 −0.0263399 −0.00115843
518518 −11.3493 −0.498658
519519 −18.5372 −0.813693
520520 2.64054 0.115795
521521 15.2282 0.667161 0.333580 0.942722i 0.391743π-0.391743\pi
0.333580 + 0.942722i 0.391743π0.391743\pi
522522 −5.93091 −0.259589
523523 21.6263 0.945650 0.472825 0.881156i 0.343234π-0.343234\pi
0.472825 + 0.881156i 0.343234π0.343234\pi
524524 −2.78738 −0.121767
525525 −7.08379 −0.309162
526526 −49.6140 −2.16327
527527 4.30560 0.187555
528528 −0.128716 −0.00560165
529529 −9.38242 −0.407931
530530 14.5052 0.630067
531531 −1.64029 −0.0711826
532532 −29.9651 −1.29915
533533 −16.1847 −0.701039
534534 16.5333 0.715465
535535 −8.37914 −0.362262
536536 −6.13883 −0.265157
537537 4.76645 0.205687
538538 −22.5942 −0.974106
539539 −0.279400 −0.0120346
540540 −2.73747 −0.117802
541541 −5.65011 −0.242917 −0.121459 0.992596i 0.538757π-0.538757\pi
−0.121459 + 0.992596i 0.538757π0.538757\pi
542542 52.7155 2.26432
543543 8.10391 0.347772
544544 −25.2050 −1.08066
545545 4.81252 0.206146
546546 −5.99413 −0.256525
547547 18.2931 0.782155 0.391077 0.920358i 0.372103π-0.372103\pi
0.391077 + 0.920358i 0.372103π0.372103\pi
548548 −9.97218 −0.425990
549549 9.30265 0.397028
550550 −0.629554 −0.0268443
551551 16.6006 0.707208
552552 6.35743 0.270590
553553 13.1006 0.557096
554554 17.5513 0.745684
555555 2.90203 0.123184
556556 −31.1743 −1.32208
557557 4.06424 0.172208 0.0861038 0.996286i 0.472558π-0.472558\pi
0.0861038 + 0.996286i 0.472558π0.472558\pi
558558 2.76417 0.117017
559559 7.68789 0.325163
560560 3.11221 0.131515
561561 0.243000 0.0102594
562562 −70.4572 −2.97206
563563 −12.4894 −0.526366 −0.263183 0.964746i 0.584772π-0.584772\pi
−0.263183 + 0.964746i 0.584772π0.584772\pi
564564 −1.02973 −0.0433594
565565 −8.43175 −0.354726
566566 4.82931 0.202991
567567 1.75537 0.0737188
568568 5.16474 0.216708
569569 26.2283 1.09955 0.549773 0.835314i 0.314714π-0.314714\pi
0.549773 + 0.835314i 0.314714π0.314714\pi
570570 13.1599 0.551208
571571 3.01974 0.126372 0.0631861 0.998002i 0.479874π-0.479874\pi
0.0631861 + 0.998002i 0.479874π0.479874\pi
572572 −0.310164 −0.0129686
573573 18.4208 0.769538
574574 39.8306 1.66250
575575 −14.8918 −0.621030
576576 −12.5709 −0.523789
577577 8.82989 0.367593 0.183796 0.982964i 0.441161π-0.441161\pi
0.183796 + 0.982964i 0.441161π0.441161\pi
578578 −11.7815 −0.490047
579579 −26.8519 −1.11592
580580 7.42030 0.308111
581581 3.13956 0.130251
582582 −7.74455 −0.321022
583583 −0.481294 −0.0199332
584584 17.2344 0.713166
585585 1.53271 0.0633699
586586 64.3018 2.65628
587587 23.7243 0.979208 0.489604 0.871945i 0.337141π-0.337141\pi
0.489604 + 0.871945i 0.337141π0.337141\pi
588588 −10.9228 −0.450448
589589 −7.73690 −0.318793
590590 3.52471 0.145110
591591 −17.2088 −0.707875
592592 5.33450 0.219247
593593 −16.0544 −0.659276 −0.329638 0.944107i 0.606927π-0.606927\pi
−0.329638 + 0.944107i 0.606927π0.606927\pi
594594 0.156004 0.00640094
595595 −5.87544 −0.240870
596596 28.2093 1.15550
597597 8.73022 0.357304
598598 −12.6010 −0.515295
599599 −32.6118 −1.33248 −0.666241 0.745736i 0.732098π-0.732098\pi
−0.666241 + 0.745736i 0.732098π0.732098\pi
