Properties

Label 3960.1.b.a.1979.3
Level 39603960
Weight 11
Character 3960.1979
Analytic conductor 1.9761.976
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(1979,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1979");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3960=2332511 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3960.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.976297450031.97629745003
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.653400.2

Embedding invariants

Embedding label 1979.3
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 3960.1979
Dual form 3960.1.b.a.1979.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q4+1.00000iq51.41421iq71.00000q81.00000iq10+(0.707107+0.707107i)q11+1.41421iq13+1.41421iq14+1.00000q162.00000iq19+1.00000iq20+(0.7071070.707107i)q222.00000iq231.00000q251.41421iq261.41421iq281.00000q32+1.41421q35+1.41421q37+2.00000iq381.00000iq40+1.41421q41+(0.707107+0.707107i)q44+2.00000iq461.00000q49+1.00000q50+1.41421iq52+(0.707107+0.707107i)q55+1.41421iq56+1.41421iq59+1.00000q641.41421q651.41421q701.41421q742.00000iq76+(1.000001.00000i)q77+1.00000iq801.41421q82+(0.7071070.707107i)q881.41421iq89+2.00000q912.00000iq92+2.00000q95+1.00000q98+O(q100)q-1.00000 q^{2} +1.00000 q^{4} +1.00000i q^{5} -1.41421i q^{7} -1.00000 q^{8} -1.00000i q^{10} +(0.707107 + 0.707107i) q^{11} +1.41421i q^{13} +1.41421i q^{14} +1.00000 q^{16} -2.00000i q^{19} +1.00000i q^{20} +(-0.707107 - 0.707107i) q^{22} -2.00000i q^{23} -1.00000 q^{25} -1.41421i q^{26} -1.41421i q^{28} -1.00000 q^{32} +1.41421 q^{35} +1.41421 q^{37} +2.00000i q^{38} -1.00000i q^{40} +1.41421 q^{41} +(0.707107 + 0.707107i) q^{44} +2.00000i q^{46} -1.00000 q^{49} +1.00000 q^{50} +1.41421i q^{52} +(-0.707107 + 0.707107i) q^{55} +1.41421i q^{56} +1.41421i q^{59} +1.00000 q^{64} -1.41421 q^{65} -1.41421 q^{70} -1.41421 q^{74} -2.00000i q^{76} +(1.00000 - 1.00000i) q^{77} +1.00000i q^{80} -1.41421 q^{82} +(-0.707107 - 0.707107i) q^{88} -1.41421i q^{89} +2.00000 q^{91} -2.00000i q^{92} +2.00000 q^{95} +1.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q44q8+4q164q254q324q49+4q50+4q64+4q77+8q91+8q95+4q98+O(q100) 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 4 q^{16} - 4 q^{25} - 4 q^{32} - 4 q^{49} + 4 q^{50} + 4 q^{64} + 4 q^{77} + 8 q^{91} + 8 q^{95} + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3960Z)×\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times.

nn 991991 19811981 23772377 25212521 35213521
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −1.00000
33 0 0
44 1.00000 1.00000
55 1.00000i 1.00000i
66 0 0
77 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
88 −1.00000 −1.00000
99 0 0
1010 1.00000i 1.00000i
1111 0.707107 + 0.707107i 0.707107 + 0.707107i
1212 0 0
1313 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1414 1.41421i 1.41421i
1515 0 0
1616 1.00000 1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
2020 1.00000i 1.00000i
2121 0 0
2222 −0.707107 0.707107i −0.707107 0.707107i
2323 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
2424 0 0
2525 −1.00000 −1.00000
2626 1.41421i 1.41421i
2727 0 0
2828 1.41421i 1.41421i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0 0
3535 1.41421 1.41421
3636 0 0
3737 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3838 2.00000i 2.00000i
3939 0 0
4040 1.00000i 1.00000i
4141 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0.707107 + 0.707107i 0.707107 + 0.707107i
4545 0 0
4646 2.00000i 2.00000i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −1.00000 −1.00000
5050 1.00000 1.00000
5151 0 0
5252 1.41421i 1.41421i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −0.707107 + 0.707107i −0.707107 + 0.707107i
5656 1.41421i 1.41421i
5757 0 0
5858 0 0
5959 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 −1.41421 −1.41421
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 −1.41421 −1.41421
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 −1.41421 −1.41421
7575 0 0
7676 2.00000i 2.00000i
7777 1.00000 1.00000i 1.00000 1.00000i
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 1.00000i 1.00000i
8181 0 0
8282 −1.41421 −1.41421
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.707107 0.707107i −0.707107 0.707107i
8989 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
9090 0 0
9191 2.00000 2.00000
9292 2.00000i 2.00000i
9393 0 0
9494 0 0
9595 2.00000 2.00000
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 1.00000 1.00000
9999 0 0
100100 −1.00000 −1.00000
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
104104 1.41421i 1.41421i
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0.707107 0.707107i 0.707107 0.707107i
111111 0 0
