Properties

Label 3960.2.a.bd.1.1
Level $3960$
Weight $2$
Character 3960.1
Self dual yes
Analytic conductor $31.621$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(1,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6207592004\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.41421 q^{7} -1.00000 q^{11} -3.41421 q^{13} -0.585786 q^{17} +5.65685 q^{19} +2.82843 q^{23} +1.00000 q^{25} -4.82843 q^{29} -10.4853 q^{31} -1.41421 q^{35} +3.65685 q^{37} +6.48528 q^{41} +5.41421 q^{43} -2.82843 q^{47} -5.00000 q^{49} -12.8284 q^{53} -1.00000 q^{55} +6.48528 q^{59} -8.82843 q^{61} -3.41421 q^{65} +8.48528 q^{67} -8.82843 q^{71} +4.58579 q^{73} +1.41421 q^{77} -9.65685 q^{79} -8.24264 q^{83} -0.585786 q^{85} -15.6569 q^{89} +4.82843 q^{91} +5.65685 q^{95} -4.82843 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{11} - 4 q^{13} - 4 q^{17} + 2 q^{25} - 4 q^{29} - 4 q^{31} - 4 q^{37} - 4 q^{41} + 8 q^{43} - 10 q^{49} - 20 q^{53} - 2 q^{55} - 4 q^{59} - 12 q^{61} - 4 q^{65} - 12 q^{71} + 12 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −3.41421 −0.946932 −0.473466 0.880812i \(-0.656997\pi\)
−0.473466 + 0.880812i \(0.656997\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.585786 −0.142074 −0.0710370 0.997474i \(-0.522631\pi\)
−0.0710370 + 0.997474i \(0.522631\pi\)
\(18\) 0 0
\(19\) 5.65685 1.29777 0.648886 0.760886i \(-0.275235\pi\)
0.648886 + 0.760886i \(0.275235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.82843 −0.896616 −0.448308 0.893879i \(-0.647973\pi\)
−0.448308 + 0.893879i \(0.647973\pi\)
\(30\) 0 0
\(31\) −10.4853 −1.88321 −0.941606 0.336717i \(-0.890684\pi\)
−0.941606 + 0.336717i \(0.890684\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) 3.65685 0.601183 0.300592 0.953753i \(-0.402816\pi\)
0.300592 + 0.953753i \(0.402816\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.48528 1.01283 0.506415 0.862290i \(-0.330970\pi\)
0.506415 + 0.862290i \(0.330970\pi\)
\(42\) 0 0
\(43\) 5.41421 0.825660 0.412830 0.910808i \(-0.364540\pi\)
0.412830 + 0.910808i \(0.364540\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.8284 −1.76212 −0.881060 0.473005i \(-0.843169\pi\)
−0.881060 + 0.473005i \(0.843169\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.48528 0.844312 0.422156 0.906523i \(-0.361273\pi\)
0.422156 + 0.906523i \(0.361273\pi\)
\(60\) 0 0
\(61\) −8.82843 −1.13036 −0.565182 0.824966i \(-0.691194\pi\)
−0.565182 + 0.824966i \(0.691194\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.41421 −0.423481
\(66\) 0 0
\(67\) 8.48528 1.03664 0.518321 0.855186i \(-0.326557\pi\)
0.518321 + 0.855186i \(0.326557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.82843 −1.04774 −0.523871 0.851798i \(-0.675513\pi\)
−0.523871 + 0.851798i \(0.675513\pi\)
\(72\) 0 0
\(73\) 4.58579 0.536726 0.268363 0.963318i \(-0.413517\pi\)
0.268363 + 0.963318i \(0.413517\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.41421 0.161165
\(78\) 0 0
\(79\) −9.65685 −1.08648 −0.543240 0.839577i \(-0.682803\pi\)
−0.543240 + 0.839577i \(0.682803\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.24264 −0.904747 −0.452374 0.891828i \(-0.649423\pi\)
−0.452374 + 0.891828i \(0.649423\pi\)
\(84\) 0 0
\(85\) −0.585786 −0.0635375
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.6569 −1.65962 −0.829812 0.558044i \(-0.811552\pi\)
−0.829812 + 0.558044i \(0.811552\pi\)
\(90\) 0 0
\(91\) 4.82843 0.506157
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.65685 0.580381
\(96\) 0 0
\(97\) −4.82843 −0.490252 −0.245126 0.969491i \(-0.578829\pi\)
