Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3960,1,Mod(1979,3960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3960.1979");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3960.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 8.2.2483965440000.8 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1979.1 |
|
−0.923880 | − | 0.382683i | 0 | 0.707107 | + | 0.707107i | −1.00000 | 0 | 1.84776i | −0.382683 | − | 0.923880i | 0 | 0.923880 | + | 0.382683i | ||||||||||||||||||||||||||||||||||
1979.2 | −0.923880 | + | 0.382683i | 0 | 0.707107 | − | 0.707107i | −1.00000 | 0 | − | 1.84776i | −0.382683 | + | 0.923880i | 0 | 0.923880 | − | 0.382683i | ||||||||||||||||||||||||||||||||||
1979.3 | −0.382683 | − | 0.923880i | 0 | −0.707107 | + | 0.707107i | −1.00000 | 0 | − | 0.765367i | 0.923880 | + | 0.382683i | 0 | 0.382683 | + | 0.923880i | ||||||||||||||||||||||||||||||||||
1979.4 | −0.382683 | + | 0.923880i | 0 | −0.707107 | − | 0.707107i | −1.00000 | 0 | 0.765367i | 0.923880 | − | 0.382683i | 0 | 0.382683 | − | 0.923880i | |||||||||||||||||||||||||||||||||||
1979.5 | 0.382683 | − | 0.923880i | 0 | −0.707107 | − | 0.707107i | −1.00000 | 0 | − | 0.765367i | −0.923880 | + | 0.382683i | 0 | −0.382683 | + | 0.923880i | ||||||||||||||||||||||||||||||||||
1979.6 | 0.382683 | + | 0.923880i | 0 | −0.707107 | + | 0.707107i | −1.00000 | 0 | 0.765367i | −0.923880 | − | 0.382683i | 0 | −0.382683 | − | 0.923880i | |||||||||||||||||||||||||||||||||||
1979.7 | 0.923880 | − | 0.382683i | 0 | 0.707107 | − | 0.707107i | −1.00000 | 0 | 1.84776i | 0.382683 | − | 0.923880i | 0 | −0.923880 | + | 0.382683i | |||||||||||||||||||||||||||||||||||
1979.8 | 0.923880 | + | 0.382683i | 0 | 0.707107 | + | 0.707107i | −1.00000 | 0 | − | 1.84776i | 0.382683 | + | 0.923880i | 0 | −0.923880 | − | 0.382683i | ||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
55.d | odd | 2 | 1 | CM by |
5.b | even | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
120.m | even | 2 | 1 | inner |
264.p | odd | 2 | 1 | inner |
1320.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3960.1.b.c | ✓ | 8 |
3.b | odd | 2 | 1 | 3960.1.b.d | yes | 8 | |
5.b | even | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
8.d | odd | 2 | 1 | 3960.1.b.d | yes | 8 | |
11.b | odd | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
15.d | odd | 2 | 1 | 3960.1.b.d | yes | 8 | |
24.f | even | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
33.d | even | 2 | 1 | 3960.1.b.d | yes | 8 | |
40.e | odd | 2 | 1 | 3960.1.b.d | yes | 8 | |
55.d | odd | 2 | 1 | CM | 3960.1.b.c | ✓ | 8 |
88.g | even | 2 | 1 | 3960.1.b.d | yes | 8 | |
120.m | even | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
165.d | even | 2 | 1 | 3960.1.b.d | yes | 8 | |
264.p | odd | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
440.c | even | 2 | 1 | 3960.1.b.d | yes | 8 | |
1320.b | odd | 2 | 1 | inner | 3960.1.b.c | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3960.1.b.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
3960.1.b.c | ✓ | 8 | 5.b | even | 2 | 1 | inner |
3960.1.b.c | ✓ | 8 | 11.b | odd | 2 | 1 | inner |
3960.1.b.c | ✓ | 8 | 24.f | even | 2 | 1 | inner |
3960.1.b.c | ✓ | 8 | 55.d | odd | 2 | 1 | CM |
3960.1.b.c | ✓ | 8 | 120.m | even | 2 | 1 | inner |
3960.1.b.c | ✓ | 8 | 264.p | odd | 2 | 1 | inner |
3960.1.b.c | ✓ | 8 | 1320.b | odd | 2 | 1 | inner |
3960.1.b.d | yes | 8 | 3.b | odd | 2 | 1 | |
3960.1.b.d | yes | 8 | 8.d | odd | 2 | 1 | |
3960.1.b.d | yes | 8 | 15.d | odd | 2 | 1 | |
3960.1.b.d | yes | 8 | 33.d | even | 2 | 1 | |
3960.1.b.d | yes | 8 | 40.e | odd | 2 | 1 | |
3960.1.b.d | yes | 8 | 88.g | even | 2 | 1 | |
3960.1.b.d | yes | 8 | 165.d | even | 2 | 1 | |
3960.1.b.d | yes | 8 | 440.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|