112112 1.41421i 1.41421i
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 2.00000 2.00000
116116 0 0
117117 0 0
118118 1.41421i 1.41421i
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 0 0
123123 0 0
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 −1.00000 −1.00000
129129 0 0
130130 1.41421 1.41421
131131 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
132132 0 0
133133 −2.82843 −2.82843
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 1.41421 1.41421
141141 0 0
142142 0 0
143143 −1.00000 + 1.00000i −1.00000 + 1.00000i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 1.41421 1.41421
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 2.00000i 2.00000i
153153 0 0
154154 −1.00000 + 1.00000i −1.00000 + 1.00000i
155155 0 0
156156 0 0
157157 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
158158 0 0
159159 0 0
160160 1.00000i 1.00000i
161161 −2.82843 −2.82843
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 1.41421 1.41421
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 2.00000 2.00000 1.00000 00
1.00000 00
174174 0 0
175175 1.41421i 1.41421i
176176 0.707107 + 0.707107i 0.707107 + 0.707107i
177177 0 0
178178 1.41421i 1.41421i
179179 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 −2.00000 −2.00000
183183 0 0
184184 2.00000i 2.00000i
185185 1.41421i 1.41421i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 −2.00000 −2.00000
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 −1.00000 −1.00000
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.00000 1.00000
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 1.41421i 1.41421i
206206 −1.41421 −1.41421
207207 0 0
208208 1.41421i 1.41421i
209209 1.41421 1.41421i 1.41421 1.41421i
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 −0.707107 + 0.707107i −0.707107 + 0.707107i
221221 0 0
222222 0 0
223223 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 1.41421i 1.41421i
225225 0 0
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 −2.00000 −2.00000
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 1.41421i 1.41421i
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
242242 1.00000i 1.00000i
243243 0 0
244244 0 0
245245 1.00000i 1.00000i
246246 0 0
247247 2.82843 2.82843
248248 0 0
249249 0 0
250250 1.00000i 1.00000i
251251 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
252252 0 0
253253 1.41421 1.41421i 1.41421 1.41421i
254254 1.41421i 1.41421i
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 2.00000i 2.00000i
260260 −1.41421 −1.41421
261261 0 0
262262 1.41421 1.41421
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 2.82843 2.82843
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 −0.707107 0.707107i −0.707107 0.707107i
276276 0 0
277277 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
278278 0 0
279279 0 0
280280 −1.41421 −1.41421
281281 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 1.00000 1.00000i 1.00000 1.00000i
287287 2.00000i 2.00000i
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 −1.41421 −1.41421
296296 −1.41421 −1.41421
297297 0 0
298298 0 0
299299 2.82843 2.82843
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 2.00000i 2.00000i
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 1.00000 1.00000i 1.00000 1.00000i
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −1.41421 −1.41421
315315 0 0
316316 0 0
317317 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
318318 0 0
319319 0 0
320320 1.00000i 1.00000i
321321 0 0
322322 2.82843 2.82843
323323 0 0
324324 0 0
325325 1.41421i 1.41421i
326326 0 0
327327 0 0
328328 −1.41421 −1.41421
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 1.00000 1.00000
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −2.00000 −2.00000
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 1.41421i 1.41421i
351351 0 0
352352 −0.707107 0.707107i −0.707107 0.707107i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 1.41421i 1.41421i
357357 0 0
358358 1.41421i 1.41421i
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −3.00000 −3.00000
362362 0 0
363363 0 0
364364 2.00000 2.00000
365365 0 0
366366 0 0
367367 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
368368 2.00000i 2.00000i
369369 0 0
370370 1.41421i 1.41421i
371371 0 0
372372 0 0
373373 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
380380 2.00000 2.00000
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 1.00000 + 1.00000i 1.00000 + 1.00000i
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 1.00000 1.00000
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 1.00000 + 1.00000i 1.00000 + 1.00000i
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 1.41421i 1.41421i
411411 0 0