−0.245126 + 0.969491i \(0.578829\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.65685 −0.363871 −0.181935 0.983311i \(-0.558236\pi\)
−0.181935 + 0.983311i \(0.558236\pi\)
\(102\) 0 0
\(103\) 17.6569 1.73978 0.869891 0.493244i \(-0.164189\pi\)
0.869891 + 0.493244i \(0.164189\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.8995 −1.34371 −0.671857 0.740680i \(-0.734503\pi\)
−0.671857 + 0.740680i \(0.734503\pi\)
\(108\) 0 0
\(109\) −18.9706 −1.81705 −0.908525 0.417830i \(-0.862791\pi\)
−0.908525 + 0.417830i \(0.862791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.6569 −1.09658 −0.548292 0.836287i \(-0.684722\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(114\) 0 0
\(115\) 2.82843 0.263752
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.828427 0.0759418
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.2426 1.08636 0.543179 0.839617i \(-0.317220\pi\)
0.543179 + 0.839617i \(0.317220\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.4853 −1.44033 −0.720163 0.693805i \(-0.755933\pi\)
−0.720163 + 0.693805i \(0.755933\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) −2.82843 −0.239904 −0.119952 0.992780i \(-0.538274\pi\)
−0.119952 + 0.992780i \(0.538274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.41421 0.285511
\(144\) 0 0
\(145\) −4.82843 −0.400979
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 21.6569 1.76241 0.881205 0.472735i \(-0.156733\pi\)
0.881205 + 0.472735i \(0.156733\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.4853 −0.842198
\(156\) 0 0
\(157\) −8.82843 −0.704585 −0.352293 0.935890i \(-0.614598\pi\)
−0.352293 + 0.935890i \(0.614598\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 6.34315 0.496834 0.248417 0.968653i \(-0.420090\pi\)
0.248417 + 0.968653i \(0.420090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24264 0.328305 0.164153 0.986435i \(-0.447511\pi\)
0.164153 + 0.986435i \(0.447511\pi\)
\(168\) 0 0
\(169\) −1.34315 −0.103319
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.72792 0.511514 0.255757 0.966741i \(-0.417675\pi\)
0.255757 + 0.966741i \(0.417675\pi\)
\(174\) 0 0
\(175\) −1.41421 −0.106904
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.31371 0.546652 0.273326 0.961921i \(-0.411876\pi\)
0.273326 + 0.961921i \(0.411876\pi\)
\(180\) 0 0
\(181\) −2.34315 −0.174165 −0.0870823 0.996201i \(-0.527754\pi\)
−0.0870823 + 0.996201i \(0.527754\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.65685 0.268857
\(186\) 0 0
\(187\) 0.585786 0.0428369
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.6569 −1.56703 −0.783517 0.621370i \(-0.786577\pi\)
−0.783517 + 0.621370i \(0.786577\pi\)
\(192\) 0 0
\(193\) 20.3848 1.46733 0.733664 0.679512i \(-0.237809\pi\)
0.733664 + 0.679512i \(0.237809\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.3848 1.45236 0.726178 0.687507i \(-0.241295\pi\)
0.726178 + 0.687507i \(0.241295\pi\)
\(198\) 0 0
\(199\) −11.3137 −0.802008 −0.401004 0.916076i \(-0.631339\pi\)
−0.401004 + 0.916076i \(0.631339\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.82843 0.479262
\(204\) 0 0
\(205\) 6.48528 0.452952
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.41421 0.369246
\(216\) 0 0
\(217\) 14.8284 1.00662
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −6.14214 −0.411308 −0.205654 0.978625i \(-0.565932\pi\)
−0.205654 + 0.978625i \(0.565932\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.727922 0.0483139 0.0241569 0.999708i \(-0.492310\pi\)
0.0241569 + 0.999708i \(0.492310\pi\)
\(228\) 0 0
\(229\) −2.68629 −0.177515 −0.0887576 0.996053i \(-0.528290\pi\)
