Properties

Label 396.2.c.a.287.2
Level $396$
Weight $2$
Character 396.287
Analytic conductor $3.162$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(287,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.287");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.5236158660608.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{8} - 4x^{7} + 3x^{6} + 8x^{5} + 6x^{4} - 16x^{3} - 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.2
Root \(1.40857 - 0.126175i\) of defining polynomial
Character \(\chi\) \(=\) 396.287
Dual form 396.2.c.a.287.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40857 + 0.126175i) q^{2} +(1.96816 - 0.355453i) q^{4} +0.450958i q^{5} -4.60354i q^{7} +(-2.72745 + 0.749014i) q^{8} +(-0.0568995 - 0.635207i) q^{10} -1.00000 q^{11} -5.39122 q^{13} +(0.580851 + 6.48443i) q^{14} +(3.74731 - 1.39918i) q^{16} -5.39826i q^{17} +4.38126i q^{19} +(0.160294 + 0.887557i) q^{20} +(1.40857 - 0.126175i) q^{22} -6.03971 q^{23} +4.79664 q^{25} +(7.59393 - 0.680236i) q^{26} +(-1.63634 - 9.06050i) q^{28} -3.31081i q^{29} -4.57881i q^{31} +(-5.10182 + 2.44366i) q^{32} +(0.681125 + 7.60385i) q^{34} +2.07600 q^{35} -6.27205 q^{37} +(-0.552805 - 6.17133i) q^{38} +(-0.337774 - 1.22996i) q^{40} -11.2722i q^{41} -0.650922i q^{43} +(-1.96816 + 0.355453i) q^{44} +(8.50738 - 0.762060i) q^{46} +5.79062 q^{47} -14.1926 q^{49} +(-6.75642 + 0.605215i) q^{50} +(-10.6108 + 1.91633i) q^{52} -1.46036i q^{53} -0.450958i q^{55} +(3.44812 + 12.5559i) q^{56} +(0.417741 + 4.66353i) q^{58} +4.71375 q^{59} +1.28023 q^{61} +(0.577730 + 6.44958i) q^{62} +(6.87796 - 4.08580i) q^{64} -2.43121i q^{65} -6.54628i q^{67} +(-1.91883 - 10.6246i) q^{68} +(-2.92420 + 0.261939i) q^{70} +4.27806 q^{71} +9.86189 q^{73} +(8.83464 - 0.791374i) q^{74} +(1.55733 + 8.62303i) q^{76} +4.60354i q^{77} +8.84129i q^{79} +(0.630970 + 1.68988i) q^{80} +(1.42227 + 15.8777i) q^{82} -0.627004 q^{83} +2.43439 q^{85} +(0.0821299 + 0.916871i) q^{86} +(2.72745 - 0.749014i) q^{88} +10.6365i q^{89} +24.8187i q^{91} +(-11.8871 + 2.14684i) q^{92} +(-8.15652 + 0.730631i) q^{94} -1.97576 q^{95} +1.59931 q^{97} +(19.9913 - 1.79075i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{4} - 12 q^{8} + 4 q^{10} - 10 q^{11} + 8 q^{13} + 8 q^{14} - 4 q^{16} - 24 q^{20} - 8 q^{23} - 10 q^{25} + 16 q^{26} + 16 q^{28} + 8 q^{34} + 16 q^{35} - 4 q^{37} + 32 q^{38} - 4 q^{44} + 20 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40857 + 0.126175i −0.996012 + 0.0892191i
\(3\) 0 0
\(4\) 1.96816 0.355453i 0.984080 0.177727i
\(5\) 0.450958i 0.201674i 0.994903 + 0.100837i \(0.0321521\pi\)
−0.994903 + 0.100837i \(0.967848\pi\)
\(6\) 0 0
\(7\) 4.60354i 1.73997i −0.493074 0.869987i \(-0.664127\pi\)
0.493074 0.869987i \(-0.335873\pi\)
\(8\) −2.72745 + 0.749014i −0.964299 + 0.264816i
\(9\) 0 0
\(10\) −0.0568995 0.635207i −0.0179932 0.200870i
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −5.39122 −1.49525 −0.747627 0.664118i \(-0.768807\pi\)
−0.747627 + 0.664118i \(0.768807\pi\)
\(14\) 0.580851 + 6.48443i 0.155239 + 1.73304i
\(15\) 0 0
\(16\) 3.74731 1.39918i 0.936827 0.349794i
\(17\) 5.39826i 1.30927i −0.755945 0.654635i \(-0.772822\pi\)
0.755945 0.654635i \(-0.227178\pi\)
\(18\) 0 0
\(19\) 4.38126i 1.00513i 0.864539 + 0.502565i \(0.167610\pi\)
−0.864539 + 0.502565i \(0.832390\pi\)
\(20\) 0.160294 + 0.887557i 0.0358429 + 0.198464i
\(21\) 0 0
\(22\) 1.40857 0.126175i 0.300309 0.0269006i
\(23\) −6.03971 −1.25937 −0.629684 0.776852i \(-0.716816\pi\)
−0.629684 + 0.776852i \(0.716816\pi\)
\(24\) 0 0
\(25\) 4.79664 0.959327
\(26\) 7.59393 0.680236i 1.48929 0.133405i
\(27\) 0 0
\(28\) −1.63634 9.06050i −0.309240 1.71227i
\(29\) 3.31081i 0.614803i −0.951580 0.307401i \(-0.900541\pi\)
0.951580 0.307401i \(-0.0994594\pi\)
\(30\) 0 0
\(31\) 4.57881i 0.822378i −0.911550 0.411189i \(-0.865114\pi\)
0.911550 0.411189i \(-0.134886\pi\)
\(32\) −5.10182 + 2.44366i −0.901882 + 0.431982i
\(33\) 0 0
\(34\) 0.681125 + 7.60385i 0.116812 + 1.30405i
\(35\) 2.07600 0.350908
\(36\) 0 0
\(37\) −6.27205 −1.03112 −0.515559 0.856854i \(-0.672416\pi\)
−0.515559 + 0.856854i \(0.672416\pi\)
\(38\) −0.552805 6.17133i −0.0896769 1.00112i
\(39\) 0 0
\(40\) −0.337774 1.22996i −0.0534067 0.194474i
\(41\) 11.2722i 1.76042i −0.474580 0.880212i \(-0.657400\pi\)
0.474580 0.880212i \(-0.342600\pi\)
\(42\) 0 0
\(43\) 0.650922i 0.0992646i −0.998768 0.0496323i \(-0.984195\pi\)
0.998768 0.0496323i \(-0.0158049\pi\)
\(44\) −1.96816 + 0.355453i −0.296711 + 0.0535866i
\(45\) 0 0
\(46\) 8.50738 0.762060i 1.25435 0.112360i
\(47\) 5.79062 0.844649 0.422325 0.906445i \(-0.361214\pi\)
0.422325 + 0.906445i \(0.361214\pi\)
\(48\) 0 0
\(49\) −14.1926 −2.02751
\(50\) −6.75642 + 0.605215i −0.955502 + 0.0855903i
\(51\) 0 0
\(52\) −10.6108 + 1.91633i −1.47145 + 0.265746i
\(53\) 1.46036i 0.200595i −0.994957 0.100298i \(-0.968020\pi\)
0.994957 0.100298i \(-0.0319795\pi\)
\(54\) 0 0
\(55\) 0.450958i 0.0608071i
\(56\) 3.44812 + 12.5559i 0.460774 + 1.67786i
\(57\) 0 0
\(58\) 0.417741 + 4.66353i 0.0548521 + 0.612351i
\(59\) 4.71375 0.613678 0.306839 0.951761i \(-0.400729\pi\)
0.306839 + 0.951761i \(0.400729\pi\)
\(60\) 0 0
\(61\) 1.28023 0.163917 0.0819586 0.996636i \(-0.473882\pi\)
0.0819586 + 0.996636i \(0.473882\pi\)
\(62\) 0.577730 + 6.44958i 0.0733718 + 0.819098i
\(63\) 0 0
\(64\) 6.87796 4.08580i 0.859744 0.510724i
\(65\) 2.43121i 0.301555i
\(66\) 0 0
\(67\) 6.54628i 0.799756i −0.916568 0.399878i \(-0.869053\pi\)
0.916568 0.399878i \(-0.130947\pi\)
\(68\) −1.91883 10.6246i −0.232692 1.28843i
