Properties

Label 396.4.a.j
Level 396396
Weight 44
Character orbit 396.a
Self dual yes
Analytic conductor 23.36523.365
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,4,Mod(1,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 396=223211 396 = 2^{2} \cdot 3^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 396.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.364756362323.3647563623
Analytic rank: 11
Dimension: 22
Coefficient field: Q(31)\Q(\sqrt{31})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x231 x^{2} - 31 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=231\beta = 2\sqrt{31}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+6)q5+(β12)q711q11+(5β4)q13+(6β14)q17+(2β34)q19+(7β134)q23+(12β+35)q25+(4β130)q29++(72β+250)q97+O(q100) q + (\beta + 6) q^{5} + ( - \beta - 12) q^{7} - 11 q^{11} + ( - 5 \beta - 4) q^{13} + ( - 6 \beta - 14) q^{17} + (2 \beta - 34) q^{19} + (7 \beta - 134) q^{23} + (12 \beta + 35) q^{25} + (4 \beta - 130) q^{29}+ \cdots + (72 \beta + 250) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+12q524q722q118q1328q1768q19268q23+70q25260q29+112q31392q35+316q37124q41148q43572q47150q49++500q97+O(q100) 2 q + 12 q^{5} - 24 q^{7} - 22 q^{11} - 8 q^{13} - 28 q^{17} - 68 q^{19} - 268 q^{23} + 70 q^{25} - 260 q^{29} + 112 q^{31} - 392 q^{35} + 316 q^{37} - 124 q^{41} - 148 q^{43} - 572 q^{47} - 150 q^{49}+ \cdots + 500 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.56776
5.56776
0 0 0 −5.13553 0 −0.864471 0 0 0
1.2 0 0 0 17.1355 0 −23.1355 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 396.4.a.j yes 2
3.b odd 2 1 396.4.a.h 2
4.b odd 2 1 1584.4.a.bi 2
12.b even 2 1 1584.4.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
396.4.a.h 2 3.b odd 2 1
396.4.a.j yes 2 1.a even 1 1 trivial
1584.4.a.y 2 12.b even 2 1
1584.4.a.bi 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(396))S_{4}^{\mathrm{new}}(\Gamma_0(396)):

T5212T588 T_{5}^{2} - 12T_{5} - 88 Copy content Toggle raw display
T72+24T7+20 T_{7}^{2} + 24T_{7} + 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T212T88 T^{2} - 12T - 88 Copy content Toggle raw display
77 T2+24T+20 T^{2} + 24T + 20 Copy content Toggle raw display
1111 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
1313 T2+8T3084 T^{2} + 8T - 3084 Copy content Toggle raw display
1717 T2+28T4268 T^{2} + 28T - 4268 Copy content Toggle raw display
1919 T2+68T+660 T^{2} + 68T + 660 Copy content Toggle raw display
2323 T2+268T+11880 T^{2} + 268T + 11880 Copy content Toggle raw display
2929 T2+260T+14916 T^{2} + 260T + 14916 Copy content Toggle raw display
3131 T2112T21168 T^{2} - 112T - 21168 Copy content Toggle raw display
3737 T2316T35052 T^{2} - 316T - 35052 Copy content Toggle raw display
4141 T2+124T4092 T^{2} + 124T - 4092 Copy content Toggle raw display
4343 (T+74)2 (T + 74)^{2} Copy content Toggle raw display
4747 T2+572T+66792 T^{2} + 572T + 66792 Copy content Toggle raw display
5353 T2+76T249656 T^{2} + 76T - 249656 Copy content Toggle raw display
5959 T2+864T+182160 T^{2} + 864T + 182160 Copy content Toggle raw display
6161 T2+136T317900 T^{2} + 136T - 317900 Copy content Toggle raw display
6767 T2+512T132864 T^{2} + 512T - 132864 Copy content Toggle raw display
7171 T2+724T20856 T^{2} + 724T - 20856 Copy content Toggle raw display
7373 T2972T+218340 T^{2} - 972T + 218340 Copy content Toggle raw display
7979 T2+528T+66596 T^{2} + 528T + 66596 Copy content Toggle raw display
8383 T2+2112T+1055120 T^{2} + 2112 T + 1055120 Copy content Toggle raw display
8989 T2+288T1534720 T^{2} + 288 T - 1534720 Copy content Toggle raw display
9797 T2500T580316 T^{2} - 500T - 580316 Copy content Toggle raw display
show more
show less