−0.0887576 + 0.996053i \(0.528290\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.7279 0.964858 0.482429 0.875935i \(-0.339755\pi\)
0.482429 + 0.875935i \(0.339755\pi\)
\(234\) 0 0
\(235\) −2.82843 −0.184506
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −27.7990 −1.79817 −0.899084 0.437777i \(-0.855766\pi\)
−0.899084 + 0.437777i \(0.855766\pi\)
\(240\) 0 0
\(241\) 22.4853 1.44840 0.724202 0.689588i \(-0.242208\pi\)
0.724202 + 0.689588i \(0.242208\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.00000 −0.319438
\(246\) 0 0
\(247\) −19.3137 −1.22890
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.79899 0.618507 0.309253 0.950980i \(-0.399921\pi\)
0.309253 + 0.950980i \(0.399921\pi\)
\(252\) 0 0
\(253\) −2.82843 −0.177822
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.7990 −1.35978 −0.679892 0.733312i \(-0.737973\pi\)
−0.679892 + 0.733312i \(0.737973\pi\)
\(258\) 0 0
\(259\) −5.17157 −0.321346
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.4142 −1.07381 −0.536903 0.843644i \(-0.680406\pi\)
−0.536903 + 0.843644i \(0.680406\pi\)
\(264\) 0 0
\(265\) −12.8284 −0.788044
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.6569 −1.07656 −0.538279 0.842767i \(-0.680925\pi\)
−0.538279 + 0.842767i \(0.680925\pi\)
\(270\) 0 0
\(271\) 16.9706 1.03089 0.515444 0.856923i \(-0.327627\pi\)
0.515444 + 0.856923i \(0.327627\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −10.2426 −0.615421 −0.307710 0.951480i \(-0.599563\pi\)
−0.307710 + 0.951480i \(0.599563\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.1421 −0.962959 −0.481480 0.876457i \(-0.659900\pi\)
−0.481480 + 0.876457i \(0.659900\pi\)
\(282\) 0 0
\(283\) −14.3848 −0.855086 −0.427543 0.903995i \(-0.640621\pi\)
−0.427543 + 0.903995i \(0.640621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.17157 −0.541381
\(288\) 0 0
\(289\) −16.6569 −0.979815
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.5563 −1.02565 −0.512826 0.858492i \(-0.671402\pi\)
−0.512826 + 0.858492i \(0.671402\pi\)
\(294\) 0 0
\(295\) 6.48528 0.377588
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.65685 −0.558470
\(300\) 0 0
\(301\) −7.65685 −0.441334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.82843 −0.505514
\(306\) 0 0
\(307\) 7.27208 0.415039 0.207520 0.978231i \(-0.433461\pi\)
0.207520 + 0.978231i \(0.433461\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.8284 1.18107 0.590536 0.807011i \(-0.298916\pi\)
0.590536 + 0.807011i \(0.298916\pi\)
\(312\) 0 0
\(313\) −32.6274 −1.84421 −0.922105 0.386939i \(-0.873532\pi\)
−0.922105 + 0.386939i \(0.873532\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −28.6274 −1.60788 −0.803938 0.594713i \(-0.797266\pi\)
−0.803938 + 0.594713i \(0.797266\pi\)
\(318\) 0 0
\(319\) 4.82843 0.270340
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.31371 −0.184380
\(324\) 0 0
\(325\) −3.41421 −0.189386
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 3.17157 0.174325 0.0871627 0.996194i \(-0.472220\pi\)
0.0871627 + 0.996194i \(0.472220\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.48528 0.463600
\(336\) 0 0
\(337\) 1.07107 0.0583448 0.0291724 0.999574i \(-0.490713\pi\)
0.0291724 + 0.999574i \(0.490713\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.4853 0.567810
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.89949 0.316701 0.158351 0.987383i \(-0.449382\pi\)
0.158351 + 0.987383i \(0.449382\pi\)
\(348\) 0 0
\(349\) −9.51472 −0.509311 −0.254656 0.967032i \(-0.581962\pi\)
−0.254656 + 0.967032i \(0.581962\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.7990 0.734446 0.367223 0.930133i \(-0.380309\pi\)
0.367223 + 0.930133i \(0.380309\pi\)
