Properties

Label 3960.2.a.bg.1.1
Level $3960$
Weight $2$
Character 3960.1
Self dual yes
Analytic conductor $31.621$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(1,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6207592004\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.321637\) of defining polynomial
Character \(\chi\) \(=\) 3960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -4.21819 q^{7} -1.00000 q^{11} +5.57491 q^{13} +2.21819 q^{17} +0.643274 q^{19} +0.643274 q^{23} +1.00000 q^{25} -2.00000 q^{29} -1.35673 q^{31} +4.21819 q^{35} +2.00000 q^{37} -2.00000 q^{41} -4.86146 q^{43} -4.64327 q^{47} +10.7931 q^{49} +6.43637 q^{53} +1.00000 q^{55} -1.35673 q^{59} -0.0701770 q^{61} -5.57491 q^{65} -12.4364 q^{67} +5.14982 q^{71} +10.6546 q^{73} +4.21819 q^{77} +7.14982 q^{79} -13.9411 q^{83} -2.21819 q^{85} -12.3662 q^{89} -23.5160 q^{91} -0.643274 q^{95} -7.72292 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 3 q^{11} + 4 q^{13} - 6 q^{17} + 2 q^{19} + 2 q^{23} + 3 q^{25} - 6 q^{29} - 4 q^{31} + 6 q^{37} - 6 q^{41} - 2 q^{43} - 14 q^{47} + 7 q^{49} - 6 q^{53} + 3 q^{55} - 4 q^{59} - 4 q^{65}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.21819 −1.59432 −0.797162 0.603765i \(-0.793667\pi\)
−0.797162 + 0.603765i \(0.793667\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 5.57491 1.54620 0.773101 0.634283i \(-0.218704\pi\)
0.773101 + 0.634283i \(0.218704\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.21819 0.537989 0.268995 0.963142i \(-0.413309\pi\)
0.268995 + 0.963142i \(0.413309\pi\)
\(18\) 0 0
\(19\) 0.643274 0.147577 0.0737886 0.997274i \(-0.476491\pi\)
0.0737886 + 0.997274i \(0.476491\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.643274 0.134132 0.0670660 0.997749i \(-0.478636\pi\)
0.0670660 + 0.997749i \(0.478636\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −1.35673 −0.243675 −0.121838 0.992550i \(-0.538879\pi\)
−0.121838 + 0.992550i \(0.538879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.21819 0.713004
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −4.86146 −0.741366 −0.370683 0.928759i \(-0.620876\pi\)
−0.370683 + 0.928759i \(0.620876\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.64327 −0.677291 −0.338646 0.940914i \(-0.609969\pi\)
−0.338646 + 0.940914i \(0.609969\pi\)
\(48\) 0 0
\(49\) 10.7931 1.54187
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.43637 0.884104 0.442052 0.896989i \(-0.354251\pi\)
0.442052 + 0.896989i \(0.354251\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.35673 −0.176631 −0.0883153 0.996093i \(-0.528148\pi\)
−0.0883153 + 0.996093i \(0.528148\pi\)
\(60\) 0 0
\(61\) −0.0701770 −0.00898524 −0.00449262 0.999990i \(-0.501430\pi\)
−0.00449262 + 0.999990i \(0.501430\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.57491 −0.691483
\(66\) 0 0
\(67\) −12.4364 −1.51934 −0.759672 0.650306i \(-0.774641\pi\)
−0.759672 + 0.650306i \(0.774641\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.14982 0.611172 0.305586 0.952165i \(-0.401148\pi\)
0.305586 + 0.952165i \(0.401148\pi\)
\(72\) 0 0
\(73\) 10.6546 1.24702 0.623511 0.781815i \(-0.285706\pi\)
0.623511 + 0.781815i \(0.285706\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.21819 0.480707
\(78\) 0 0
\(79\) 7.14982 0.804418 0.402209 0.915548i \(-0.368242\pi\)
0.402209 + 0.915548i \(0.368242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13.9411 −1.53024 −0.765118 0.643890i \(-0.777319\pi\)
−0.765118 + 0.643890i \(0.777319\pi\)
\(84\) 0 0
\(85\) −2.21819 −0.240596
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.3662 −1.31081 −0.655407 0.755276i \(-0.727503\pi\)
−0.655407 + 0.755276i \(0.727503\pi\)
\(90\) 0 0
