Properties

Label 3960.1.b.c
Level $3960$
Weight $1$
Character orbit 3960.b
Analytic conductor $1.976$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(1979,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1979");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.97629745003\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.2483965440000.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{16} q^{2} + \zeta_{16}^{2} q^{4} - q^{5} + (\zeta_{16}^{5} + \zeta_{16}^{3}) q^{7} - \zeta_{16}^{3} q^{8} + \zeta_{16} q^{10} + \zeta_{16}^{4} q^{11} + (\zeta_{16}^{7} + \zeta_{16}) q^{13} + \cdots + ( - \zeta_{16}^{7} + \zeta_{16}^{3} + \zeta_{16}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} + 8 q^{25} + 8 q^{26} - 8 q^{49} + 8 q^{56} + 8 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1979.1
0.923880 + 0.382683i
0.923880 0.382683i
0.382683 + 0.923880i
0.382683 0.923880i
−0.382683 + 0.923880i
−0.382683 0.923880i
−0.923880 + 0.382683i
−0.923880 0.382683i
−0.923880 0.382683i 0 0.707107 + 0.707107i −1.00000 0 1.84776i −0.382683 0.923880i 0 0.923880 + 0.382683i
1979.2 −0.923880 + 0.382683i 0 0.707107 0.707107i −1.00000 0 1.84776i −0.382683 + 0.923880i 0 0.923880 0.382683i
1979.3 −0.382683 0.923880i 0 −0.707107 + 0.707107i −1.00000 0 0.765367i 0.923880 + 0.382683i 0 0.382683 + 0.923880i
1979.4 −0.382683 + 0.923880i 0 −0.707107 0.707107i −1.00000 0 0.765367i 0.923880 0.382683i 0 0.382683 0.923880i
1979.5 0.382683 0.923880i 0 −0.707107 0.707107i −1.00000 0 0.765367i −0.923880 + 0.382683i 0 −0.382683 + 0.923880i
1979.6 0.382683 + 0.923880i 0 −0.707107 + 0.707107i −1.00000 0 0.765367i −0.923880 0.382683i 0 −0.382683 0.923880i
1979.7 0.923880 0.382683i 0 0.707107 0.707107i −1.00000 0 1.84776i 0.382683 0.923880i 0 −0.923880 + 0.382683i
1979.8 0.923880 + 0.382683i 0 0.707107 + 0.707107i −1.00000 0 1.84776i 0.382683 + 0.923880i 0 −0.923880 0.382683i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1979.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
11.b odd 2 1 inner
24.f even 2 1 inner
120.m even 2 1 inner
264.p odd 2 1 inner
1320.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3960.1.b.c 8
3.b odd 2 1 3960.1.b.d yes 8
5.b even 2 1 inner 3960.1.b.c 8
8.d odd 2 1 3960.1.b.d yes 8
11.b odd 2 1 inner 3960.1.b.c 8
15.d odd 2 1 3960.1.b.d yes 8
24.f even 2 1 inner 3960.1.b.c 8
33.d even 2 1 3960.1.b.d yes 8
40.e odd 2 1 3960.1.b.d yes 8
55.d odd 2 1 CM 3960.1.b.c 8
88.g even 2 1 3960.1.b.d yes 8
120.m even 2 1 inner 3960.1.b.c 8
165.d even 2 1 3960.1.b.d yes 8
264.p odd 2 1 inner 3960.1.b.c 8
440.c even 2 1 3960.1.b.d yes 8
1320.b odd 2 1 inner 3960.1.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3960.1.b.c 8 1.a even 1 1 trivial
3960.1.b.c 8 5.b even 2 1 inner
3960.1.b.c 8 11.b odd 2 1 inner
3960.1.b.c 8 24.f even 2 1 inner
3960.1.b.c 8 55.d odd 2 1 CM
3960.1.b.c 8 120.m even 2 1 inner
3960.1.b.c 8 264.p odd 2 1 inner
3960.1.b.c 8 1320.b odd 2 1 inner
3960.1.b.d yes 8 3.b odd 2 1
3960.1.b.d yes 8 8.d odd 2 1
3960.1.b.d yes 8 15.d odd 2 1
3960.1.b.d yes 8 33.d even 2 1
3960.1.b.d yes 8 40.e odd 2 1
3960.1.b.d yes 8 88.g even 2 1
3960.1.b.d yes 8 165.d even 2 1
3960.1.b.d yes 8 440.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3960, [\chi])\):

\( T_{7}^{4} + 4T_{7}^{2} + 2 \) Copy content Toggle raw display
\( T_{173}^{4} - 4T_{173}^{2} + 2 \) Copy content Toggle raw display
\( T_{599} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T + 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} - 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less