\(354\) 0 0
\(355\) −8.82843 −0.468564
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.17157 0.0618333 0.0309166 0.999522i \(-0.490157\pi\)
0.0309166 + 0.999522i \(0.490157\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.58579 0.240031
\(366\) 0 0
\(367\) 28.4853 1.48692 0.743460 0.668781i \(-0.233183\pi\)
0.743460 + 0.668781i \(0.233183\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.1421 0.941893
\(372\) 0 0
\(373\) 14.2426 0.737456 0.368728 0.929537i \(-0.379793\pi\)
0.368728 + 0.929537i \(0.379793\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.4853 0.849035
\(378\) 0 0
\(379\) −8.68629 −0.446185 −0.223092 0.974797i \(-0.571615\pi\)
−0.223092 + 0.974797i \(0.571615\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.31371 −0.373713 −0.186857 0.982387i \(-0.559830\pi\)
−0.186857 + 0.982387i \(0.559830\pi\)
\(384\) 0 0
\(385\) 1.41421 0.0720750
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.2843 1.43407 0.717035 0.697037i \(-0.245499\pi\)
0.717035 + 0.697037i \(0.245499\pi\)
\(390\) 0 0
\(391\) −1.65685 −0.0837907
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.65685 −0.485889
\(396\) 0 0
\(397\) −11.1716 −0.560685 −0.280343 0.959900i \(-0.590448\pi\)
−0.280343 + 0.959900i \(0.590448\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.6274 1.62934 0.814668 0.579928i \(-0.196919\pi\)
0.814668 + 0.579928i \(0.196919\pi\)
\(402\) 0 0
\(403\) 35.7990 1.78327
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.65685 −0.181264
\(408\) 0 0
\(409\) 1.31371 0.0649587 0.0324794 0.999472i \(-0.489660\pi\)
0.0324794 + 0.999472i \(0.489660\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.17157 −0.451304
\(414\) 0 0
\(415\) −8.24264 −0.404615
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.65685 0.0809426 0.0404713 0.999181i \(-0.487114\pi\)
0.0404713 + 0.999181i \(0.487114\pi\)
\(420\) 0 0
\(421\) −27.3137 −1.33119 −0.665594 0.746314i \(-0.731822\pi\)
−0.665594 + 0.746314i \(0.731822\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.585786 −0.0284148
\(426\) 0 0
\(427\) 12.4853 0.604205
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.6569 −1.04317 −0.521587 0.853198i \(-0.674660\pi\)
−0.521587 + 0.853198i \(0.674660\pi\)
\(432\) 0 0
\(433\) −0.142136 −0.00683060 −0.00341530 0.999994i \(-0.501087\pi\)
−0.00341530 + 0.999994i \(0.501087\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 10.1421 0.484058 0.242029 0.970269i \(-0.422187\pi\)
0.242029 + 0.970269i \(0.422187\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.9706 −0.616250 −0.308125 0.951346i \(-0.599702\pi\)
−0.308125 + 0.951346i \(0.599702\pi\)
\(444\) 0 0
\(445\) −15.6569 −0.742206
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) −6.48528 −0.305380
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.82843 0.226360
\(456\) 0 0
\(457\) −39.2132 −1.83432 −0.917158 0.398523i \(-0.869523\pi\)
−0.917158 + 0.398523i \(0.869523\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.68629 0.125113 0.0625565 0.998041i \(-0.480075\pi\)
0.0625565 + 0.998041i \(0.480075\pi\)
\(462\) 0 0
\(463\) 13.1716 0.612135 0.306067 0.952010i \(-0.400987\pi\)
0.306067 + 0.952010i \(0.400987\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.485281 −0.0224561 −0.0112281 0.999937i \(-0.503574\pi\)
−0.0112281 + 0.999937i \(0.503574\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.41421 −0.248946
\(474\) 0 0
\(475\) 5.65685 0.259554
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4558 1.16311 0.581554 0.813508i \(-0.302445\pi\)
0.581554 + 0.813508i \(0.302445\pi\)
\(480\) 0 0
