Properties

Label 396.2.i.b
Level $396$
Weight $2$
Character orbit 396.i
Analytic conductor $3.162$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(133,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.133");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{6} - 1) q^{3} + 2 \zeta_{6} q^{5} + (4 \zeta_{6} - 4) q^{7} - 3 q^{9} + ( - \zeta_{6} + 1) q^{11} - 4 \zeta_{6} q^{13} + (2 \zeta_{6} - 4) q^{15} - 4 q^{17} + 6 q^{19} + ( - 4 \zeta_{6} - 4) q^{21} + \cdots + (3 \zeta_{6} - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{7} - 6 q^{9} + q^{11} - 4 q^{13} - 6 q^{15} - 8 q^{17} + 12 q^{19} - 12 q^{21} + 3 q^{23} + q^{25} - 8 q^{29} + 5 q^{31} + 3 q^{33} - 16 q^{35} + 14 q^{37} + 12 q^{39} + 2 q^{41}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
133.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 0 −3.00000 0
265.1 0 1.73205i 0 1.00000 1.73205i 0 −2.00000 3.46410i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.2.i.b 2
3.b odd 2 1 1188.2.i.b 2
9.c even 3 1 inner 396.2.i.b 2
9.c even 3 1 3564.2.a.b 1
9.d odd 6 1 1188.2.i.b 2
9.d odd 6 1 3564.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
396.2.i.b 2 1.a even 1 1 trivial
396.2.i.b 2 9.c even 3 1 inner
1188.2.i.b 2 3.b odd 2 1
1188.2.i.b 2 9.d odd 6 1
3564.2.a.b 1 9.c even 3 1
3564.2.a.e 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2T_{5} + 4 \) acting on \(S_{2}^{\mathrm{new}}(396, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$31$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$37$ \( (T - 7)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$53$ \( (T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$71$ \( (T - 13)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$83$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$89$ \( (T - 11)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + T + 1 \) Copy content Toggle raw display
show more
show less