Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [396,2,Mod(23,396)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(396, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("396.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 396.p (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.16207592004\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.40955 | + | 0.114728i | 1.54758 | + | 0.777805i | 1.97368 | − | 0.323429i | 0.757506 | + | 0.437346i | −2.27064 | − | 0.918807i | 2.63124 | − | 1.51915i | −2.74489 | + | 0.682325i | 1.79004 | + | 2.40744i | −1.11792 | − | 0.529556i |
23.2 | −1.33260 | − | 0.473464i | −1.64959 | − | 0.528078i | 1.55166 | + | 1.26188i | −3.39072 | − | 1.95763i | 1.94822 | + | 1.48474i | −4.36027 | + | 2.51740i | −1.47030 | − | 2.41624i | 2.44227 | + | 1.74222i | 3.59162 | + | 4.21413i |
23.3 | −1.29075 | − | 0.577904i | −0.272833 | − | 1.71043i | 1.33205 | + | 1.49186i | −0.882040 | − | 0.509246i | −0.636305 | + | 2.36540i | 3.46600 | − | 2.00109i | −0.857193 | − | 2.69541i | −2.85112 | + | 0.933322i | 0.844195 | + | 1.16704i |
23.4 | −1.28587 | − | 0.588681i | −1.70003 | + | 0.331522i | 1.30691 | + | 1.51393i | 3.46980 | + | 2.00329i | 2.38117 | + | 0.574481i | 0.592509 | − | 0.342086i | −0.789289 | − | 2.71607i | 2.78019 | − | 1.12719i | −3.28241 | − | 4.61857i |
23.5 | −1.25644 | + | 0.649130i | −1.62209 | + | 0.607300i | 1.15726 | − | 1.63118i | 0.645969 | + | 0.372951i | 1.64384 | − | 1.81598i | −1.48984 | + | 0.860160i | −0.395177 | + | 2.80068i | 2.26237 | − | 1.97019i | −1.05371 | − | 0.0492705i |
23.6 | −1.24656 | + | 0.667903i | 0.207882 | + | 1.71953i | 1.10781 | − | 1.66516i | −2.99390 | − | 1.72853i | −1.40762 | − | 2.00465i | 0.186759 | − | 0.107825i | −0.268787 | + | 2.81563i | −2.91357 | + | 0.714919i | 4.88655 | + | 0.155077i |
23.7 | −1.20995 | − | 0.732136i | 1.73071 | − | 0.0680655i | 0.927953 | + | 1.77170i | 2.51433 | + | 1.45165i | −2.14391 | − | 1.18476i | −3.20405 | + | 1.84986i | 0.174347 | − | 2.82305i | 2.99073 | − | 0.235604i | −1.97940 | − | 3.59725i |
23.8 | −1.07088 | + | 0.923695i | −0.486132 | − | 1.66243i | 0.293575 | − | 1.97834i | 3.41974 | + | 1.97439i | 2.05617 | + | 1.33123i | 3.12910 | − | 1.80659i | 1.51299 | + | 2.38974i | −2.52735 | + | 1.61632i | −5.48586 | + | 1.04446i |
23.9 | −0.885646 | + | 1.10256i | 1.70451 | + | 0.307646i | −0.431263 | − | 1.95295i | −1.61716 | − | 0.933665i | −1.84879 | + | 1.60685i | −3.83877 | + | 2.21632i | 2.53518 | + | 1.25413i | 2.81071 | + | 1.04877i | 2.46165 | − | 0.956109i |
23.10 | −0.839971 | − | 1.13774i | −1.01224 | + | 1.40548i | −0.588899 | + | 1.91133i | −3.41563 | − | 1.97202i | 2.44932 | − | 0.0288909i | 3.07465 | − | 1.77515i | 2.66926 | − | 0.935452i | −0.950728 | − | 2.84537i | 0.625392 | + | 5.54253i |
23.11 | −0.504411 | − | 1.32120i | −1.61916 | − | 0.615083i | −1.49114 | + | 1.33286i | 0.524204 | + | 0.302649i | 0.00407397 | + | 2.44949i | 1.76489 | − | 1.01896i | 2.51312 | + | 1.29778i | 2.24335 | + | 1.99183i | 0.135446 | − | 0.845238i |