\(481\) −12.4853 −0.569280
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.82843 −0.219248
\(486\) 0 0
\(487\) −10.8284 −0.490683 −0.245341 0.969437i \(-0.578900\pi\)
−0.245341 + 0.969437i \(0.578900\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −36.2843 −1.63749 −0.818743 0.574160i \(-0.805329\pi\)
−0.818743 + 0.574160i \(0.805329\pi\)
\(492\) 0 0
\(493\) 2.82843 0.127386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.4853 0.560041
\(498\) 0 0
\(499\) 3.02944 0.135616 0.0678081 0.997698i \(-0.478399\pi\)
0.0678081 + 0.997698i \(0.478399\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.0711 1.74209 0.871046 0.491201i \(-0.163442\pi\)
0.871046 + 0.491201i \(0.163442\pi\)
\(504\) 0 0
\(505\) −3.65685 −0.162728
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) −6.48528 −0.286892
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.6569 0.778054
\(516\) 0 0
\(517\) 2.82843 0.124394
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.31371 −0.0575546 −0.0287773 0.999586i \(-0.509161\pi\)
−0.0287773 + 0.999586i \(0.509161\pi\)
\(522\) 0 0
\(523\) −8.24264 −0.360426 −0.180213 0.983628i \(-0.557679\pi\)
−0.180213 + 0.983628i \(0.557679\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.14214 0.267556
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −22.1421 −0.959082
\(534\) 0 0
\(535\) −13.8995 −0.600928
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) 30.2843 1.30202 0.651011 0.759068i \(-0.274345\pi\)
0.651011 + 0.759068i \(0.274345\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.9706 −0.812610
\(546\) 0 0
\(547\) 19.0711 0.815420 0.407710 0.913111i \(-0.366327\pi\)
0.407710 + 0.913111i \(0.366327\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −27.3137 −1.16360
\(552\) 0 0
\(553\) 13.6569 0.580749
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.58579 0.194306 0.0971530 0.995269i \(-0.469026\pi\)
0.0971530 + 0.995269i \(0.469026\pi\)
\(558\) 0 0
\(559\) −18.4853 −0.781844
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.5858 1.45762 0.728809 0.684718i \(-0.240074\pi\)
0.728809 + 0.684718i \(0.240074\pi\)
\(564\) 0 0
\(565\) −11.6569 −0.490408
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.6274 −1.53550 −0.767751 0.640749i \(-0.778624\pi\)
−0.767751 + 0.640749i \(0.778624\pi\)
\(570\) 0 0
\(571\) 17.1716 0.718608 0.359304 0.933221i \(-0.383014\pi\)
0.359304 + 0.933221i \(0.383014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.82843 0.117954
\(576\) 0 0
\(577\) 46.7696 1.94704 0.973521 0.228598i \(-0.0734140\pi\)
0.973521 + 0.228598i \(0.0734140\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.6569 0.483608
\(582\) 0 0
\(583\) 12.8284 0.531299
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.82843 −0.116742 −0.0583708 0.998295i \(-0.518591\pi\)
−0.0583708 + 0.998295i \(0.518591\pi\)
\(588\) 0 0
\(589\) −59.3137 −2.44398
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.3848 −0.672842 −0.336421 0.941712i \(-0.609217\pi\)
−0.336421 + 0.941712i \(0.609217\pi\)
\(594\) 0 0
\(595\) 0.828427 0.0339622
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.97056 −0.366527 −0.183264 0.983064i \(-0.558666\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(600\) 0 0
\(601\) 6.20101 0.252944 0.126472 0.991970i \(-0.459635\pi\)
0.126472 + 0.991970i \(0.459635\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) 4.24264 0.172203 0.0861017 0.996286i \(-0.472559\pi\)
0.0861017 + 0.996286i \(0.472559\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.65685 0.390675
\(612\) 0 0
\(613\) 46.0416 1.85960 0.929802 0.368060i \(-0.119978\pi\)