600600 −6.95229 −0.283826
601601 23.6436 0.964442 0.482221 0.876050i 0.339830π-0.339830\pi
0.482221 + 0.876050i 0.339830π0.339830\pi
602602 −18.9199 −0.771116
603603 −3.56331 −0.145109
604604 9.64180 0.392319
605605 10.7981 0.439003
606606 19.6590 0.798592
607607 −8.17045 −0.331628 −0.165814 0.986157i 0.553025π-0.553025\pi
−0.165814 + 0.986157i 0.553025π0.553025\pi
608608 45.2919 1.83683
609609 −4.75819 −0.192812
610610 −19.9898 −0.809365
611611 0.576546 0.0233246
612612 9.49977 0.384005
613613 −1.79929 −0.0726728 −0.0363364 0.999340i 0.511569π-0.511569\pi
−0.0363364 + 0.999340i 0.511569π0.511569\pi
614614 65.2883 2.63482
615615 −10.1848 −0.410690
616616 0.215620 0.00868759
617617 −8.41418 −0.338742 −0.169371 0.985552i 0.554174π-0.554174\pi
−0.169371 + 0.985552i 0.554174π0.554174\pi
618618 −12.9858 −0.522364
619619 40.8408 1.64153 0.820765 0.571266i 0.193548π-0.193548\pi
0.820765 + 0.571266i 0.193548π0.193548\pi
620620 −3.45832 −0.138890
621621 3.69020 0.148083
622622 −23.9499 −0.960304
623623 13.2642 0.531417
624624 2.81743 0.112787
625625 11.4626 0.458505
626626 21.7501 0.869310
627627 −0.436655 −0.0174383
628628 1.04445 0.0416779
629629 −10.0709 −0.401551
630630 −3.77200 −0.150280
631631 −9.39439 −0.373985 −0.186992 0.982361i 0.559874π-0.559874\pi
−0.186992 + 0.982361i 0.559874π0.559874\pi
632632 12.8574 0.511441
633633 −8.77268 −0.348683
634634 33.7803 1.34159
635635 −16.7039 −0.662874
636636 −18.8156 −0.746087
637637 6.11568 0.242312
638638 −0.422873 −0.0167417
639639 2.99790 0.118595
640640 12.4866 0.493576
641641 −10.9887 −0.434029 −0.217014 0.976168i 0.569632π-0.569632\pi
−0.217014 + 0.976168i 0.569632π0.569632\pi
642642 18.6679 0.736762
643643 12.3351 0.486449 0.243224 0.969970i 0.421795π-0.421795\pi
0.243224 + 0.969970i 0.421795π0.421795\pi
644644 18.0557 0.711496
645645 4.83786 0.190490
646646 −45.6685 −1.79680
647647 2.56902 0.100999 0.0504994 0.998724i 0.483919π-0.483919\pi
0.0504994 + 0.998724i 0.483919π0.483919\pi
648648 1.72279 0.0676775
649649 −0.116952 −0.00459079
650650 13.7801 0.540500
651651 2.21762 0.0869152
652652 45.9496 1.79953
653653 −7.91072 −0.309571 −0.154785 0.987948i 0.549469π-0.549469\pi
−0.154785 + 0.987948i 0.549469π0.549469\pi
654654 −10.7218 −0.419255
655655 0.982095 0.0383736
656656 −18.7216 −0.730957
657657 10.0038 0.390286
658658 −1.41888 −0.0553136
659659 36.6058 1.42596 0.712980 0.701185i 0.247345π-0.247345\pi
0.712980 + 0.701185i 0.247345π0.247345\pi
660660 −0.195181 −0.00759741
661661 29.3593 1.14194 0.570972 0.820969i 0.306566π-0.306566\pi
0.570972 + 0.820969i 0.306566π0.306566\pi
662662 −48.6758 −1.89184
663663 −5.31893 −0.206570
664664 3.08128 0.119577
665665 10.5578 0.409414
666666 −6.46543 −0.250531
667667 −10.0028 −0.387311
668668 6.87279 0.265916
669669 9.65707 0.373364
670670 7.65696 0.295814
671671 0.663277 0.0256055
672672 −12.9820 −0.500790
673673 30.3127 1.16847 0.584234 0.811585i 0.301395π-0.301395\pi
0.584234 + 0.811585i 0.301395π0.301395\pi
674674 11.2263 0.432420
675675 −4.03549 −0.155326
676676 −29.4468 −1.13257