\(69\) 0 0
\(70\) −2.92420 + 0.261939i −0.349509 + 0.0313077i
\(71\) 4.27806 0.507712 0.253856 0.967242i \(-0.418301\pi\)
0.253856 + 0.967242i \(0.418301\pi\)
\(72\) 0 0
\(73\) 9.86189 1.15425 0.577124 0.816657i \(-0.304175\pi\)
0.577124 + 0.816657i \(0.304175\pi\)
\(74\) 8.83464 0.791374i 1.02701 0.0919954i
\(75\) 0 0
\(76\) 1.55733 + 8.62303i 0.178638 + 0.989129i
\(77\) 4.60354i 0.524622i
\(78\) 0 0
\(79\) 8.84129i 0.994723i 0.867543 + 0.497362i \(0.165698\pi\)
−0.867543 + 0.497362i \(0.834302\pi\)
\(80\) 0.630970 + 1.68988i 0.0705446 + 0.188934i
\(81\) 0 0
\(82\) 1.42227 + 15.8777i 0.157063 + 1.75340i
\(83\) −0.627004 −0.0688226 −0.0344113 0.999408i \(-0.510956\pi\)
−0.0344113 + 0.999408i \(0.510956\pi\)
\(84\) 0 0
\(85\) 2.43439 0.264046
\(86\) 0.0821299 + 0.916871i 0.00885630 + 0.0988688i
\(87\) 0 0
\(88\) 2.72745 0.749014i 0.290747 0.0798452i
\(89\) 10.6365i 1.12747i 0.825957 + 0.563733i \(0.190635\pi\)
−0.825957 + 0.563733i \(0.809365\pi\)
\(90\) 0 0
\(91\) 24.8187i 2.60171i
\(92\) −11.8871 + 2.14684i −1.23932 + 0.223823i
\(93\) 0 0
\(94\) −8.15652 + 0.730631i −0.841281 + 0.0753588i
\(95\) −1.97576 −0.202709
\(96\) 0 0
\(97\) 1.59931 0.162386 0.0811928 0.996698i \(-0.474127\pi\)
0.0811928 + 0.996698i \(0.474127\pi\)
\(98\) 19.9913 1.79075i 2.01943 0.180893i
\(99\) 0 0
\(100\) 9.44055 1.70498i 0.944055 0.170498i
\(101\) 5.90296i 0.587367i 0.955903 + 0.293683i \(0.0948811\pi\)
−0.955903 + 0.293683i \(0.905119\pi\)
\(102\) 0 0
\(103\) 7.11963i 0.701518i 0.936466 + 0.350759i \(0.114076\pi\)
−0.936466 + 0.350759i \(0.885924\pi\)
\(104\) 14.7043 4.03810i 1.44187 0.395968i
\(105\) 0 0
\(106\) 0.184260 + 2.05702i 0.0178969 + 0.199795i
\(107\) 12.9205 1.24908 0.624538 0.780994i \(-0.285287\pi\)
0.624538 + 0.780994i \(0.285287\pi\)
\(108\) 0 0
\(109\) −7.40196 −0.708980 −0.354490 0.935060i \(-0.615345\pi\)
−0.354490 + 0.935060i \(0.615345\pi\)
\(110\) 0.0568995 + 0.635207i 0.00542516 + 0.0605646i
\(111\) 0 0
\(112\) −6.44117 17.2509i −0.608633 1.63005i
\(113\) 13.2201i 1.24365i 0.783158 + 0.621823i \(0.213608\pi\)
−0.783158 + 0.621823i \(0.786392\pi\)
\(114\) 0 0
\(115\) 2.72366i 0.253982i
\(116\) −1.17684 6.51621i −0.109267 0.605015i
\(117\) 0 0
\(118\) −6.63967 + 0.594757i −0.611231 + 0.0547518i
\(119\) −24.8511 −2.27810
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.80330 + 0.161533i −0.163263 + 0.0146245i
\(123\) 0 0
\(124\) −1.62755 9.01182i −0.146158 0.809285i
\(125\) 4.41787i 0.395146i
\(126\) 0 0
\(127\) 14.9079i 1.32286i −0.750008 0.661429i \(-0.769950\pi\)
0.750008 0.661429i \(-0.230050\pi\)
\(128\) −9.17258 + 6.62297i −0.810749 + 0.585393i
\(129\) 0 0
\(130\) 0.306758 + 3.42454i 0.0269044 + 0.300352i
\(131\) −5.69955 −0.497972 −0.248986 0.968507i \(-0.580097\pi\)
−0.248986 + 0.968507i \(0.580097\pi\)
\(132\) 0 0
\(133\) 20.1693 1.74890
\(134\) 0.825976 + 9.22092i 0.0713535 + 0.796566i
\(135\) 0 0
\(136\) 4.04337 + 14.7235i 0.346716 + 1.26253i
\(137\) 3.67780i 0.314215i −0.987581 0.157108i \(-0.949783\pi\)
0.987581 0.157108i \(-0.0502170\pi\)
\(138\) 0 0
\(139\) 11.3998i 0.966917i 0.875367 + 0.483459i \(0.160620\pi\)
−0.875367 + 0.483459i \(0.839380\pi\)
\(140\) 4.08590 0.737921i 0.345322 0.0623657i
\(141\) 0 0
\(142\) −6.02596 + 0.539783i −0.505687 + 0.0452976i
\(143\) 5.39122 0.450836
\(144\) 0 0
\(145\) 1.49304 0.123990
\(146\) −13.8912 + 1.24432i −1.14964 + 0.102981i
\(147\) 0 0
\(148\) −12.3444 + 2.22942i −1.01470 + 0.183257i
\(149\) 19.7575i 1.61860i −0.587397 0.809299i \(-0.699847\pi\)
0.587397 0.809299i \(-0.300153\pi\)
\(150\) 0 0
\(151\) 4.51126i 0.367121i −0.983008 0.183560i \(-0.941238\pi\)
0.983008 0.183560i \(-0.0587623\pi\)
\(152\) −3.28163 11.9497i −0.266175 0.969247i
\(153\) 0 0
\(154\) −0.580851 6.48443i −0.0468063 0.522530i
\(155\) 2.06485 0.165853
\(156\) 0 0
\(157\) −2.46466 −0.196701 −0.0983507 0.995152i \(-0.531357\pi\)
−0.0983507 + 0.995152i \(0.531357\pi\)
\(158\) −1.11555 12.4536i −0.0887483 0.990756i
\(159\) 0 0
\(160\) −1.10199 2.30070i −0.0871197 0.181887i
\(161\) 27.8041i 2.19127i
\(162\) 0 0
\(163\) 22.2074i 1.73941i −0.493568 0.869707i \(-0.664307\pi\)
0.493568 0.869707i \(-0.335693\pi\)
\(164\) −4.00674 22.1855i −0.312874 1.73240i
\(165\) 0 0
\(166\) 0.883181 0.0791121i 0.0685482 0.00614029i
\(167\) 11.8748 0.918898 0.459449 0.888204i \(-0.348047\pi\)
0.459449 + 0.888204i \(0.348047\pi\)
\(168\) 0 0
\(169\) 16.0652 1.23579
\(170\) −3.42901 + 0.307158i −0.262993 + 0.0235580i
\(171\) 0 0
\(172\) −0.231372 1.28112i −0.0176420 0.0976843i
\(173\) 12.9026i 0.980968i 0.871450 + 0.490484i \(0.163180\pi\)
−0.871450 + 0.490484i \(0.836820\pi\)
\(174\) 0 0
\(175\) 22.0815i 1.66921i
\(176\) −3.74731 + 1.39918i −0.282464 + 0.105467i
\(177\) 0 0
\(178\) −1.34206 14.9823i −0.100591 1.12297i
\(179\) 14.2207 1.06290 0.531452 0.847088i \(-0.321647\pi\)
0.531452 + 0.847088i \(0.321647\pi\)
\(180\) 0 0
\(181\) 15.1818 1.12846 0.564229 0.825619i \(-0.309174\pi\)
0.564229 + 0.825619i \(0.309174\pi\)
\(182\) −3.13149 34.9590i −0.232122 2.59133i
\(183\) 0 0
\(184\) 16.4730 4.52383i 1.21441 0.333501i
\(185\) 2.82843i 0.207950i
\(186\) 0 0
\(187\) 5.39826i 0.394760i
\(188\) 11.3969 2.05830i 0.831202 0.150117i
\(189\) 0 0
\(190\) 2.78301 0.249292i 0.201901 0.0180855i
\(191\) −13.7056 −0.991700 −0.495850 0.868408i \(-0.665143\pi\)
−0.495850 + 0.868408i \(0.665143\pi\)
\(192\) 0 0
\(193\) −15.7345 −1.13260 −0.566298 0.824200i \(-0.691625\pi\)
−0.566298 + 0.824200i \(0.691625\pi\)
\(194\) −2.25275 + 0.201793i −0.161738 + 0.0144879i
\(195\) 0 0