412412 1.41421 1.41421
413413 2.00000 2.00000
414414 0 0
415415 0 0
416416 1.41421i 1.41421i
417417 0 0
418418 −1.41421 + 1.41421i −1.41421 + 1.41421i
419419 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −4.00000 −4.00000
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0.707107 0.707107i 0.707107 0.707107i
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 1.41421 1.41421
446446 −1.41421 −1.41421
447447 0 0
448448 1.41421i 1.41421i
449449 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
450450 0 0
451451 1.00000 + 1.00000i 1.00000 + 1.00000i
452452 0 0
453453 0 0
454454 0 0
455455 2.00000i 2.00000i
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 2.00000 2.00000
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 1.41421i 1.41421i
473473 0 0
474474 0 0
475475 2.00000i 2.00000i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 2.00000i 2.00000i
482482 2.00000i 2.00000i
483483 0 0
484484 1.00000i 1.00000i
485485 0 0
486486 0 0
487487 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 0 0
489489 0 0
490490 1.00000i 1.00000i
491491 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
492492 0 0
493493 0 0
494494 −2.82843 −2.82843
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 1.00000i 1.00000i
501501 0 0
502502 1.41421i 1.41421i
503503 2.00000 2.00000 1.00000 00
1.00000 00
504504 0 0
505505 0 0
506506 −1.41421 + 1.41421i −1.41421 + 1.41421i
507507 0 0
508508 1.41421i 1.41421i
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 1.41421i 1.41421i
516516 0 0
517517 0 0
518518 2.00000i 2.00000i
519519 0 0
520520 1.41421 1.41421
521521 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 −1.41421 −1.41421
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −3.00000 −3.00000
530530 0 0
531531 0 0
532532 −2.82843 −2.82843
533533 2.00000i 2.00000i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −0.707107 0.707107i −0.707107 0.707107i
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0.707107 + 0.707107i 0.707107 + 0.707107i
551551 0 0
552552 0 0
553553 0 0
554554 1.41421i 1.41421i
555555 0 0
556556 0 0
557557 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
558558 0 0
559559 0 0
560560 1.41421 1.41421
561561 0 0
562562 1.41421 1.41421
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
570570 0 0
571571 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
572572 −1.00000 + 1.00000i −1.00000 + 1.00000i
573573 0 0
574574 2.00000i 2.00000i
575575 2.00000i 2.00000i
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −1.00000 −1.00000
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 1.41421 1.41421
591591 0 0
592592 1.41421 1.41421
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −2.82843 −2.82843
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 −1.00000 −1.00000
606606 0 0
607607 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 2.00000i 2.00000i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
614614 0 0
615615 0 0
616616 −1.00000 + 1.00000i −1.00000 + 1.00000i
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 −2.00000 −2.00000
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 1.41421 1.41421
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 2.00000i 2.00000i
635635 −1.41421 −1.41421
636636 0 0
637637 1.41421i 1.41421i
638638 0 0
639639 0 0
640640 1.00000i 1.00000i
641641 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 −2.82843 −2.82843
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 −1.00000 + 1.00000i −1.00000 + 1.00000i
650650 1.41421i 1.41421i
651651 0 0
652652 0 0
653653 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 1.41421i 1.41421i
656656 1.41421 1.41421
657657 0 0
658658 0 0
659659 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 2.82843i 2.82843i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 −1.00000 −1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 2.00000 2.00000
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.41421i 1.41421i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 2.82843i 2.82843i
704704 0.707107 + 0.707107i 0.707107 + 0.707107i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 1.41421i 1.41421i
713713 0 0
714714 0 0
715715 −1.00000 1.00000i −1.00000 1.00000i
716716 1.41421i 1.41421i
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 2.00000i 2.00000i
722722 3.00000 3.00000
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
728728 −2.00000 −2.00000
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
734734 1.41421 1.41421
735735 0 0
736736 2.00000i 2.00000i
737737 0 0
738738 0 0
739739 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
740740 1.41421i 1.41421i
741741 0 0
742742 0 0
743743 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