0.929802 + 0.368060i \(0.119978\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.6569 0.791355 0.395678 0.918389i \(-0.370510\pi\)
0.395678 + 0.918389i \(0.370510\pi\)
\(618\) 0 0
\(619\) −17.5147 −0.703976 −0.351988 0.936005i \(-0.614494\pi\)
−0.351988 + 0.936005i \(0.614494\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.1421 0.887106
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.14214 −0.0854125
\(630\) 0 0
\(631\) 18.3431 0.730229 0.365115 0.930963i \(-0.381030\pi\)
0.365115 + 0.930963i \(0.381030\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.2426 0.485834
\(636\) 0 0
\(637\) 17.0711 0.676380
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.9706 1.38125 0.690627 0.723211i \(-0.257335\pi\)
0.690627 + 0.723211i \(0.257335\pi\)
\(642\) 0 0
\(643\) 45.9411 1.81174 0.905871 0.423555i \(-0.139218\pi\)
0.905871 + 0.423555i \(0.139218\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.97056 −0.195413 −0.0977065 0.995215i \(-0.531151\pi\)
−0.0977065 + 0.995215i \(0.531151\pi\)
\(648\) 0 0
\(649\) −6.48528 −0.254570
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.1127 1.29580 0.647900 0.761725i \(-0.275647\pi\)
0.647900 + 0.761725i \(0.275647\pi\)
\(654\) 0 0
\(655\) −16.4853 −0.644133
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −29.6569 −1.15527 −0.577634 0.816296i \(-0.696024\pi\)
−0.577634 + 0.816296i \(0.696024\pi\)
\(660\) 0 0
\(661\) −27.6569 −1.07573 −0.537863 0.843032i \(-0.680768\pi\)
−0.537863 + 0.843032i \(0.680768\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) −13.6569 −0.528796
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.82843 0.340818
\(672\) 0 0
\(673\) 28.5858 1.10190 0.550951 0.834538i \(-0.314265\pi\)
0.550951 + 0.834538i \(0.314265\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.1005 0.465060 0.232530 0.972589i \(-0.425300\pi\)
0.232530 + 0.972589i \(0.425300\pi\)
\(678\) 0 0
\(679\) 6.82843 0.262051
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.17157 −0.0448290 −0.0224145 0.999749i \(-0.507135\pi\)
−0.0224145 + 0.999749i \(0.507135\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 43.7990 1.66861
\(690\) 0 0
\(691\) 17.6569 0.671698 0.335849 0.941916i \(-0.390977\pi\)
0.335849 + 0.941916i \(0.390977\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.82843 −0.107288
\(696\) 0 0
\(697\) −3.79899 −0.143897
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.82843 −0.333445 −0.166723 0.986004i \(-0.553318\pi\)
−0.166723 + 0.986004i \(0.553318\pi\)
\(702\) 0 0
\(703\) 20.6863 0.780198
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.17157 0.194497
\(708\) 0 0
\(709\) −49.6569 −1.86490 −0.932451 0.361296i \(-0.882334\pi\)
−0.932451 + 0.361296i \(0.882334\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −29.6569 −1.11066
\(714\) 0 0
\(715\) 3.41421 0.127684
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −24.9706 −0.929952
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.82843 −0.179323
\(726\) 0 0
\(727\) −29.6569 −1.09991 −0.549956 0.835194i \(-0.685355\pi\)
−0.549956 + 0.835194i \(0.685355\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.17157 −0.117305
\(732\) 0 0
\(733\) −10.7279 −0.396245 −0.198122 0.980177i \(-0.563484\pi\)
−0.198122 + 0.980177i \(0.563484\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.48528 −0.312559
\(738\) 0 0
\(739\) −24.4853 −0.900706 −0.450353 0.892851i \(-0.648702\pi\)
−0.450353 + 0.892851i \(0.648702\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.8701 1.27926 0.639629 0.768684i \(-0.279088\pi\)