\(91\) −23.5160 −2.46515
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.643274 −0.0659986
\(96\) 0 0
\(97\) −7.72292 −0.784144 −0.392072 0.919935i \(-0.628242\pi\)
−0.392072 + 0.919935i \(0.628242\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.4364 −1.43647 −0.718236 0.695799i \(-0.755050\pi\)
−0.718236 + 0.695799i \(0.755050\pi\)
\(102\) 0 0
\(103\) 16.8727 1.66252 0.831261 0.555883i \(-0.187620\pi\)
0.831261 + 0.555883i \(0.187620\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.49526 −0.241226 −0.120613 0.992700i \(-0.538486\pi\)
−0.120613 + 0.992700i \(0.538486\pi\)
\(108\) 0 0
\(109\) 2.20690 0.211383 0.105691 0.994399i \(-0.466294\pi\)
0.105691 + 0.994399i \(0.466294\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.7931 −1.67383 −0.836917 0.547330i \(-0.815644\pi\)
−0.836917 + 0.547330i \(0.815644\pi\)
\(114\) 0 0
\(115\) −0.643274 −0.0599856
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.35673 −0.857730
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.9316 −0.970026 −0.485013 0.874507i \(-0.661185\pi\)
−0.485013 + 0.874507i \(0.661185\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.14982 −0.624683 −0.312342 0.949970i \(-0.601113\pi\)
−0.312342 + 0.949970i \(0.601113\pi\)
\(132\) 0 0
\(133\) −2.71345 −0.235286
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7931 −1.17842 −0.589212 0.807978i \(-0.700562\pi\)
−0.589212 + 0.807978i \(0.700562\pi\)
\(138\) 0 0
\(139\) 9.07965 0.770126 0.385063 0.922890i \(-0.374180\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.57491 −0.466198
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.1498 −1.40497 −0.702484 0.711699i \(-0.747926\pi\)
−0.702484 + 0.711699i \(0.747926\pi\)
\(150\) 0 0
\(151\) 4.43637 0.361027 0.180513 0.983573i \(-0.442224\pi\)
0.180513 + 0.983573i \(0.442224\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.35673 0.108975
\(156\) 0 0
\(157\) −22.0226 −1.75759 −0.878796 0.477197i \(-0.841653\pi\)
−0.878796 + 0.477197i \(0.841653\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.71345 −0.213850
\(162\) 0 0
\(163\) −9.28655 −0.727379 −0.363689 0.931520i \(-0.618483\pi\)
−0.363689 + 0.931520i \(0.618483\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −25.0909 −1.94159 −0.970797 0.239901i \(-0.922885\pi\)
−0.970797 + 0.239901i \(0.922885\pi\)
\(168\) 0 0
\(169\) 18.0796 1.39074
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.06836 −0.233283 −0.116642 0.993174i \(-0.537213\pi\)
−0.116642 + 0.993174i \(0.537213\pi\)
\(174\) 0 0
\(175\) −4.21819 −0.318865
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.8727 0.962154 0.481077 0.876678i \(-0.340246\pi\)
0.481077 + 0.876678i \(0.340246\pi\)
\(180\) 0 0
\(181\) 6.50655 0.483628 0.241814 0.970323i \(-0.422258\pi\)
0.241814 + 0.970323i \(0.422258\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) −2.21819 −0.162210
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.7931 −1.43218 −0.716089 0.698009i \(-0.754070\pi\)
−0.716089 + 0.698009i \(0.754070\pi\)
\(192\) 0 0
\(193\) −19.9411 −1.43539 −0.717696 0.696356i \(-0.754803\pi\)
−0.717696 + 0.696356i \(0.754803\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.64509 0.259702 0.129851 0.991534i \(-0.458550\pi\)
0.129851 + 0.991534i \(0.458550\pi\)
\(198\) 0 0
\(199\) 16.8727 1.19608 0.598039 0.801467i \(-0.295947\pi\)
0.598039 + 0.801467i \(0.295947\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.43637 0.592117
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.643274 −0.0444962
\(210\) 0 0
\(211\) 8.22947 0.566540 0.283270 0.959040i \(-0.408581\pi\)
0.283270 + 0.959040i \(0.408581\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.86146 0.331549
