Properties

Label 396.2.i.e
Level $396$
Weight $2$
Character orbit 396.i
Analytic conductor $3.162$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(133,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.133");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.5206055409.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + 9x^{5} - 23x^{4} + 27x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{6} - \beta_{3} + \beta_{2}) q^{5} + (\beta_{6} + \beta_{5} + 2 \beta_{3} + \cdots + 1) q^{7} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots + 1) q^{9} + (\beta_{2} + 1) q^{11}+ \cdots + ( - \beta_{7} + \beta_{4} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} - 4 q^{5} + q^{7} + 7 q^{9} + 4 q^{11} - q^{13} - 22 q^{15} + 2 q^{17} + 18 q^{19} + 21 q^{21} + q^{23} - 6 q^{25} + 9 q^{27} - 13 q^{31} - 3 q^{33} + 52 q^{35} - 28 q^{37} - 14 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} + x^{6} + 9x^{5} - 23x^{4} + 27x^{3} + 9x^{2} - 81x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - 3\nu^{6} + 8\nu^{5} - 15\nu^{4} + 14\nu^{3} + 30\nu^{2} - 99\nu + 54 ) / 81 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 3\nu^{6} + \nu^{5} + 9\nu^{4} - 23\nu^{3} + 27\nu^{2} + 9\nu - 81 ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{7} + 6\nu^{6} + 5\nu^{5} - 15\nu^{4} + 56\nu^{3} + 3\nu^{2} - 99\nu + 135 ) / 81 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} + 12\nu^{6} - 14\nu^{5} - 21\nu^{4} + 70\nu^{3} - 93\nu^{2} + 45\nu + 108 ) / 81 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{7} - 3\nu^{6} + 2\nu^{5} + 3\nu^{4} - 19\nu^{3} + 30\nu^{2} - 18\nu - 27 ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 7\nu^{7} - 6\nu^{6} - 29\nu^{5} + 78\nu^{4} - 71\nu^{3} + 6\nu^{2} + 315\nu - 540 ) / 81 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - \beta_{5} + \beta_{4} - 2\beta_{3} + 2\beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} - 2\beta_{6} - 3\beta_{5} + 2\beta_{4} - \beta_{3} - \beta_{2} - 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{7} - 3\beta_{6} - 8\beta_{5} + 2\beta_{4} - 4\beta_{3} - 5\beta_{2} + 4\beta _1 - 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -4\beta_{7} + 7\beta_{6} + 2\beta_{5} + 9\beta_{4} + 3\beta_{3} - 23\beta_{2} + \beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 3\beta_{7} + 15\beta_{6} - 9\beta_{5} + 3\beta_{4} - 24\beta_{3} - 9\beta_{2} + 4\beta _1 - 24 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
133.1
1.70133 + 0.324778i
1.35516 1.07868i
0.172469 + 1.72344i
−1.72895 0.103515i
1.70133 0.324778i
1.35516 + 1.07868i
0.172469 1.72344i
−1.72895 + 0.103515i
0 −1.70133 0.324778i 0 0.0693986 + 0.120202i 0 −0.0625314 + 0.108308i 0 2.78904 + 1.10511i 0
133.2 0 −1.35516 + 1.07868i 0 1.11174 + 1.92559i 0 2.36833 4.10206i 0 0.672901 2.92356i 0
133.3 0 −0.172469 1.72344i 0 −1.90631 3.30183i 0 −2.48509 + 4.30430i 0 −2.94051 + 0.594481i 0
133.4 0 1.72895 + 0.103515i 0 −1.27483 2.20807i 0 0.679294 1.17657i 0 2.97857 + 0.357947i 0
265.1 0 −1.70133 + 0.324778i 0 0.0693986 0.120202i 0 −0.0625314 0.108308i 0 2.78904 1.10511i 0
265.2 0 −1.35516 1.07868i 0 1.11174 1.92559i 0 2.36833 + 4.10206i 0 0.672901 + 2.92356i 0
265.3 0 −0.172469 + 1.72344i 0 −1.90631 + 3.30183i 0 −2.48509 4.30430i 0 −2.94051 0.594481i 0
265.4 0 1.72895 0.103515i 0 −1.27483 + 2.20807i 0 0.679294 + 1.17657i 0 2.97857 0.357947i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 133.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.2.i.e 8
3.b odd 2 1 1188.2.i.e 8
9.c even 3 1 inner 396.2.i.e 8
9.c even 3 1 3564.2.a.n 4
9.d odd 6 1 1188.2.i.e 8
9.d odd 6 1 3564.2.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
396.2.i.e 8 1.a even 1 1 trivial
396.2.i.e 8 9.c even 3 1 inner
1188.2.i.e 8 3.b odd 2 1
1188.2.i.e 8 9.d odd 6 1
3564.2.a.m 4 9.d odd 6 1
3564.2.a.n 4 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 4T_{5}^{7} + 21T_{5}^{6} + 22T_{5}^{5} + 106T_{5}^{4} + 81T_{5}^{3} + 456T_{5}^{2} - 63T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(396, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 3 T^{7} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{7} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{8} - T^{7} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{8} + T^{7} + \cdots + 36 \) Copy content Toggle raw display
$17$ \( (T^{4} - T^{3} - 32 T^{2} + \cdots - 42)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 9 T^{3} + 22 T^{2} + \cdots - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - T^{7} + \cdots + 21609 \) Copy content Toggle raw display
$29$ \( T^{8} + 51 T^{6} + \cdots + 2916 \) Copy content Toggle raw display
$31$ \( T^{8} + 13 T^{7} + \cdots + 1327104 \) Copy content Toggle raw display
$37$ \( (T^{4} + 14 T^{3} + \cdots - 162)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 12 T^{7} + \cdots + 14017536 \) Copy content Toggle raw display
$43$ \( T^{8} - 3 T^{7} + \cdots + 1032256 \) Copy content Toggle raw display
$47$ \( T^{8} - 3 T^{7} + \cdots + 9801 \) Copy content Toggle raw display
$53$ \( (T^{4} + 2 T^{3} + \cdots + 333)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 9 T^{7} + \cdots + 746496 \) Copy content Toggle raw display
$61$ \( T^{8} + 15 T^{7} + \cdots + 3136 \) Copy content Toggle raw display
$67$ \( T^{8} + 30 T^{7} + \cdots + 259081 \) Copy content Toggle raw display
$71$ \( (T^{4} - 6 T^{3} + \cdots + 6408)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 22 T^{3} + \cdots - 9834)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 41 T^{7} + \cdots + 49758916 \) Copy content Toggle raw display
$83$ \( T^{8} + 20 T^{7} + \cdots + 121749156 \) Copy content Toggle raw display
$89$ \( (T^{4} + 25 T^{3} + \cdots + 264)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 3 T^{7} + \cdots + 68644 \) Copy content Toggle raw display
show more
show less