744744 0 0
745745 0 0
746746 1.41421i 1.41421i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 2.00000 2.00000
759759 0 0
760760 −2.00000 −2.00000
761761 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 −2.00000 −2.00000
768768 0 0
769769 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
770770 −1.00000 1.00000i −1.00000 1.00000i
771771 0 0
772772 0 0
773773 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 2.82843i 2.82843i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.00000 −1.00000
785785 1.41421i 1.41421i
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 1.41421 1.41421
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 1.00000 1.00000
801801 0 0
802802 1.41421i 1.41421i
803803 0 0
804804 0 0
805805 2.82843i 2.82843i
806806 0 0
807807 0 0
808808 0 0
809809 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 −1.00000 1.00000i −1.00000 1.00000i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 1.41421i 1.41421i
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
824824 −1.41421 −1.41421
825825 0 0
826826 −2.00000 −2.00000
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 1.41421i 1.41421i
833833 0 0
834834 0 0
835835 0 0
836836 1.41421 1.41421i 1.41421 1.41421i
837837 0 0
838838 1.41421i 1.41421i
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 1.00000i 1.00000i
846846 0 0
847847 1.41421 1.41421
848848 0 0
849849 0 0
850850 0 0
851851 2.82843i 2.82843i
852852 0 0
853853 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 2.00000 2.00000 1.00000 00
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
864864 0 0
865865 2.00000i 2.00000i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 4.00000 4.00000
875875 −1.41421 −1.41421
876876 0 0
877877 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 −0.707107 + 0.707107i −0.707107 + 0.707107i
881881 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 2.00000 2.00000
890890 −1.41421 −1.41421
891891 0 0
892892 1.41421 1.41421
893893 0 0
894894 0 0
895895 1.41421 1.41421
896896 1.41421i 1.41421i
897897 0 0
898898 1.41421i 1.41421i
899899 0 0
900900 0 0
901901 0 0
902902 −1.00000 1.00000i −1.00000 1.00000i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 2.00000i 2.00000i
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 2.00000i 2.00000i
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 −2.00000 −2.00000
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −1.41421 −1.41421
926926 1.41421 1.41421
927927 0 0
928928 0 0
929929 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
930930 0 0
931931 2.00000i 2.00000i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 2.82843i 2.82843i
944944 1.41421i 1.41421i
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 2.00000i 2.00000i
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000 1.00000
962962 2.00000i 2.00000i
963963 0 0
964964 2.00000i 2.00000i
965965 0 0
966966 0 0
967967 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
968968 1.00000i 1.00000i
969969 0 0
970970 0 0
971971 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
972972 0 0
973973 0 0
974974 1.41421 1.41421
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 1.00000 1.00000i 1.00000 1.00000i
980980 1.00000i 1.00000i
981981 0 0
982982 −1.41421 −1.41421
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 2.82843 2.82843
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.b.a.1979.3 yes 4
3.2 odd 2 3960.1.b.b.1979.1 yes 4
5.4 even 2 3960.1.b.b.1979.2 yes 4
8.3 odd 2 3960.1.b.b.1979.2 yes 4
11.10 odd 2 3960.1.b.b.1979.4 yes 4
15.14 odd 2 inner 3960.1.b.a.1979.4 yes 4
24.11 even 2 inner 3960.1.b.a.1979.4 yes 4
33.32 even 2 inner 3960.1.b.a.1979.2 yes 4
40.19 odd 2 CM 3960.1.b.a.1979.3 yes 4
55.54 odd 2 inner 3960.1.b.a.1979.1 4
88.43 even 2 inner 3960.1.b.a.1979.1 4
120.59 even 2 3960.1.b.b.1979.1 yes 4
165.164 even 2 3960.1.b.b.1979.3 yes 4
264.131 odd 2 3960.1.b.b.1979.3 yes 4
440.219 even 2 3960.1.b.b.1979.4 yes 4
1320.659 odd 2 inner 3960.1.b.a.1979.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.b.a.1979.1 4 55.54 odd 2 inner
3960.1.b.a.1979.1 4 88.43 even 2 inner
3960.1.b.a.1979.2 yes 4 33.32 even 2 inner
3960.1.b.a.1979.2 yes 4 1320.659 odd 2 inner
3960.1.b.a.1979.3 yes 4 1.1 even 1 trivial
3960.1.b.a.1979.3 yes 4 40.19 odd 2 CM
3960.1.b.a.1979.4 yes 4 15.14 odd 2 inner
3960.1.b.a.1979.4 yes 4 24.11 even 2 inner
3960.1.b.b.1979.1 yes 4 3.2 odd 2
3960.1.b.b.1979.1 yes 4 120.59 even 2
3960.1.b.b.1979.2 yes 4 5.4 even 2
3960.1.b.b.1979.2 yes 4 8.3 odd 2
3960.1.b.b.1979.3 yes 4 165.164 even 2
3960.1.b.b.1979.3 yes 4 264.131 odd 2
3960.1.b.b.1979.4 yes 4 11.10 odd 2
3960.1.b.b.1979.4 yes 4 440.219 even 2