0.639629 + 0.768684i \(0.279088\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.6569 0.718246
\(750\) 0 0
\(751\) 38.6274 1.40953 0.704767 0.709439i \(-0.251051\pi\)
0.704767 + 0.709439i \(0.251051\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.6569 0.788174
\(756\) 0 0
\(757\) −46.0833 −1.67492 −0.837462 0.546495i \(-0.815962\pi\)
−0.837462 + 0.546495i \(0.815962\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.02944 0.182317 0.0911585 0.995836i \(-0.470943\pi\)
0.0911585 + 0.995836i \(0.470943\pi\)
\(762\) 0 0
\(763\) 26.8284 0.971254
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.1421 −0.799506
\(768\) 0 0
\(769\) 41.7990 1.50731 0.753655 0.657270i \(-0.228289\pi\)
0.753655 + 0.657270i \(0.228289\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.8284 −0.461406 −0.230703 0.973024i \(-0.574103\pi\)
−0.230703 + 0.973024i \(0.574103\pi\)
\(774\) 0 0
\(775\) −10.4853 −0.376642
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 36.6863 1.31442
\(780\) 0 0
\(781\) 8.82843 0.315906
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.82843 −0.315100
\(786\) 0 0
\(787\) 4.44365 0.158399 0.0791995 0.996859i \(-0.474764\pi\)
0.0791995 + 0.996859i \(0.474764\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.4853 0.586149
\(792\) 0 0
\(793\) 30.1421 1.07038
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 1.65685 0.0586153
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.58579 −0.161829
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.4853 1.49370 0.746851 0.664991i \(-0.231565\pi\)
0.746851 + 0.664991i \(0.231565\pi\)
\(810\) 0 0
\(811\) 11.7990 0.414319 0.207159 0.978307i \(-0.433578\pi\)
0.207159 + 0.978307i \(0.433578\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.34315 0.222191
\(816\) 0 0
\(817\) 30.6274 1.07152
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.79899 0.341987 0.170994 0.985272i \(-0.445302\pi\)
0.170994 + 0.985272i \(0.445302\pi\)
\(822\) 0 0
\(823\) 16.9706 0.591557 0.295778 0.955257i \(-0.404421\pi\)
0.295778 + 0.955257i \(0.404421\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.5269 0.991978 0.495989 0.868329i \(-0.334806\pi\)
0.495989 + 0.868329i \(0.334806\pi\)
\(828\) 0 0
\(829\) 43.5980 1.51422 0.757110 0.653287i \(-0.226611\pi\)
0.757110 + 0.653287i \(0.226611\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.92893 0.101481
\(834\) 0 0
\(835\) 4.24264 0.146823
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −39.4558 −1.36217 −0.681084 0.732206i \(-0.738491\pi\)
−0.681084 + 0.732206i \(0.738491\pi\)
\(840\) 0 0
\(841\) −5.68629 −0.196079
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.34315 −0.0462056
\(846\) 0 0
\(847\) −1.41421 −0.0485930
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10.3431 0.354558
\(852\) 0 0
\(853\) −18.7279 −0.641232 −0.320616 0.947209i \(-0.603890\pi\)
−0.320616 + 0.947209i \(0.603890\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.2132 1.33950 0.669749 0.742588i \(-0.266402\pi\)
0.669749 + 0.742588i \(0.266402\pi\)
\(858\) 0 0
\(859\) −33.5147 −1.14351 −0.571754 0.820425i \(-0.693737\pi\)
−0.571754 + 0.820425i \(0.693737\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.9706 1.80314 0.901569 0.432634i \(-0.142416\pi\)
0.901569 + 0.432634i \(0.142416\pi\)
\(864\) 0 0
\(865\) 6.72792 0.228756
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.65685 0.327586
\(870\) 0 0
\(871\) −28.9706 −0.981630
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.41421 −0.0478091
\(876\) 0 0
\(877\) −42.5269 −1.43603 −0.718016 0.696027i \(-0.754950\pi\)