\(196\) −27.9333 + 5.04480i −1.99523 + 0.360343i
\(197\) 12.5112i 0.891386i −0.895186 0.445693i \(-0.852957\pi\)
0.895186 0.445693i \(-0.147043\pi\)
\(198\) 0 0
\(199\) 11.9736i 0.848783i −0.905479 0.424391i \(-0.860488\pi\)
0.905479 0.424391i \(-0.139512\pi\)
\(200\) −13.0826 + 3.59275i −0.925078 + 0.254046i
\(201\) 0 0
\(202\) −0.744805 8.31476i −0.0524043 0.585024i
\(203\) −15.2415 −1.06974
\(204\) 0 0
\(205\) 5.08329 0.355033
\(206\) −0.898319 10.0285i −0.0625888 0.698721i
\(207\) 0 0
\(208\) −20.2025 + 7.54327i −1.40079 + 0.523032i
\(209\) 4.38126i 0.303058i
\(210\) 0 0
\(211\) 22.8088i 1.57022i 0.619354 + 0.785112i \(0.287395\pi\)
−0.619354 + 0.785112i \(0.712605\pi\)
\(212\) −0.519088 2.87421i −0.0356511 0.197402i
\(213\) 0 0
\(214\) −18.1995 + 1.63025i −1.24409 + 0.111441i
\(215\) 0.293538 0.0200191
\(216\) 0 0
\(217\) −21.0787 −1.43092
\(218\) 10.4262 0.933942i 0.706152 0.0632545i
\(219\) 0 0
\(220\) −0.160294 0.887557i −0.0108070 0.0598391i
\(221\) 29.1032i 1.95769i
\(222\) 0 0
\(223\) 7.05369i 0.472350i 0.971710 + 0.236175i \(0.0758939\pi\)
−0.971710 + 0.236175i \(0.924106\pi\)
\(224\) 11.2495 + 23.4864i 0.751638 + 1.56925i
\(225\) 0 0
\(226\) −1.66805 18.6215i −0.110957 1.23869i
\(227\) −17.1425 −1.13779 −0.568894 0.822411i \(-0.692629\pi\)
−0.568894 + 0.822411i \(0.692629\pi\)
\(228\) 0 0
\(229\) −0.206790 −0.0136650 −0.00683252 0.999977i \(-0.502175\pi\)
−0.00683252 + 0.999977i \(0.502175\pi\)
\(230\) 0.343657 + 3.83647i 0.0226601 + 0.252969i
\(231\) 0 0
\(232\) 2.47985 + 9.03008i 0.162810 + 0.592854i
\(233\) 7.61451i 0.498843i −0.968395 0.249421i \(-0.919760\pi\)
0.968395 0.249421i \(-0.0802404\pi\)
\(234\) 0 0
\(235\) 2.61133i 0.170344i
\(236\) 9.27742 1.67552i 0.603909 0.109067i
\(237\) 0 0
\(238\) 35.0046 3.13559i 2.26901 0.203250i
\(239\) −11.7859 −0.762366 −0.381183 0.924500i \(-0.624483\pi\)
−0.381183 + 0.924500i \(0.624483\pi\)
\(240\) 0 0
\(241\) 5.78630 0.372728 0.186364 0.982481i \(-0.440330\pi\)
0.186364 + 0.982481i \(0.440330\pi\)
\(242\) −1.40857 + 0.126175i −0.0905465 + 0.00811083i
\(243\) 0 0
\(244\) 2.51970 0.455063i 0.161308 0.0291324i
\(245\) 6.40026i 0.408897i
\(246\) 0 0
\(247\) 23.6203i 1.50293i
\(248\) 3.42959 + 12.4885i 0.217779 + 0.793018i
\(249\) 0 0
\(250\) −0.557424 6.22289i −0.0352546 0.393570i
\(251\) 22.0592 1.39237 0.696183 0.717865i \(-0.254880\pi\)
0.696183 + 0.717865i \(0.254880\pi\)
\(252\) 0 0
\(253\) 6.03971 0.379714
\(254\) 1.88100 + 20.9988i 0.118024 + 1.31758i
\(255\) 0 0
\(256\) 12.0846 10.4863i 0.755288 0.655393i
\(257\) 8.51467i 0.531130i 0.964093 + 0.265565i \(0.0855586\pi\)
−0.964093 + 0.265565i \(0.914441\pi\)
\(258\) 0 0
\(259\) 28.8736i 1.79412i
\(260\) −0.864182 4.78501i −0.0535943 0.296754i
\(261\) 0 0
\(262\) 8.02824 0.719140i 0.495986 0.0444286i
\(263\) −5.07086 −0.312682 −0.156341 0.987703i \(-0.549970\pi\)
−0.156341 + 0.987703i \(0.549970\pi\)
\(264\) 0 0
\(265\) 0.658559 0.0404550
\(266\) −28.4100 + 2.54486i −1.74193 + 0.156035i
\(267\) 0 0
\(268\) −2.32690 12.8841i −0.142138 0.787024i
\(269\) 25.5790i 1.55958i −0.626040 0.779791i \(-0.715326\pi\)
0.626040 0.779791i \(-0.284674\pi\)
\(270\) 0 0
\(271\) 29.2394i 1.77617i −0.459682 0.888084i \(-0.652037\pi\)
0.459682 0.888084i \(-0.347963\pi\)
\(272\) −7.55312 20.2289i −0.457975 1.22656i
\(273\) 0 0
\(274\) 0.464045 + 5.18045i 0.0280340 + 0.312962i
\(275\) −4.79664 −0.289248
\(276\) 0 0
\(277\) 32.1011 1.92877 0.964383 0.264508i \(-0.0852097\pi\)
0.964383 + 0.264508i \(0.0852097\pi\)
\(278\) −1.43837 16.0574i −0.0862675 0.963061i
\(279\) 0 0
\(280\) −5.66219 + 1.55495i −0.338381 + 0.0929263i
\(281\) 19.4654i 1.16121i 0.814186 + 0.580604i \(0.197183\pi\)
−0.814186 + 0.580604i \(0.802817\pi\)
\(282\) 0 0
\(283\) 14.3357i 0.852169i 0.904683 + 0.426084i \(0.140107\pi\)
−0.904683 + 0.426084i \(0.859893\pi\)
\(284\) 8.41990 1.52065i 0.499629 0.0902339i
\(285\) 0 0
\(286\) −7.59393 + 0.680236i −0.449038 + 0.0402232i
\(287\) −51.8921 −3.06309
\(288\) 0 0
\(289\) −12.1412 −0.714190
\(290\) −2.10305 + 0.188384i −0.123496 + 0.0110623i
\(291\) 0 0
\(292\) 19.4098 3.50544i 1.13587 0.205140i
\(293\) 21.2956i 1.24410i 0.782976 + 0.622052i \(0.213701\pi\)
−0.782976 + 0.622052i \(0.786299\pi\)
\(294\) 0 0
\(295\) 2.12570i 0.123763i
\(296\) 17.1067 4.69785i 0.994306 0.273057i
\(297\) 0 0
\(298\) 2.49290 + 27.8299i 0.144410 + 1.61214i
\(299\) 32.5614 1.88308
\(300\) 0 0
\(301\) −2.99654 −0.172718
\(302\) 0.569207 + 6.35444i 0.0327542 + 0.365657i
\(303\) 0 0
\(304\) 6.13016 + 16.4179i 0.351589 + 0.941633i
\(305\) 0.577331i 0.0330579i
\(306\) 0 0
\(307\) 2.34785i 0.133999i −0.997753 0.0669993i \(-0.978657\pi\)
0.997753 0.0669993i \(-0.0213425\pi\)
\(308\) 1.63634 + 9.06050i 0.0932393 + 0.516270i
\(309\) 0 0
\(310\) −2.90849 + 0.260532i −0.165191 + 0.0147972i
\(311\) 12.9742 0.735697 0.367848 0.929886i \(-0.380095\pi\)
0.367848 + 0.929886i \(0.380095\pi\)
\(312\) 0 0
\(313\) 8.66454 0.489749 0.244874 0.969555i \(-0.421253\pi\)
0.244874 + 0.969555i \(0.421253\pi\)
\(314\) 3.47166 0.310978i 0.195917 0.0175495i
\(315\) 0 0
\(316\) 3.14267 + 17.4011i 0.176789 + 0.978887i
\(317\) 7.51714i 0.422205i −0.977464 0.211102i \(-0.932295\pi\)
0.977464 0.211102i \(-0.0677053\pi\)
\(318\) 0 0
\(319\) 3.31081i 0.185370i
\(320\) 1.84252 + 3.10167i 0.103000 + 0.173388i
\(321\) 0 0
\(322\) −3.50817 39.1641i −0.195503 2.18253i
\(323\) 23.6512 1.31599
\(324\) 0 0
\(325\) −25.8597 −1.43444
\(326\) 2.80201 + 31.2807i 0.155189 + 1.73248i
\(327\) 0 0
\(328\) 8.44305 + 30.7444i 0.466189 + 1.69758i
\(329\) 26.6574i 1.46967i