677677 2.05055 0.0788089 0.0394044 0.999223i 0.487454π-0.487454\pi
0.0394044 + 0.999223i 0.487454π0.487454\pi
678678 18.7851 0.721437
679679 −6.21322 −0.238442
680680 −5.76637 −0.221130
681681 7.25213 0.277902
682682 0.197085 0.00754677
683683 −20.9734 −0.802526 −0.401263 0.915963i 0.631429π-0.631429\pi
−0.401263 + 0.915963i 0.631429π0.631429\pi
684684 −17.0705 −0.652707
685685 3.51356 0.134246
686686 −41.9361 −1.60113
687687 1.14442 0.0436623
688688 8.89293 0.339040
689689 10.5349 0.401347
690690 −7.92962 −0.301875
691691 16.2244 0.617206 0.308603 0.951191i 0.400139π-0.400139\pi
0.308603 + 0.951191i 0.400139π0.400139\pi
692692 −51.6702 −1.96421
693693 0.125158 0.00475435
694694 −67.3355 −2.55602
695695 10.9838 0.416640
696696 −4.66986 −0.177011
697697 35.3440 1.33875
698698 −63.5763 −2.40640
699699 −9.96373 −0.376863
700700 −19.7452 −0.746299
701701 24.2437 0.915672 0.457836 0.889037i 0.348625π-0.348625\pi
0.457836 + 0.889037i 0.348625π0.348625\pi
702702 −3.41473 −0.128881
703703 18.0967 0.682530
704704 −0.896306 −0.0337808
705705 0.362811 0.0136642
706706 −73.8761 −2.78036
707707 15.7718 0.593160
708708 −4.57211 −0.171831
709709 22.5966 0.848634 0.424317 0.905514i 0.360514π-0.360514\pi
0.424317 + 0.905514i 0.360514π0.360514\pi
710710 −6.44197 −0.241763
711711 7.46316 0.279890
712712 13.0179 0.487867
713713 4.66194 0.174591
714714 13.0899 0.489877
715715 0.109282 0.00408692
716716 13.2859 0.496517
717717 12.9401 0.483257
718718 −41.3197 −1.54204
719719 14.5287 0.541828 0.270914 0.962604i 0.412674π-0.412674\pi
0.270914 + 0.962604i 0.412674π0.412674\pi
720720 1.77296 0.0660743
721721 −10.4181 −0.387990
722722 40.4913 1.50693
723723 −7.88922 −0.293403
724724 22.5887 0.839501
725725 10.9388 0.406256
726726 −24.0570 −0.892838
727727 39.8199 1.47684 0.738419 0.674342i 0.235573π-0.235573\pi
0.738419 + 0.674342i 0.235573π0.235573\pi
728728 −4.71964 −0.174921
729729 1.00000 0.0370370
730730 −21.4965 −0.795621
731731 −16.7887 −0.620952
732732 25.9300 0.958401
733733 36.0769 1.33253 0.666266 0.745714i 0.267891π-0.267891\pi
0.666266 + 0.745714i 0.267891π0.267891\pi
734734 47.9806 1.77100
735735 3.84850 0.141954
736736 −27.2911 −1.00596
737737 −0.254064 −0.00935855
738738 22.6907 0.835255
739739 32.0781 1.18001 0.590005 0.807399i 0.299126π-0.299126\pi
0.590005 + 0.807399i 0.299126π0.299126\pi
740740 8.08906 0.297360
741741 9.55780 0.351114
742742 −25.9263 −0.951785
743743 25.2462 0.926194 0.463097 0.886308i 0.346738π-0.346738\pi
0.463097 + 0.886308i 0.346738π0.346738\pi
744744 2.17645 0.0797924
745745 −9.93916 −0.364143
746746 −48.3401 −1.76986
747747 1.78854 0.0654394
748748 0.677331 0.0247657
749749 14.9767 0.547236
750750 19.4157 0.708963
751751 −19.9241 −0.727043 −0.363521 0.931586i 0.618426π-0.618426\pi
−0.363521 + 0.931586i 0.618426π0.618426\pi
752752 0.666917 0.0243200
753753 13.0595 0.475914
754754 9.25611 0.337088
755755 −3.39716 −0.123635
756756 4.89289 0.177953
757757 11.4549 0.416334 0.208167 0.978093i 0.433250π-0.433250\pi
0.208167 + 0.978093i 0.433250π0.433250\pi
758758 −78.4163 −2.84821
759759 0.263111 0.00955031
760760 10.3618 0.375862