−0.718016 + 0.696027i \(0.754950\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.6863 0.427412 0.213706 0.976898i \(-0.431447\pi\)
0.213706 + 0.976898i \(0.431447\pi\)
\(882\) 0 0
\(883\) −36.9706 −1.24416 −0.622079 0.782954i \(-0.713712\pi\)
−0.622079 + 0.782954i \(0.713712\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.7574 0.394773 0.197387 0.980326i \(-0.436755\pi\)
0.197387 + 0.980326i \(0.436755\pi\)
\(888\) 0 0
\(889\) −17.3137 −0.580683
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 7.31371 0.244470
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.6274 1.68852
\(900\) 0 0
\(901\) 7.51472 0.250352
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.34315 −0.0778888
\(906\) 0 0
\(907\) −48.7696 −1.61937 −0.809683 0.586867i \(-0.800361\pi\)
−0.809683 + 0.586867i \(0.800361\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.2843 1.46720 0.733602 0.679580i \(-0.237838\pi\)
0.733602 + 0.679580i \(0.237838\pi\)
\(912\) 0 0
\(913\) 8.24264 0.272792
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.3137 0.769886
\(918\) 0 0
\(919\) −4.20101 −0.138579 −0.0692893 0.997597i \(-0.522073\pi\)
−0.0692893 + 0.997597i \(0.522073\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 30.1421 0.992140
\(924\) 0 0
\(925\) 3.65685 0.120237
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.6274 0.348674 0.174337 0.984686i \(-0.444222\pi\)
0.174337 + 0.984686i \(0.444222\pi\)
\(930\) 0 0
\(931\) −28.2843 −0.926980
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.585786 0.0191573
\(936\) 0 0
\(937\) −2.72792 −0.0891173 −0.0445587 0.999007i \(-0.514188\pi\)
−0.0445587 + 0.999007i \(0.514188\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.68629 0.0875706 0.0437853 0.999041i \(-0.486058\pi\)
0.0437853 + 0.999041i \(0.486058\pi\)
\(942\) 0 0
\(943\) 18.3431 0.597335
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.48528 0.275735 0.137867 0.990451i \(-0.455975\pi\)
0.137867 + 0.990451i \(0.455975\pi\)
\(948\) 0 0
\(949\) −15.6569 −0.508243
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.8995 0.515035 0.257518 0.966274i \(-0.417095\pi\)
0.257518 + 0.966274i \(0.417095\pi\)
\(954\) 0 0
\(955\) −21.6569 −0.700799
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.7990 0.639343
\(960\) 0 0
\(961\) 78.9411 2.54649
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20.3848 0.656209
\(966\) 0 0
\(967\) 28.2426 0.908222 0.454111 0.890945i \(-0.349957\pi\)
0.454111 + 0.890945i \(0.349957\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −23.3137 −0.748173 −0.374086 0.927394i \(-0.622044\pi\)
−0.374086 + 0.927394i \(0.622044\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.9706 0.350979 0.175490 0.984481i \(-0.443849\pi\)
0.175490 + 0.984481i \(0.443849\pi\)
\(978\) 0 0
\(979\) 15.6569 0.500395
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.68629 0.277050 0.138525 0.990359i \(-0.455764\pi\)
0.138525 + 0.990359i \(0.455764\pi\)
\(984\) 0 0
\(985\) 20.3848 0.649513
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.3137 0.486948
\(990\) 0 0
\(991\) −27.1716 −0.863133 −0.431567 0.902081i \(-0.642039\pi\)
−0.431567 + 0.902081i \(0.642039\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.3137 −0.358669
\(996\) 0 0
\(997\) 22.0416 0.698065 0.349033 0.937111i \(-0.386510\pi\)
0.349033 + 0.937111i \(0.386510\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.a.bd.1.1 yes 2
3.2 odd 2 3960.2.a.y.1.1 2
4.3 odd 2 7920.2.a.cc.1.2 2
12.11 even 2 7920.2.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.2.a.y.1.1 2 3.2 odd 2
3960.2.a.bd.1.1 yes 2 1.1 even 1 trivial
7920.2.a.br.1.2 2 12.11 even 2
7920.2.a.cc.1.2 2 4.3 odd 2