\(330\) 0 0
\(331\) 26.1423i 1.43691i −0.695572 0.718456i \(-0.744849\pi\)
0.695572 0.718456i \(-0.255151\pi\)
\(332\) −1.23404 + 0.222871i −0.0677270 + 0.0122316i
\(333\) 0 0
\(334\) −16.7265 + 1.49830i −0.915234 + 0.0819833i
\(335\) 2.95210 0.161290
\(336\) 0 0
\(337\) 7.72064 0.420570 0.210285 0.977640i \(-0.432561\pi\)
0.210285 + 0.977640i \(0.432561\pi\)
\(338\) −22.6291 + 2.02703i −1.23086 + 0.110256i
\(339\) 0 0
\(340\) 4.79126 0.865311i 0.259843 0.0469281i
\(341\) 4.57881i 0.247956i
\(342\) 0 0
\(343\) 33.1114i 1.78785i
\(344\) 0.487550 + 1.77536i 0.0262869 + 0.0957208i
\(345\) 0 0
\(346\) −1.62799 18.1743i −0.0875211 0.977056i
\(347\) 30.6201 1.64377 0.821886 0.569651i \(-0.192922\pi\)
0.821886 + 0.569651i \(0.192922\pi\)
\(348\) 0 0
\(349\) −19.2853 −1.03232 −0.516161 0.856492i \(-0.672639\pi\)
−0.516161 + 0.856492i \(0.672639\pi\)
\(350\) 2.78613 + 31.1034i 0.148925 + 1.66255i
\(351\) 0 0
\(352\) 5.10182 2.44366i 0.271928 0.130248i
\(353\) 24.5083i 1.30444i −0.758028 0.652222i \(-0.773837\pi\)
0.758028 0.652222i \(-0.226163\pi\)
\(354\) 0 0
\(355\) 1.92922i 0.102393i
\(356\) 3.78077 + 20.9343i 0.200381 + 1.10952i
\(357\) 0 0
\(358\) −20.0309 + 1.79429i −1.05867 + 0.0948313i
\(359\) 21.6374 1.14198 0.570990 0.820957i \(-0.306559\pi\)
0.570990 + 0.820957i \(0.306559\pi\)
\(360\) 0 0
\(361\) −0.195476 −0.0102882
\(362\) −21.3847 + 1.91557i −1.12396 + 0.100680i
\(363\) 0 0
\(364\) 8.82188 + 48.8471i 0.462392 + 2.56029i
\(365\) 4.44730i 0.232782i
\(366\) 0 0
\(367\) 11.3739i 0.593710i −0.954923 0.296855i \(-0.904062\pi\)
0.954923 0.296855i \(-0.0959379\pi\)
\(368\) −22.6327 + 8.45063i −1.17981 + 0.440520i
\(369\) 0 0
\(370\) 0.356876 + 3.98405i 0.0185531 + 0.207121i
\(371\) −6.72281 −0.349031
\(372\) 0 0
\(373\) −22.0678 −1.14263 −0.571313 0.820732i \(-0.693566\pi\)
−0.571313 + 0.820732i \(0.693566\pi\)
\(374\) −0.681125 7.60385i −0.0352201 0.393186i
\(375\) 0 0
\(376\) −15.7936 + 4.33726i −0.814494 + 0.223677i
\(377\) 17.8493i 0.919287i
\(378\) 0 0
\(379\) 11.5928i 0.595480i 0.954647 + 0.297740i \(0.0962329\pi\)
−0.954647 + 0.297740i \(0.903767\pi\)
\(380\) −3.88862 + 0.702292i −0.199482 + 0.0360268i
\(381\) 0 0
\(382\) 19.3053 1.72930i 0.987745 0.0884785i
\(383\) −8.35063 −0.426697 −0.213349 0.976976i \(-0.568437\pi\)
−0.213349 + 0.976976i \(0.568437\pi\)
\(384\) 0 0
\(385\) −2.07600 −0.105803
\(386\) 22.1632 1.98530i 1.12808 0.101049i
\(387\) 0 0
\(388\) 3.14770 0.568481i 0.159800 0.0288602i
\(389\) 21.1897i 1.07436i −0.843467 0.537181i \(-0.819489\pi\)
0.843467 0.537181i \(-0.180511\pi\)
\(390\) 0 0
\(391\) 32.6040i 1.64885i
\(392\) 38.7096 10.6304i 1.95513 0.536919i
\(393\) 0 0
\(394\) 1.57860 + 17.6230i 0.0795287 + 0.887831i
\(395\) −3.98705 −0.200610
\(396\) 0 0
\(397\) −5.63389 −0.282757 −0.141378 0.989956i \(-0.545153\pi\)
−0.141378 + 0.989956i \(0.545153\pi\)
\(398\) 1.51076 + 16.8656i 0.0757276 + 0.845398i
\(399\) 0 0
\(400\) 17.9745 6.71134i 0.898723 0.335567i
\(401\) 27.1670i 1.35665i −0.734761 0.678327i \(-0.762705\pi\)
0.734761 0.678327i \(-0.237295\pi\)
\(402\) 0 0
\(403\) 24.6853i 1.22966i
\(404\) 2.09823 + 11.6180i 0.104391 + 0.578016i
\(405\) 0 0
\(406\) 21.4687 1.92309i 1.06548 0.0954413i
\(407\) 6.27205 0.310894
\(408\) 0 0
\(409\) −35.1236 −1.73675 −0.868374 0.495909i \(-0.834835\pi\)
−0.868374 + 0.495909i \(0.834835\pi\)
\(410\) −7.16019 + 0.641384i −0.353617 + 0.0316757i
\(411\) 0 0
\(412\) 2.53070 + 14.0126i 0.124678 + 0.690350i
\(413\) 21.7000i 1.06778i
\(414\) 0 0
\(415\) 0.282752i 0.0138798i
\(416\) 27.5050 13.1743i 1.34854 0.645923i
\(417\) 0 0
\(418\) 0.552805 + 6.17133i 0.0270386 + 0.301850i
\(419\) 5.90419 0.288439 0.144219 0.989546i \(-0.453933\pi\)
0.144219 + 0.989546i \(0.453933\pi\)
\(420\) 0 0
\(421\) −4.05579 −0.197667 −0.0988336 0.995104i \(-0.531511\pi\)
−0.0988336 + 0.995104i \(0.531511\pi\)
\(422\) −2.87790 32.1279i −0.140094 1.56396i
\(423\) 0 0
\(424\) 1.09383 + 3.98305i 0.0531210 + 0.193434i
\(425\) 25.8935i 1.25602i
\(426\) 0 0
\(427\) 5.89361i 0.285212i
\(428\) 25.4297 4.59265i 1.22919 0.221994i
\(429\) 0 0
\(430\) −0.413470 + 0.0370371i −0.0199393 + 0.00178609i
\(431\) −12.5967 −0.606763 −0.303382 0.952869i \(-0.598116\pi\)
−0.303382 + 0.952869i \(0.598116\pi\)
\(432\) 0 0
\(433\) 7.12665 0.342485 0.171242 0.985229i \(-0.445222\pi\)
0.171242 + 0.985229i \(0.445222\pi\)
\(434\) 29.6909 2.65960i 1.42521 0.127665i
\(435\) 0 0
\(436\) −14.5682 + 2.63105i −0.697693 + 0.126004i
\(437\) 26.4616i 1.26583i
\(438\) 0 0
\(439\) 14.7602i 0.704466i −0.935912 0.352233i \(-0.885422\pi\)
0.935912 0.352233i \(-0.114578\pi\)
\(440\) 0.337774 + 1.22996i 0.0161027 + 0.0586362i
\(441\) 0 0
\(442\) −3.67209 40.9940i −0.174664 1.94989i
\(443\) 0.00946572 0.000449730 0.000224865 1.00000i \(-0.499928\pi\)
0.000224865 1.00000i \(0.499928\pi\)
\(444\) 0 0
\(445\) −4.79661 −0.227381
\(446\) −0.889999 9.93565i −0.0421427 0.470467i
\(447\) 0 0
\(448\) −18.8091 31.6629i −0.888648 1.49593i
\(449\) 3.11056i 0.146796i 0.997303 + 0.0733982i \(0.0233844\pi\)
−0.997303 + 0.0733982i \(0.976616\pi\)
\(450\) 0 0
\(451\) 11.2722i 0.530788i
\(452\) 4.69914 + 26.0193i 0.221029 + 1.22385i
\(453\) 0 0
\(454\) 24.1465 2.16295i 1.13325 0.101512i
\(455\) −11.1922 −0.524697
\(456\) 0 0
\(457\) 7.09532 0.331905 0.165953 0.986134i \(-0.446930\pi\)
0.165953 + 0.986134i \(0.446930\pi\)
\(458\) 0.291278 0.0260916i 0.0136105 0.00121918i
\(459\) 0 0
\(460\) −0.968132 5.36059i −0.0451394 0.249939i
\(461\) 30.5522i 1.42296i 0.702708 + 0.711478i \(0.251974\pi\)
−0.702708 + 0.711478i \(0.748026\pi\)