761761 −42.8720 −1.55411 −0.777055 0.629433i 0.783287π-0.783287\pi
−0.777055 + 0.629433i 0.783287π0.783287\pi
762762 37.2146 1.34814
763763 −8.60178 −0.311405
764764 51.3456 1.85762
765765 −3.34712 −0.121015
766766 −64.8905 −2.34459
767767 2.55993 0.0924338
768768 −2.67695 −0.0965961
769769 −40.3136 −1.45374 −0.726872 0.686773i 0.759027π-0.759027\pi
−0.726872 + 0.686773i 0.759027π0.759027\pi
770770 −0.268943 −0.00969203
771771 6.53801 0.235461
772772 −74.8462 −2.69378
773773 −29.6754 −1.06735 −0.533675 0.845689i 0.679190π-0.679190\pi
−0.533675 + 0.845689i 0.679190π0.679190\pi
774774 −10.7783 −0.387416
775775 −5.09815 −0.183131
776776 −6.09788 −0.218901
777777 −5.18703 −0.186084
778778 75.4947 2.70662
779779 −63.5110 −2.27552
780780 4.27225 0.152971
781781 0.213749 0.00764855
782782 27.5179 0.984040
783783 −2.71064 −0.0968705
784784 7.07429 0.252653
785785 −0.367996 −0.0131344
786786 −2.18801 −0.0780436
787787 −23.6101 −0.841607 −0.420804 0.907152i 0.638252π-0.638252\pi
−0.420804 + 0.907152i 0.638252π0.638252\pi
788788 −47.9674 −1.70877
789789 −22.6754 −0.807267
790790 −16.0371 −0.570573
791791 15.0707 0.535853
792792 0.122834 0.00436473
793793 −14.5182 −0.515558
794794 −79.1829 −2.81010
795795 6.62943 0.235122
796796 24.3344 0.862511
797797 50.0334 1.77227 0.886137 0.463423i 0.153379π-0.153379\pi
0.886137 + 0.463423i 0.153379π0.153379\pi
798798 −23.5217 −0.832660
799799 −1.25905 −0.0445421
800800 29.8447 1.05517
801801 7.55631 0.266989
802802 −85.8484 −3.03141
803803 0.713269 0.0251707
804804 −9.93230 −0.350285
805805 −6.36170 −0.224220
806806 −4.31393 −0.151952
807807 −10.3264 −0.363506
808808 15.4790 0.544551
809809 10.2664 0.360946 0.180473 0.983580i 0.442237π-0.442237\pi
0.180473 + 0.983580i 0.442237π0.442237\pi
810810 −2.14883 −0.0755022
811811 −30.2517 −1.06228 −0.531141 0.847284i 0.678236π-0.678236\pi
−0.531141 + 0.847284i 0.678236π0.678236\pi
812812 −13.2629 −0.465436
813813 24.0929 0.844975
814814 −0.460984 −0.0161575
815815 −16.1897 −0.567102
816816 −6.15265 −0.215386
817817 30.1683 1.05545
818818 −57.0705 −1.99542
819819 −2.73954 −0.0957271
820820 −28.3888 −0.991381
821821 −33.4354 −1.16690 −0.583452 0.812148i 0.698298π-0.698298\pi
−0.583452 + 0.812148i 0.698298π0.698298\pi
822822 −7.82786 −0.273028
823823 43.2687 1.50825 0.754126 0.656730i 0.228061π-0.228061\pi
0.754126 + 0.656730i 0.228061π0.228061\pi
824824 −10.2247 −0.356194
825825 −0.287730 −0.0100175
826826 −6.29999 −0.219205
827827 5.45949 0.189845 0.0949225 0.995485i 0.469740π-0.469740\pi
0.0949225 + 0.995485i 0.469740π0.469740\pi
828828 10.2860 0.357463
829829 −43.3123 −1.50430 −0.752149 0.658993i 0.770983π-0.770983\pi
−0.752149 + 0.658993i 0.770983π0.770983\pi
830830 −3.84328 −0.133402
831831 8.02160 0.278266
832832 19.6189 0.680164
833833 −13.3553 −0.462735
834834 −24.4709 −0.847356
835835 −2.42154 −0.0838007
836836 −1.21712 −0.0420951
837837 1.26333 0.0436670
838838 −11.6499 −0.402437
839839 −13.6741 −0.472082 −0.236041 0.971743i 0.575850π-0.575850\pi
−0.236041 + 0.971743i 0.575850π0.575850\pi
840840 −2.96999 −0.102474
841841 −21.6524 −0.746635