23.12 | −0.485157 | + | 1.32839i | 0.986970 | − | 1.42334i | −1.52924 | − | 1.28896i | −0.335872 | − | 0.193916i | 1.41191 | + | 2.00163i | −0.905329 | + | 0.522692i | 2.45416 | − | 1.40609i | −1.05178 | − | 2.80958i | 0.420546 | − | 0.352089i |
23.13 | −0.430236 | − | 1.34718i | 1.71291 | − | 0.256761i | −1.62979 | + | 1.15921i | 1.16537 | + | 0.672829i | −1.08286 | − | 2.19714i | 2.14636 | − | 1.23920i | 2.26286 | + | 1.69689i | 2.86815 | − | 0.879620i | 0.405037 | − | 1.85944i |
23.14 | −0.325009 | + | 1.37636i | −1.19384 | − | 1.25489i | −1.78874 | − | 0.894661i | −2.13707 | − | 1.23384i | 2.11519 | − | 1.23530i | 1.06895 | − | 0.617157i | 1.81273 | − | 2.17118i | −0.149504 | + | 2.99627i | 2.39277 | − | 2.54037i |
23.15 | 0.0730390 | − | 1.41233i | −0.0943311 | + | 1.72948i | −1.98933 | − | 0.206310i | 1.90456 | + | 1.09960i | 2.43570 | + | 0.259546i | −1.35594 | + | 0.782849i | −0.436675 | + | 2.79452i | −2.98220 | − | 0.326288i | 1.69209 | − | 2.60954i |
23.16 | 0.212544 | + | 1.39815i | −1.51418 | + | 0.840981i | −1.90965 | + | 0.594337i | −1.75916 | − | 1.01565i | −1.49765 | − | 1.93831i | −0.400003 | + | 0.230942i | −1.23686 | − | 2.54366i | 1.58550 | − | 2.54680i | 1.04613 | − | 2.67544i |
23.17 | 0.270212 | − | 1.38816i | −0.650105 | − | 1.60542i | −1.85397 | − | 0.750195i | −0.596873 | − | 0.344605i | −2.40424 | + | 0.468646i | −2.15220 | + | 1.24257i | −1.54235 | + | 2.37089i | −2.15473 | + | 2.08738i | −0.639648 | + | 0.735438i |
23.18 | 0.331663 | + | 1.37477i | 0.841231 | + | 1.51404i | −1.78000 | + | 0.911922i | 0.809368 | + | 0.467289i | −1.80246 | + | 1.65865i | 1.27147 | − | 0.734083i | −1.84405 | − | 2.14464i | −1.58466 | + | 2.54732i | −0.373979 | + | 1.26768i |
23.19 | 0.396259 | + | 1.35756i | −0.579495 | − | 1.63223i | −1.68596 | + | 1.07589i | 2.58308 | + | 1.49134i | 1.98623 | − | 1.43349i | −4.06629 | + | 2.34767i | −2.12867 | − | 1.86246i | −2.32837 | + | 1.89174i | −1.00102 | + | 4.09765i |
23.20 | 0.695917 | + | 1.23114i | 1.28011 | − | 1.16676i | −1.03140 | + | 1.71354i | 0.447034 | + | 0.258095i | 2.32729 | + | 0.764017i | 3.33992 | − | 1.92830i | −2.82737 | − | 0.0773133i | 0.277340 | − | 2.98715i | −0.00665214 | + | 0.729974i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
36.h | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 396.2.p.b | yes | 60 |
4.b | odd | 2 | 1 | 396.2.p.a | ✓ | 60 | |
9.d | odd | 6 | 1 | 396.2.p.a | ✓ | 60 | |
36.h | even | 6 | 1 | inner | 396.2.p.b | yes | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
396.2.p.a | ✓ | 60 | 4.b | odd | 2 | 1 | |
396.2.p.a | ✓ | 60 | 9.d | odd | 6 | 1 | |
396.2.p.b | yes | 60 | 1.a | even | 1 | 1 | trivial |
396.2.p.b | yes | 60 | 36.h | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{60} - 120 T_{7}^{58} + 8109 T_{7}^{56} - 2352 T_{7}^{55} - 375352 T_{7}^{54} + \cdots + 96\!\cdots\!04 \) acting on \(S_{2}^{\mathrm{new}}(396, [\chi])\).