\(462\) 0 0
\(463\) 25.8995i 1.20365i −0.798628 0.601825i \(-0.794441\pi\)
0.798628 0.601825i \(-0.205559\pi\)
\(464\) −4.63241 12.4066i −0.215054 0.575963i
\(465\) 0 0
\(466\) 0.960759 + 10.7256i 0.0445063 + 0.496854i
\(467\) −30.1266 −1.39409 −0.697047 0.717026i \(-0.745503\pi\)
−0.697047 + 0.717026i \(0.745503\pi\)
\(468\) 0 0
\(469\) −30.1361 −1.39156
\(470\) −0.329484 3.67825i −0.0151979 0.169665i
\(471\) 0 0
\(472\) −12.8565 + 3.53067i −0.591769 + 0.162512i
\(473\) 0.650922i 0.0299294i
\(474\) 0 0
\(475\) 21.0153i 0.964250i
\(476\) −48.9110 + 8.83341i −2.24183 + 0.404879i
\(477\) 0 0
\(478\) 16.6013 1.48708i 0.759326 0.0680176i
\(479\) 35.2644 1.61127 0.805636 0.592411i \(-0.201824\pi\)
0.805636 + 0.592411i \(0.201824\pi\)
\(480\) 0 0
\(481\) 33.8140 1.54178
\(482\) −8.15043 + 0.730085i −0.371242 + 0.0332545i
\(483\) 0 0
\(484\) 1.96816 0.355453i 0.0894618 0.0161570i
\(485\) 0.721223i 0.0327490i
\(486\) 0 0
\(487\) 8.15092i 0.369354i 0.982799 + 0.184677i \(0.0591238\pi\)
−0.982799 + 0.184677i \(0.940876\pi\)
\(488\) −3.49177 + 0.958913i −0.158065 + 0.0434080i
\(489\) 0 0
\(490\) 0.807551 + 9.01523i 0.0364814 + 0.407267i
\(491\) −35.0295 −1.58086 −0.790430 0.612553i \(-0.790143\pi\)
−0.790430 + 0.612553i \(0.790143\pi\)
\(492\) 0 0
\(493\) −17.8726 −0.804943
\(494\) 2.98029 + 33.2710i 0.134090 + 1.49693i
\(495\) 0 0
\(496\) −6.40656 17.1582i −0.287663 0.770425i
\(497\) 19.6942i 0.883406i
\(498\) 0 0
\(499\) 25.0804i 1.12275i −0.827560 0.561377i \(-0.810272\pi\)
0.827560 0.561377i \(-0.189728\pi\)
\(500\) 1.57035 + 8.69507i 0.0702280 + 0.388855i
\(501\) 0 0
\(502\) −31.0720 + 2.78332i −1.38681 + 0.124226i
\(503\) 18.9025 0.842820 0.421410 0.906870i \(-0.361535\pi\)
0.421410 + 0.906870i \(0.361535\pi\)
\(504\) 0 0
\(505\) −2.66199 −0.118457
\(506\) −8.50738 + 0.762060i −0.378199 + 0.0338777i
\(507\) 0 0
\(508\) −5.29904 29.3410i −0.235107 1.30180i
\(509\) 10.9702i 0.486247i −0.969995 0.243124i \(-0.921828\pi\)
0.969995 0.243124i \(-0.0781720\pi\)
\(510\) 0 0
\(511\) 45.3996i 2.00836i
\(512\) −15.6990 + 16.2955i −0.693802 + 0.720165i
\(513\) 0 0
\(514\) −1.07434 11.9935i −0.0473870 0.529012i
\(515\) −3.21065 −0.141478
\(516\) 0 0
\(517\) −5.79062 −0.254671
\(518\) −3.64312 40.6706i −0.160070 1.78696i
\(519\) 0 0
\(520\) 1.82101 + 6.63100i 0.0798566 + 0.290789i
\(521\) 6.21862i 0.272443i −0.990678 0.136221i \(-0.956504\pi\)
0.990678 0.136221i \(-0.0434959\pi\)
\(522\) 0 0
\(523\) 8.06214i 0.352533i 0.984343 + 0.176266i \(0.0564020\pi\)
−0.984343 + 0.176266i \(0.943598\pi\)
\(524\) −11.2176 + 2.02592i −0.490044 + 0.0885029i
\(525\) 0 0
\(526\) 7.14268 0.639815i 0.311435 0.0278972i
\(527\) −24.7176 −1.07672
\(528\) 0 0
\(529\) 13.4782 0.586007
\(530\) −0.927629 + 0.0830936i −0.0402936 + 0.00360935i
\(531\) 0 0
\(532\) 39.6965 7.16925i 1.72106 0.310826i
\(533\) 60.7710i 2.63228i
\(534\) 0 0
\(535\) 5.82662i 0.251907i
\(536\) 4.90326 + 17.8547i 0.211789 + 0.771204i
\(537\) 0 0
\(538\) 3.22743 + 36.0300i 0.139144 + 1.55336i
\(539\) 14.1926 0.611318
\(540\) 0 0
\(541\) −15.5904 −0.670284 −0.335142 0.942168i \(-0.608784\pi\)
−0.335142 + 0.942168i \(0.608784\pi\)
\(542\) 3.68928 + 41.1859i 0.158468 + 1.76908i
\(543\) 0 0
\(544\) 13.1915 + 27.5409i 0.565582 + 1.18081i
\(545\) 3.33797i 0.142983i
\(546\) 0 0
\(547\) 35.1984i 1.50497i −0.658607 0.752487i \(-0.728854\pi\)
0.658607 0.752487i \(-0.271146\pi\)
\(548\) −1.30728 7.23849i −0.0558444 0.309213i
\(549\) 0 0
\(550\) 6.75642 0.605215i 0.288095 0.0258064i
\(551\) 14.5055 0.617957
\(552\) 0 0
\(553\) 40.7013 1.73079
\(554\) −45.2167 + 4.05035i −1.92107 + 0.172083i
\(555\) 0 0
\(556\) 4.05209 + 22.4366i 0.171847 + 0.951524i
\(557\) 34.1280i 1.44605i −0.690823 0.723024i \(-0.742752\pi\)
0.690823 0.723024i \(-0.257248\pi\)
\(558\) 0 0
\(559\) 3.50926i 0.148426i
\(560\) 7.77942 2.90469i 0.328740 0.122746i
\(561\) 0 0
\(562\) −2.45604 27.4184i −0.103602 1.15658i
\(563\) 45.8757 1.93343 0.966716 0.255853i \(-0.0823562\pi\)
0.966716 + 0.255853i \(0.0823562\pi\)
\(564\) 0 0
\(565\) −5.96172 −0.250812
\(566\) −1.80880 20.1929i −0.0760297 0.848770i
\(567\) 0 0
\(568\) −11.6682 + 3.20433i −0.489586 + 0.134451i
\(569\) 6.58959i 0.276250i 0.990415 + 0.138125i \(0.0441075\pi\)
−0.990415 + 0.138125i \(0.955892\pi\)
\(570\) 0 0
\(571\) 4.44412i 0.185981i −0.995667 0.0929904i \(-0.970357\pi\)
0.995667 0.0929904i \(-0.0296426\pi\)
\(572\) 10.6108 1.91633i 0.443659 0.0801256i
\(573\) 0 0
\(574\) 73.0939 6.54748i 3.05088 0.273286i
\(575\) −28.9703 −1.20815
\(576\) 0 0
\(577\) −26.8917 −1.11952 −0.559759 0.828656i \(-0.689106\pi\)
−0.559759 + 0.828656i \(0.689106\pi\)
\(578\) 17.1018 1.53192i 0.711342 0.0637194i
\(579\) 0 0
\(580\) 2.93854 0.530705i 0.122016 0.0220363i
\(581\) 2.88644i 0.119750i
\(582\) 0 0
\(583\) 1.46036i 0.0604818i
\(584\) −26.8978 + 7.38670i −1.11304 + 0.305664i
\(585\) 0 0
\(586\) −2.68697 29.9965i −0.110998 1.23914i
\(587\) −18.6184 −0.768464 −0.384232 0.923237i \(-0.625534\pi\)
−0.384232 + 0.923237i \(0.625534\pi\)
\(588\) 0 0
\(589\) 20.0610 0.826597
\(590\) −0.268210 2.99421i −0.0110420 0.123270i
\(591\) 0 0
\(592\) −23.5033 + 8.77570i −0.965979 + 0.360679i
\(593\) 24.8200i 1.01924i 0.860401 + 0.509618i \(0.170213\pi\)
−0.860401 + 0.509618i \(0.829787\pi\)
\(594\) 0 0
\(595\) 11.2068i 0.459434i
\(596\) −7.02286 38.8859i −0.287668 1.59283i
\(597\) 0 0
\(598\) −45.8652 + 4.10843i −1.87557 + 0.168006i
\(599\) −4.54608 −0.185748 −0.0928739 0.995678i \(-0.529605\pi\)
−0.0928739 + 0.995678i \(0.529605\pi\)
\(600\) 0 0