842842 −14.2733 −0.491892
843843 −32.2015 −1.10908
844844 −24.4528 −0.841699
845845 10.3752 0.356918
846846 −0.808306 −0.0277901
847847 −19.3002 −0.663162
848848 12.1862 0.418475
849849 2.20717 0.0757500
850850 −30.0928 −1.03217
851851 −10.9043 −0.373796
852852 8.35627 0.286281
853853 37.9455 1.29923 0.649614 0.760264i 0.274931π-0.274931\pi
0.649614 + 0.760264i 0.274931π0.274931\pi
854854 35.7294 1.22263
855855 6.01456 0.205694
856856 14.6987 0.502390
857857 −0.409912 −0.0140023 −0.00700117 0.999975i 0.502229π-0.502229\pi
−0.00700117 + 0.999975i 0.502229π0.502229\pi
858858 −0.243469 −0.00831191
859859 −43.2893 −1.47701 −0.738505 0.674248i 0.764468π-0.764468\pi
−0.738505 + 0.674248i 0.764468π0.764468\pi
860860 13.4849 0.459833
861861 18.2041 0.620392
862862 8.98032 0.305871
863863 −21.8204 −0.742776 −0.371388 0.928478i 0.621118π-0.621118\pi
−0.371388 + 0.928478i 0.621118π0.621118\pi
864864 −7.39555 −0.251602
865865 18.2053 0.618999
866866 −83.3591 −2.83266
867867 −5.38459 −0.182870
868868 6.18133 0.209808
869869 0.532122 0.0180510
870870 5.82472 0.197476
871871 5.56111 0.188431
872872 −8.44210 −0.285886
873873 −3.53954 −0.119795
874874 −49.4481 −1.67261
875875 15.5767 0.526588
876876 27.8844 0.942126
877877 −7.88534 −0.266269 −0.133135 0.991098i 0.542504π-0.542504\pi
−0.133135 + 0.991098i 0.542504π0.542504\pi
878878 36.5592 1.23381
879879 29.3883 0.991242
880880 0.126412 0.00426133
881881 46.7497 1.57504 0.787519 0.616291i 0.211365π-0.211365\pi
0.787519 + 0.616291i 0.211365π0.211365\pi
882882 −8.57406 −0.288704
883883 8.40810 0.282955 0.141478 0.989941i 0.454815π-0.454815\pi
0.141478 + 0.989941i 0.454815π0.454815\pi
884884 −14.8259 −0.498648
885885 1.61092 0.0541506
886886 59.1788 1.98815
887887 5.24750 0.176194 0.0880968 0.996112i 0.471922π-0.471922\pi
0.0880968 + 0.996112i 0.471922π0.471922\pi
888888 −5.09074 −0.170834
889889 29.8562 1.00134
890890 −16.2372 −0.544274
891891 0.0712998 0.00238863
892892 26.9179 0.901278
893893 2.26244 0.0757097
894894 22.1434 0.740587
895895 −4.68111 −0.156472
896896 −22.3182 −0.745600
897897 −5.75914 −0.192292
898898 85.4635 2.85195
899899 −3.42444 −0.114211
900900 −11.2484 −0.374948
901901 −23.0059 −0.766438
902902 1.61784 0.0538682
903903 −8.64708 −0.287757
904904 14.7909 0.491939
905905 −7.95881 −0.264560
906906 7.56852 0.251447
907907 −34.5602 −1.14755 −0.573776 0.819012i 0.694522π-0.694522\pi
−0.573776 + 0.819012i 0.694522π0.694522\pi
908908 20.2144 0.670840
909909 8.98488 0.298010
910910 5.88680 0.195146
911911 −30.5958 −1.01368 −0.506842 0.862039i 0.669187π-0.669187\pi
−0.506842 + 0.862039i 0.669187π0.669187\pi
912912 11.0559 0.366099
913913 0.127523 0.00422039
914914 −60.4373 −1.99909
915915 −9.13609 −0.302030
916916 3.18992 0.105398
917917 −1.75537 −0.0579676
918918 7.45703 0.246119
919919 52.8058 1.74190 0.870952 0.491368i 0.163503π-0.163503\pi
0.870952 + 0.491368i 0.163503π0.163503\pi
920920 −6.24360 −0.205845
921921 29.8391 0.983233
922922 −45.1171 −1.48585
923923 −4.67868 −0.154001
924924 0.348862 0.0114767
925925 11.9246 0.392080
926926 −36.8752 −1.21180
