Properties

Label 3960.1.b.c
Level 39603960
Weight 11
Character orbit 3960.b
Analytic conductor 1.9761.976
Analytic rank 00
Dimension 88
Projective image D8D_{8}
CM discriminant -55
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(1979,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1979");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3960=2332511 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3960.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.976297450031.97629745003
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.2.2483965440000.8

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ16q2+ζ162q4q5+(ζ165+ζ163)q7ζ163q8+ζ16q10+ζ164q11+(ζ167+ζ16)q13++(ζ167+ζ163+ζ16)q98+O(q100) q - \zeta_{16} q^{2} + \zeta_{16}^{2} q^{4} - q^{5} + (\zeta_{16}^{5} + \zeta_{16}^{3}) q^{7} - \zeta_{16}^{3} q^{8} + \zeta_{16} q^{10} + \zeta_{16}^{4} q^{11} + (\zeta_{16}^{7} + \zeta_{16}) q^{13} + \cdots + ( - \zeta_{16}^{7} + \zeta_{16}^{3} + \zeta_{16}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q5+8q25+8q268q49+8q56+8q86+O(q100) 8 q - 8 q^{5} + 8 q^{25} + 8 q^{26} - 8 q^{49} + 8 q^{56} + 8 q^{86}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3960Z)×\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times.

nn 991991 19811981 23772377 25212521 35213521
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1979.1
0.923880 + 0.382683i
0.923880 0.382683i
0.382683 + 0.923880i
0.382683 0.923880i
−0.382683 + 0.923880i
−0.382683 0.923880i
−0.923880 + 0.382683i
−0.923880 0.382683i
−0.923880 0.382683i 0 0.707107 + 0.707107i −1.00000 0 1.84776i −0.382683 0.923880i 0 0.923880 + 0.382683i
1979.2 −0.923880 + 0.382683i 0 0.707107 0.707107i −1.00000 0 1.84776i −0.382683 + 0.923880i 0 0.923880 0.382683i
1979.3 −0.382683 0.923880i 0 −0.707107 + 0.707107i −1.00000 0 0.765367i 0.923880 + 0.382683i 0 0.382683 + 0.923880i
1979.4 −0.382683 + 0.923880i 0 −0.707107 0.707107i −1.00000 0 0.765367i 0.923880 0.382683i 0 0.382683 0.923880i
1979.5 0.382683 0.923880i 0 −0.707107 0.707107i −1.00000 0 0.765367i −0.923880 + 0.382683i 0 −0.382683 + 0.923880i
1979.6 0.382683 + 0.923880i 0 −0.707107 + 0.707107i −1.00000 0 0.765367i −0.923880 0.382683i 0 −0.382683 0.923880i
1979.7 0.923880 0.382683i 0 0.707107 0.707107i −1.00000 0 1.84776i 0.382683 0.923880i 0 −0.923880 + 0.382683i
1979.8 0.923880 + 0.382683i 0 0.707107 + 0.707107i −1.00000 0 1.84776i 0.382683 + 0.923880i 0 −0.923880 0.382683i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1979.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by Q(55)\Q(\sqrt{-55})
5.b even 2 1 inner
11.b odd 2 1 inner
24.f even 2 1 inner
120.m even 2 1 inner
264.p odd 2 1 inner
1320.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3960.1.b.c 8
3.b odd 2 1 3960.1.b.d yes 8
5.b even 2 1 inner 3960.1.b.c 8
8.d odd 2 1 3960.1.b.d yes 8
11.b odd 2 1 inner 3960.1.b.c 8
15.d odd 2 1 3960.1.b.d yes 8
24.f even 2 1 inner 3960.1.b.c 8
33.d even 2 1 3960.1.b.d yes 8
40.e odd 2 1 3960.1.b.d yes 8
55.d odd 2 1 CM 3960.1.b.c 8
88.g even 2 1 3960.1.b.d yes 8
120.m even 2 1 inner 3960.1.b.c 8
165.d even 2 1 3960.1.b.d yes 8
264.p odd 2 1 inner 3960.1.b.c 8
440.c even 2 1 3960.1.b.d yes 8
1320.b odd 2 1 inner 3960.1.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3960.1.b.c 8 1.a even 1 1 trivial
3960.1.b.c 8 5.b even 2 1 inner
3960.1.b.c 8 11.b odd 2 1 inner
3960.1.b.c 8 24.f even 2 1 inner
3960.1.b.c 8 55.d odd 2 1 CM
3960.1.b.c 8 120.m even 2 1 inner
3960.1.b.c 8 264.p odd 2 1 inner
3960.1.b.c 8 1320.b odd 2 1 inner
3960.1.b.d yes 8 3.b odd 2 1
3960.1.b.d yes 8 8.d odd 2 1
3960.1.b.d yes 8 15.d odd 2 1
3960.1.b.d yes 8 33.d even 2 1
3960.1.b.d yes 8 40.e odd 2 1
3960.1.b.d yes 8 88.g even 2 1
3960.1.b.d yes 8 165.d even 2 1
3960.1.b.d yes 8 440.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3960,[χ])S_{1}^{\mathrm{new}}(3960, [\chi]):

T74+4T72+2 T_{7}^{4} + 4T_{7}^{2} + 2 Copy content Toggle raw display
T17344T1732+2 T_{173}^{4} - 4T_{173}^{2} + 2 Copy content Toggle raw display
T5992 T_{599} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+1 T^{8} + 1 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
77 (T4+4T2+2)2 (T^{4} + 4 T^{2} + 2)^{2} Copy content Toggle raw display
1111 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
1313 (T4+4T2+2)2 (T^{4} + 4 T^{2} + 2)^{2} Copy content Toggle raw display
1717 (T4+4T2+2)2 (T^{4} + 4 T^{2} + 2)^{2} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T44T2+2)2 (T^{4} - 4 T^{2} + 2)^{2} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 (T22)4 (T^{2} - 2)^{4} Copy content Toggle raw display
7373 (T44T2+2)2 (T^{4} - 4 T^{2} + 2)^{2} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 (T4+4T2+2)2 (T^{4} + 4 T^{2} + 2)^{2} Copy content Toggle raw display
8989 (T2+4)4 (T^{2} + 4)^{4} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less