\(601\) 10.5497 0.430332 0.215166 0.976577i \(-0.430971\pi\)
0.215166 + 0.976577i \(0.430971\pi\)
\(602\) 4.22085 0.378088i 0.172029 0.0154097i
\(603\) 0 0
\(604\) −1.60354 8.87887i −0.0652471 0.361276i
\(605\) 0.450958i 0.0183340i
\(606\) 0 0
\(607\) 4.75119i 0.192845i −0.995340 0.0964225i \(-0.969260\pi\)
0.995340 0.0964225i \(-0.0307400\pi\)
\(608\) −10.7063 22.3524i −0.434199 0.906510i
\(609\) 0 0
\(610\) −0.0728447 0.813214i −0.00294939 0.0329261i
\(611\) −31.2185 −1.26297
\(612\) 0 0
\(613\) 24.6283 0.994726 0.497363 0.867543i \(-0.334302\pi\)
0.497363 + 0.867543i \(0.334302\pi\)
\(614\) 0.296239 + 3.30712i 0.0119552 + 0.133464i
\(615\) 0 0
\(616\) −3.44812 12.5559i −0.138929 0.505893i
\(617\) 14.0774i 0.566736i 0.959011 + 0.283368i \(0.0914518\pi\)
−0.959011 + 0.283368i \(0.908548\pi\)
\(618\) 0 0
\(619\) 16.9924i 0.682980i 0.939885 + 0.341490i \(0.110932\pi\)
−0.939885 + 0.341490i \(0.889068\pi\)
\(620\) 4.06395 0.733956i 0.163212 0.0294764i
\(621\) 0 0
\(622\) −18.2751 + 1.63701i −0.732763 + 0.0656382i
\(623\) 48.9655 1.96176
\(624\) 0 0
\(625\) 21.9909 0.879637
\(626\) −12.2046 + 1.09325i −0.487796 + 0.0436949i
\(627\) 0 0
\(628\) −4.85085 + 0.876072i −0.193570 + 0.0349591i
\(629\) 33.8581i 1.35001i
\(630\) 0 0
\(631\) 11.2451i 0.447659i 0.974628 + 0.223829i \(0.0718558\pi\)
−0.974628 + 0.223829i \(0.928144\pi\)
\(632\) −6.62225 24.1142i −0.263419 0.959211i
\(633\) 0 0
\(634\) 0.948474 + 10.5884i 0.0376687 + 0.420521i
\(635\) 6.72281 0.266787
\(636\) 0 0
\(637\) 76.5153 3.03165
\(638\) −0.417741 4.66353i −0.0165385 0.184631i
\(639\) 0 0
\(640\) −2.98668 4.13645i −0.118059 0.163507i
\(641\) 17.6143i 0.695722i −0.937546 0.347861i \(-0.886908\pi\)
0.937546 0.347861i \(-0.113092\pi\)
\(642\) 0 0
\(643\) 6.03887i 0.238150i −0.992885 0.119075i \(-0.962007\pi\)
0.992885 0.119075i \(-0.0379929\pi\)
\(644\) 9.88304 + 54.7229i 0.389446 + 2.15638i
\(645\) 0 0
\(646\) −33.3145 + 2.98419i −1.31074 + 0.117411i
\(647\) −48.1430 −1.89270 −0.946349 0.323146i \(-0.895260\pi\)
−0.946349 + 0.323146i \(0.895260\pi\)
\(648\) 0 0
\(649\) −4.71375 −0.185031
\(650\) 36.4253 3.26285i 1.42872 0.127979i
\(651\) 0 0
\(652\) −7.89368 43.7076i −0.309140 1.71172i
\(653\) 20.5620i 0.804655i 0.915496 + 0.402328i \(0.131799\pi\)
−0.915496 + 0.402328i \(0.868201\pi\)
\(654\) 0 0
\(655\) 2.57026i 0.100428i
\(656\) −15.7718 42.2404i −0.615786 1.64921i
\(657\) 0 0
\(658\) 3.36349 + 37.5489i 0.131122 + 1.46381i
\(659\) −33.8196 −1.31742 −0.658712 0.752395i \(-0.728898\pi\)
−0.658712 + 0.752395i \(0.728898\pi\)
\(660\) 0 0
\(661\) −18.7893 −0.730821 −0.365410 0.930847i \(-0.619071\pi\)
−0.365410 + 0.930847i \(0.619071\pi\)
\(662\) 3.29850 + 36.8234i 0.128200 + 1.43118i
\(663\) 0 0
\(664\) 1.71012 0.469635i 0.0663656 0.0182254i
\(665\) 9.09551i 0.352709i
\(666\) 0 0
\(667\) 19.9964i 0.774263i
\(668\) 23.3715 4.22093i 0.904270 0.163313i
\(669\) 0 0
\(670\) −4.15825 + 0.372480i −0.160647 + 0.0143902i
\(671\) −1.28023 −0.0494229
\(672\) 0 0
\(673\) −10.8744 −0.419178 −0.209589 0.977790i \(-0.567213\pi\)
−0.209589 + 0.977790i \(0.567213\pi\)
\(674\) −10.8751 + 0.974150i −0.418893 + 0.0375228i
\(675\) 0 0
\(676\) 31.6189 5.71043i 1.21611 0.219632i
\(677\) 49.5233i 1.90333i 0.307133 + 0.951667i \(0.400630\pi\)
−0.307133 + 0.951667i \(0.599370\pi\)
\(678\) 0 0
\(679\) 7.36250i 0.282547i
\(680\) −6.63967 + 1.82339i −0.254620 + 0.0699238i
\(681\) 0 0
\(682\) −0.577730 6.44958i −0.0221224 0.246967i
\(683\) −8.75966 −0.335179 −0.167590 0.985857i \(-0.553598\pi\)
−0.167590 + 0.985857i \(0.553598\pi\)
\(684\) 0 0
\(685\) 1.65853 0.0633692
\(686\) −4.17782 46.6398i −0.159510 1.78072i
\(687\) 0 0
\(688\) −0.910755 2.43920i −0.0347222 0.0929937i
\(689\) 7.87310i 0.299941i
\(690\) 0 0
\(691\) 9.60042i 0.365217i −0.983186 0.182609i \(-0.941546\pi\)
0.983186 0.182609i \(-0.0584541\pi\)
\(692\) 4.58628 + 25.3944i 0.174344 + 0.965351i
\(693\) 0 0
\(694\) −43.1307 + 3.86349i −1.63722 + 0.146656i
\(695\) −5.14082 −0.195002
\(696\) 0 0
\(697\) −60.8504 −2.30487
\(698\) 27.1648 2.43333i 1.02820 0.0921027i
\(699\) 0 0
\(700\) −7.84894 43.4600i −0.296662 1.64263i
\(701\) 28.5860i 1.07968i −0.841769 0.539839i \(-0.818485\pi\)
0.841769 0.539839i \(-0.181515\pi\)
\(702\) 0 0
\(703\) 27.4795i 1.03641i
\(704\) −6.87796 + 4.08580i −0.259223 + 0.153989i
\(705\) 0 0
\(706\) 3.09233 + 34.5217i 0.116381 + 1.29924i
\(707\) 27.1745 1.02200
\(708\) 0 0
\(709\) −6.19988 −0.232841 −0.116421 0.993200i \(-0.537142\pi\)
−0.116421 + 0.993200i \(0.537142\pi\)
\(710\) −0.243419 2.71745i −0.00913537 0.101984i
\(711\) 0 0
\(712\) −7.96688 29.0105i −0.298572 1.08721i
\(713\) 27.6547i 1.03568i
\(714\) 0 0
\(715\) 2.43121i 0.0909221i
\(716\) 27.9886 5.05479i 1.04598 0.188906i
\(717\) 0 0
\(718\) −30.4779 + 2.73010i −1.13743 + 0.101886i
\(719\) −16.1753 −0.603238 −0.301619 0.953428i \(-0.597527\pi\)
−0.301619 + 0.953428i \(0.597527\pi\)
\(720\) 0 0
\(721\) 32.7755 1.22062
\(722\) 0.275342 0.0246641i 0.0102472 0.000917903i
\(723\) 0 0
\(724\) 29.8803 5.39643i 1.11049 0.200557i
\(725\) 15.8808i 0.589797i
\(726\) 0 0
\(727\) 14.8038i 0.549042i 0.961581 + 0.274521i \(0.0885193\pi\)
−0.961581 + 0.274521i \(0.911481\pi\)
\(728\) −18.5895 67.6917i −0.688975 2.50882i
\(729\) 0 0
\(730\) −0.561137 6.26434i −0.0207686 0.231854i
\(731\) −3.51385 −0.129964
\(732\) 0 0
\(733\) 4.58421 0.169322 0.0846609 0.996410i \(-0.473019\pi\)
0.0846609 + 0.996410i \(0.473019\pi\)
\(734\) 1.43509 + 16.0209i 0.0529703 + 0.591343i
\(735\) 0 0
\(736\) 30.8135 14.7590i 1.13580 0.544024i