927927 −5.93497 −0.194930
928928 20.0467 0.658065
929929 −27.0415 −0.887203 −0.443602 0.896224i 0.646300π-0.646300\pi
−0.443602 + 0.896224i 0.646300π0.646300\pi
930930 −2.71468 −0.0890179
931931 23.9987 0.786527
932932 −27.7727 −0.909725
933933 −10.9460 −0.358356
934934 10.5949 0.346675
935935 −0.238649 −0.00780464
936936 −2.68868 −0.0878822
937937 32.3989 1.05843 0.529213 0.848489i 0.322487π-0.322487\pi
0.529213 + 0.848489i 0.322487π0.322487\pi
938938 −13.6859 −0.446860
939939 9.94061 0.324400
940940 1.01129 0.0329847
941941 −21.2895 −0.694019 −0.347010 0.937862i 0.612803π-0.612803\pi
−0.347010 + 0.937862i 0.612803π0.612803\pi
942942 0.819859 0.0267124
943943 38.2691 1.24621
944944 2.96119 0.0963786
945945 −1.72394 −0.0560799
946946 −0.768487 −0.0249857
947947 12.4200 0.403596 0.201798 0.979427i 0.435322π-0.435322\pi
0.201798 + 0.979427i 0.435322π0.435322\pi
948948 20.8026 0.675638
949949 −15.6125 −0.506803
950950 54.0749 1.75442
951951 15.4388 0.500639
952952 10.3067 0.334041
953953 44.7344 1.44909 0.724545 0.689227i 0.242050π-0.242050\pi
0.724545 + 0.689227i 0.242050π0.242050\pi
954954 −14.7697 −0.478186
955955 −18.0909 −0.585409
956956 36.0689 1.16655
957957 −0.193268 −0.00624748
958958 10.7180 0.346284
959959 −6.28006 −0.202794
960960 12.3459 0.398461
961961 −29.4040 −0.948516
962962 10.0903 0.325325
963963 8.53190 0.274937
964964 −21.9902 −0.708258
965965 26.3711 0.848915
966966 14.1732 0.456016
967967 39.8071 1.28011 0.640055 0.768329i 0.278912π-0.278912\pi
0.640055 + 0.768329i 0.278912π0.278912\pi
968968 −18.9419 −0.608816
969969 −20.8722 −0.670511
970970 7.60588 0.244210
971971 −30.2762 −0.971610 −0.485805 0.874067i 0.661474π-0.661474\pi
−0.485805 + 0.874067i 0.661474π0.661474\pi
972972 2.78738 0.0894052
973973 −19.6322 −0.629381
974974 89.1191 2.85556
975975 6.29801 0.201698
976976 −16.7939 −0.537560
977977 5.16038 0.165095 0.0825476 0.996587i 0.473694π-0.473694\pi
0.0825476 + 0.996587i 0.473694π0.473694\pi
978978 36.0691 1.15336
979979 0.538764 0.0172190
980980 10.7272 0.342668
981981 −4.90026 −0.156453
982982 −12.7048 −0.405426
983983 56.1268 1.79017 0.895083 0.445899i 0.147116π-0.147116\pi
0.895083 + 0.445899i 0.147116π0.147116\pi
984984 17.8661 0.569551
985985 16.9007 0.538500
986986 −20.2134 −0.643725
987987 −0.648480 −0.0206413
988988 26.6412 0.847569
989989 −18.1782 −0.578032
990990 −0.153211 −0.00486937
991991 30.7459 0.976676 0.488338 0.872655i 0.337603π-0.337603\pi
0.488338 + 0.872655i 0.337603π0.337603\pi
992992 −9.34301 −0.296641
993993 −22.2466 −0.705975
994994 11.5142 0.365209
995995 −8.57391 −0.271811
996996 4.98535 0.157967
997997 −27.5857 −0.873649 −0.436824 0.899547i 0.643897π-0.643897\pi
−0.436824 + 0.899547i 0.643897π0.643897\pi
998998 −57.9216 −1.83348
999999 −2.95494 −0.0934902
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 393.2.a.e.1.6 6
3.2 odd 2 1179.2.a.f.1.1 6
4.3 odd 2 6288.2.a.bj.1.1 6
5.4 even 2 9825.2.a.r.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
393.2.a.e.1.6 6 1.1 even 1 trivial
1179.2.a.f.1.1 6 3.2 odd 2
6288.2.a.bj.1.1 6 4.3 odd 2
9825.2.a.r.1.1 6 5.4 even 2