\(737\) 6.54628i 0.241135i
\(738\) 0 0
\(739\) 1.28355i 0.0472163i −0.999721 0.0236081i \(-0.992485\pi\)
0.999721 0.0236081i \(-0.00751540\pi\)
\(740\) −1.00537 5.56680i −0.0369583 0.204640i
\(741\) 0 0
\(742\) 9.46957 0.848249i 0.347639 0.0311402i
\(743\) −23.9767 −0.879620 −0.439810 0.898091i \(-0.644954\pi\)
−0.439810 + 0.898091i \(0.644954\pi\)
\(744\) 0 0
\(745\) 8.90980 0.326430
\(746\) 31.0841 2.78440i 1.13807 0.101944i
\(747\) 0 0
\(748\) 1.91883 + 10.6246i 0.0701593 + 0.388475i
\(749\) 59.4802i 2.17336i
\(750\) 0 0
\(751\) 37.2322i 1.35862i 0.733850 + 0.679312i \(0.237722\pi\)
−0.733850 + 0.679312i \(0.762278\pi\)
\(752\) 21.6992 8.10211i 0.791290 0.295453i
\(753\) 0 0
\(754\) −2.25213 25.1421i −0.0820179 0.915621i
\(755\) 2.03439 0.0740389
\(756\) 0 0
\(757\) 33.0955 1.20288 0.601438 0.798919i \(-0.294595\pi\)
0.601438 + 0.798919i \(0.294595\pi\)
\(758\) −1.46272 16.3293i −0.0531282 0.593106i
\(759\) 0 0
\(760\) 5.38880 1.47988i 0.195472 0.0536807i
\(761\) 14.2090i 0.515077i 0.966268 + 0.257538i \(0.0829114\pi\)
−0.966268 + 0.257538i \(0.917089\pi\)
\(762\) 0 0
\(763\) 34.0752i 1.23361i
\(764\) −26.9747 + 4.87169i −0.975912 + 0.176251i
\(765\) 0 0
\(766\) 11.7625 1.05364i 0.424996 0.0380696i
\(767\) −25.4129 −0.917605
\(768\) 0 0
\(769\) −29.1166 −1.04997 −0.524985 0.851111i \(-0.675929\pi\)
−0.524985 + 0.851111i \(0.675929\pi\)
\(770\) 2.92420 0.261939i 0.105381 0.00943963i
\(771\) 0 0
\(772\) −30.9681 + 5.59289i −1.11457 + 0.201292i
\(773\) 6.64019i 0.238831i −0.992844 0.119416i \(-0.961898\pi\)
0.992844 0.119416i \(-0.0381021\pi\)
\(774\) 0 0
\(775\) 21.9629i 0.788929i
\(776\) −4.36205 + 1.19791i −0.156588 + 0.0430024i
\(777\) 0 0
\(778\) 2.67361 + 29.8473i 0.0958537 + 1.07008i
\(779\) 49.3866 1.76946
\(780\) 0 0
\(781\) −4.27806 −0.153081
\(782\) −4.11380 45.9251i −0.147109 1.64228i
\(783\) 0 0
\(784\) −53.1840 + 19.8579i −1.89943 + 0.709212i
\(785\) 1.11146i 0.0396696i
\(786\) 0 0
\(787\) 5.12622i 0.182730i −0.995817 0.0913651i \(-0.970877\pi\)
0.995817 0.0913651i \(-0.0291230\pi\)
\(788\) −4.44715 24.6240i −0.158423 0.877195i
\(789\) 0 0
\(790\) 5.61605 0.503065i 0.199810 0.0178983i
\(791\) 60.8594 2.16391
\(792\) 0 0
\(793\) −6.90202 −0.245098
\(794\) 7.93574 0.710855i 0.281629 0.0252273i
\(795\) 0 0
\(796\) −4.25604 23.5659i −0.150851 0.835270i
\(797\) 25.6924i 0.910072i 0.890473 + 0.455036i \(0.150374\pi\)
−0.890473 + 0.455036i \(0.849626\pi\)
\(798\) 0 0
\(799\) 31.2593i 1.10587i
\(800\) −24.4716 + 11.7213i −0.865200 + 0.414412i
\(801\) 0 0
\(802\) 3.42779 + 38.2667i 0.121039 + 1.35124i
\(803\) −9.86189 −0.348019
\(804\) 0 0
\(805\) −12.5385 −0.441923
\(806\) −3.11467 34.7711i −0.109709 1.22476i
\(807\) 0 0
\(808\) −4.42140 16.1000i −0.155544 0.566397i
\(809\) 11.1617i 0.392424i 0.980561 + 0.196212i \(0.0628641\pi\)
−0.980561 + 0.196212i \(0.937136\pi\)
\(810\) 0 0
\(811\) 25.6391i 0.900309i 0.892951 + 0.450154i \(0.148631\pi\)
−0.892951 + 0.450154i \(0.851369\pi\)
\(812\) −29.9976 + 5.41763i −1.05271 + 0.190121i
\(813\) 0 0
\(814\) −8.83464 + 0.791374i −0.309654 + 0.0277377i
\(815\) 10.0146 0.350795
\(816\) 0 0
\(817\) 2.85186 0.0997739
\(818\) 49.4741 4.43171i 1.72982 0.154951i
\(819\) 0 0
\(820\) 10.0047 1.80687i 0.349380 0.0630987i
\(821\) 32.3388i 1.12863i −0.825559 0.564316i \(-0.809140\pi\)
0.825559 0.564316i \(-0.190860\pi\)
\(822\) 0 0
\(823\) 10.1239i 0.352896i 0.984310 + 0.176448i \(0.0564607\pi\)
−0.984310 + 0.176448i \(0.943539\pi\)
\(824\) −5.33271 19.4184i −0.185774 0.676473i
\(825\) 0 0
\(826\) 2.73799 + 30.5660i 0.0952668 + 1.06353i
\(827\) 5.77199 0.200712 0.100356 0.994952i \(-0.468002\pi\)
0.100356 + 0.994952i \(0.468002\pi\)
\(828\) 0 0
\(829\) 46.2848 1.60754 0.803769 0.594942i \(-0.202825\pi\)
0.803769 + 0.594942i \(0.202825\pi\)
\(830\) 0.0356762 + 0.398277i 0.00123834 + 0.0138244i
\(831\) 0 0
\(832\) −37.0806 + 22.0274i −1.28554 + 0.763663i
\(833\) 76.6153i 2.65456i
\(834\) 0 0
\(835\) 5.35503i 0.185318i
\(836\) −1.55733 8.62303i −0.0538615 0.298234i
\(837\) 0 0
\(838\) −8.31649 + 0.744961i −0.287288 + 0.0257342i
\(839\) 48.0233 1.65795 0.828975 0.559286i \(-0.188925\pi\)
0.828975 + 0.559286i \(0.188925\pi\)
\(840\) 0 0
\(841\) 18.0385 0.622018
\(842\) 5.71288 0.511739i 0.196879 0.0176357i
\(843\) 0 0
\(844\) 8.10746 + 44.8914i 0.279070 + 1.54523i
\(845\) 7.24474i 0.249227i
\(846\) 0 0
\(847\) 4.60354i 0.158180i
\(848\) −2.04330 5.47240i −0.0701671 0.187923i
\(849\) 0 0
\(850\) 3.26711 + 36.4729i 0.112061 + 1.25101i
\(851\) 37.8814 1.29856
\(852\) 0 0
\(853\) 33.6945 1.15368 0.576839 0.816858i \(-0.304286\pi\)
0.576839 + 0.816858i \(0.304286\pi\)
\(854\) 0.743625 + 8.30158i 0.0254463 + 0.284074i
\(855\) 0 0
\(856\) −35.2401 + 9.67767i −1.20448 + 0.330776i
\(857\) 27.0979i 0.925646i 0.886451 + 0.462823i \(0.153164\pi\)
−0.886451 + 0.462823i \(0.846836\pi\)
\(858\) 0 0
\(859\) 3.07528i 0.104927i 0.998623 + 0.0524636i \(0.0167073\pi\)
−0.998623 + 0.0524636i \(0.983293\pi\)
\(860\) 0.577730 0.104339i 0.0197004 0.00355793i
\(861\) 0 0
\(862\) 17.7434 1.58939i 0.604343 0.0541348i
\(863\) −4.36829 −0.148698 −0.0743492 0.997232i \(-0.523688\pi\)
−0.0743492 + 0.997232i \(0.523688\pi\)
\(864\) 0 0
\(865\) −5.81854 −0.197836
\(866\) −10.0384 + 0.899204i −0.341119 + 0.0305562i
\(867\) 0 0
\(868\) −41.4863 + 7.49249i −1.40814 + 0.254312i
\(869\) 8.84129i 0.299920i
\(870\) 0 0
\(871\) 35.2924i 1.19584i
\(872\) 20.1885 5.54418i 0.683668 0.187749i
\(873\) 0 0
\(874\) 3.33879 + 37.2731i 0.112936 + 1.26078i
\(875\) 20.3378 0.687544
\(876\) 0 0
\(877\) 5.50220 0.185796 0.0928981 0.995676i \(-0.470387\pi\)
0.0928981 + 0.995676i \(0.470387\pi\)
\(878\) 1.86237 + 20.7908i 0.0628518 + 0.701656i
\(879\) 0 0
\(880\) −0.630970 1.68988i −0.0212700 0.0569657i
\(881\) 24.1682i 0.814247i −0.913373 0.407124i \(-0.866532\pi\)
0.913373 0.407124i \(-0.133468\pi\)
\(882\) 0 0
\(883\) 51.0030i 1.71639i −0.513326 0.858194i \(-0.671587\pi\)
0.513326 0.858194i \(-0.328413\pi\)
\(884\) 10.3448 + 57.2798i 0.347934 + 1.92653i
\(885\) 0 0
\(886\) −0.0133332 + 0.00119434i −0.000447936 + 4.01245e-5i
\(887\) −27.1324 −0.911015 −0.455508 0.890232i \(-0.650542\pi\)
−0.455508 + 0.890232i \(0.650542\pi\)
\(888\) 0 0
\(889\) −68.6289 −2.30174
\(890\) 6.75638 0.605211i 0.226474 0.0202867i
\(891\) 0 0
\(892\) 2.50726 + 13.8828i 0.0839492 + 0.464830i
\(893\) 25.3703i 0.848983i
\(894\) 0 0
\(895\) 6.41293i 0.214361i
\(896\) 30.4891 + 42.2264i 1.01857 + 1.41068i
\(897\) 0 0
\(898\) −0.392475 4.38145i −0.0130970 0.146211i
\(899\) −15.1596 −0.505600
\(900\) 0 0
\(901\) −7.88339 −0.262634
\(902\) −1.42227 15.8777i −0.0473564 0.528671i
\(903\) 0 0
\(904\) −9.90207 36.0572i −0.329338 1.19925i
\(905\) 6.84637i 0.227581i
\(906\) 0 0
\(907\) 53.1849i 1.76598i 0.469396 + 0.882988i \(0.344472\pi\)
−0.469396 + 0.882988i \(0.655528\pi\)
\(908\) −33.7392 + 6.09336i −1.11967 + 0.202215i
\(909\) 0 0
\(910\) 15.7650 1.41217i 0.522605 0.0468130i
\(911\) 29.2194 0.968082 0.484041 0.875045i \(-0.339169\pi\)
0.484041 + 0.875045i \(0.339169\pi\)
\(912\) 0 0
\(913\) 0.627004 0.0207508
\(914\) −9.99428 + 0.895251i −0.330581 + 0.0296123i
\(915\) 0 0
\(916\) −0.406995 + 0.0735040i −0.0134475 + 0.00242864i
\(917\) 26.2381i 0.866459i
\(918\) 0 0
\(919\) 37.4675i 1.23594i 0.786202 + 0.617969i \(0.212044\pi\)
−0.786202 + 0.617969i \(0.787956\pi\)
\(920\) 2.04006 + 7.42863i 0.0672587 + 0.244915i
\(921\) 0 0
\(922\) −3.85492 43.0350i −0.126955 1.41728i
\(923\) −23.0639 −0.759159
\(924\) 0 0
\(925\) −30.0847 −0.989180
\(926\) 3.26786 + 36.4813i 0.107389 + 1.19885i
\(927\) 0 0
\(928\) 8.09050 + 16.8912i 0.265584 + 0.554480i
\(929\) 7.31585i 0.240025i −0.992772 0.120013i \(-0.961706\pi\)
0.992772 0.120013i \(-0.0382935\pi\)
\(930\) 0 0
\(931\) 62.1815i 2.03792i
\(932\) −2.70660 14.9866i −0.0886576 0.490901i
\(933\) 0 0
\(934\) 42.4356 3.80122i 1.38853 0.124380i
\(935\) −2.43439 −0.0796130
\(936\) 0 0
\(937\) 35.3106 1.15355 0.576774 0.816904i \(-0.304311\pi\)
0.576774 + 0.816904i \(0.304311\pi\)
\(938\) 42.4489 3.80242i 1.38601 0.124153i
\(939\) 0 0
\(940\) 0.928204 + 5.13951i 0.0302747 + 0.167632i
\(941\) 3.59895i 0.117323i 0.998278 + 0.0586613i \(0.0186832\pi\)
−0.998278 + 0.0586613i \(0.981317\pi\)
\(942\) 0 0
\(943\) 68.0810i 2.21702i
\(944\) 17.6639 6.59537i 0.574910 0.214661i
\(945\) 0 0
\(946\) −0.0821299 0.916871i −0.00267027 0.0298101i
\(947\) −43.7091 −1.42036 −0.710178 0.704022i \(-0.751386\pi\)
−0.710178 + 0.704022i \(0.751386\pi\)
\(948\) 0 0
\(949\) −53.1676 −1.72589
\(950\) −2.65161 29.6016i −0.0860295 0.960404i
\(951\) 0 0
\(952\) 67.7802 18.6138i 2.19677 0.603278i
\(953\) 7.81428i 0.253129i 0.991958 + 0.126565i \(0.0403951\pi\)
−0.991958 + 0.126565i \(0.959605\pi\)
\(954\) 0 0
\(955\) 6.18063i 0.200000i
\(956\) −23.1965 + 4.18933i −0.750229 + 0.135493i
\(957\) 0 0
\(958\) −49.6725 + 4.44948i −1.60485 + 0.143756i
\(959\) −16.9309 −0.546727
\(960\) 0 0
\(961\) 10.0345 0.323695
\(962\) −47.6295 + 4.26647i −1.53564 + 0.137557i
\(963\) 0 0
\(964\) 11.3884 2.05676i 0.366794 0.0662437i
\(965\) 7.09561i 0.228416i
\(966\) 0 0
\(967\) 40.7961i 1.31191i 0.754798 + 0.655957i \(0.227735\pi\)
−0.754798 + 0.655957i \(0.772265\pi\)
\(968\) −2.72745 + 0.749014i −0.0876635 + 0.0240742i
\(969\) 0 0
\(970\) −0.0910001 1.01590i −0.00292184 0.0326184i
\(971\) −17.8775 −0.573717 −0.286859 0.957973i \(-0.592611\pi\)
−0.286859 + 0.957973i \(0.592611\pi\)
\(972\) 0 0
\(973\) 52.4794 1.68241
\(974\) −1.02844 11.4812i −0.0329534 0.367881i
\(975\) 0 0
\(976\) 4.79743 1.79127i 0.153562 0.0573373i
\(977\) 26.9702i 0.862854i −0.902148 0.431427i \(-0.858010\pi\)
0.902148 0.431427i \(-0.141990\pi\)
\(978\) 0 0
\(979\) 10.6365i 0.339944i
\(980\) −2.27499 12.5967i −0.0726719 0.402388i
\(981\) 0 0
\(982\) 49.3416 4.41984i 1.57455 0.141043i
\(983\) 21.5536 0.687452 0.343726 0.939070i \(-0.388311\pi\)
0.343726 + 0.939070i \(0.388311\pi\)
\(984\) 0 0
\(985\) 5.64202 0.179770
\(986\) 25.1749 2.25508i 0.801733 0.0718163i
\(987\) 0 0
\(988\) −8.39593 46.4886i −0.267110 1.47900i
\(989\) 3.93138i 0.125011i
\(990\) 0 0
\(991\) 0.996115i 0.0316426i −0.999875 0.0158213i \(-0.994964\pi\)
0.999875 0.0158213i \(-0.00503629\pi\)
\(992\) 11.1890 + 23.3602i 0.355252 + 0.741688i
\(993\) 0 0
\(994\) 2.48491 + 27.7408i 0.0788167 + 0.879883i
\(995\) 5.39957 0.171178
\(996\) 0 0
\(997\) −17.8333 −0.564787 −0.282394 0.959299i \(-0.591128\pi\)
−0.282394 + 0.959299i \(0.591128\pi\)
\(998\) 3.16452 + 35.3276i 0.100171 + 1.11828i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.c.a.287.2 yes 10
3.2 odd 2 396.2.c.b.287.9 yes 10
4.3 odd 2 396.2.c.b.287.10 yes 10
8.3 odd 2 6336.2.d.g.3455.5 10
8.5 even 2 6336.2.d.h.3455.5 10
12.11 even 2 inner 396.2.c.a.287.1 10
24.5 odd 2 6336.2.d.g.3455.6 10
24.11 even 2 6336.2.d.h.3455.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.c.a.287.1 10 12.11 even 2 inner
396.2.c.a.287.2 yes 10 1.1 even 1 trivial
396.2.c.b.287.9 yes 10 3.2 odd 2
396.2.c.b.287.10 yes 10 4.3 odd 2
6336.2.d.g.3455.5 10 8.3 odd 2
6336.2.d.g.3455.6 10 24.5 odd 2
6336.2.d.h.3455.5 10 8.5 even 2
6336.2.d.h.3455.6 10 24.11 even 2