\(216\) 0 0
\(217\) 5.72292 0.388497
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.3662 0.831840
\(222\) 0 0
\(223\) −21.8633 −1.46407 −0.732037 0.681265i \(-0.761430\pi\)
−0.732037 + 0.681265i \(0.761430\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.3680 −1.28550 −0.642750 0.766076i \(-0.722207\pi\)
−0.642750 + 0.766076i \(0.722207\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.09093 0.464542 0.232271 0.972651i \(-0.425384\pi\)
0.232271 + 0.972651i \(0.425384\pi\)
\(234\) 0 0
\(235\) 4.64327 0.302894
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.43637 0.545704 0.272852 0.962056i \(-0.412033\pi\)
0.272852 + 0.962056i \(0.412033\pi\)
\(240\) 0 0
\(241\) −3.72292 −0.239814 −0.119907 0.992785i \(-0.538260\pi\)
−0.119907 + 0.992785i \(0.538260\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.7931 −0.689546
\(246\) 0 0
\(247\) 3.58620 0.228184
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.21637 −0.329254 −0.164627 0.986356i \(-0.552642\pi\)
−0.164627 + 0.986356i \(0.552642\pi\)
\(252\) 0 0
\(253\) −0.643274 −0.0404423
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.2295 0.887610 0.443805 0.896123i \(-0.353628\pi\)
0.443805 + 0.896123i \(0.353628\pi\)
\(258\) 0 0
\(259\) −8.43637 −0.524211
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.93164 −0.427423 −0.213712 0.976897i \(-0.568555\pi\)
−0.213712 + 0.976897i \(0.568555\pi\)
\(264\) 0 0
\(265\) −6.43637 −0.395383
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.50655 −0.396711 −0.198356 0.980130i \(-0.563560\pi\)
−0.198356 + 0.980130i \(0.563560\pi\)
\(270\) 0 0
\(271\) 4.43637 0.269490 0.134745 0.990880i \(-0.456978\pi\)
0.134745 + 0.990880i \(0.456978\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 26.0113 1.56287 0.781433 0.623989i \(-0.214489\pi\)
0.781433 + 0.623989i \(0.214489\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.8727 0.887234 0.443617 0.896217i \(-0.353695\pi\)
0.443617 + 0.896217i \(0.353695\pi\)
\(282\) 0 0
\(283\) −18.7247 −1.11307 −0.556535 0.830824i \(-0.687869\pi\)
−0.556535 + 0.830824i \(0.687869\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.43637 0.497983
\(288\) 0 0
\(289\) −12.0796 −0.710568
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.5178 1.43235 0.716174 0.697922i \(-0.245892\pi\)
0.716174 + 0.697922i \(0.245892\pi\)
\(294\) 0 0
\(295\) 1.35673 0.0789916
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.58620 0.207395
\(300\) 0 0
\(301\) 20.5066 1.18198
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0701770 0.00401832
\(306\) 0 0
\(307\) −13.2978 −0.758947 −0.379474 0.925203i \(-0.623895\pi\)
−0.379474 + 0.925203i \(0.623895\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.7360 1.17583 0.587916 0.808922i \(-0.299949\pi\)
0.587916 + 0.808922i \(0.299949\pi\)
\(312\) 0 0
\(313\) −12.7135 −0.718607 −0.359303 0.933221i \(-0.616986\pi\)
−0.359303 + 0.933221i \(0.616986\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.2865 0.633916 0.316958 0.948440i \(-0.397339\pi\)
0.316958 + 0.948440i \(0.397339\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.42690 0.0793950
\(324\) 0 0
\(325\) 5.57491 0.309240
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19.5862 1.07982
\(330\) 0 0
\(331\) −17.3567 −0.954012 −0.477006 0.878900i \(-0.658278\pi\)
−0.477006 + 0.878900i \(0.658278\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.4364 0.679472
\(336\) 0 0
\(337\) 15.5047 0.844597 0.422298 0.906457i \(-0.361223\pi\)
0.422298 + 0.906457i \(0.361223\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.35673 0.0734708
\(342\) 0 0
\(343\) −16.0000 −0.863919
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3680 0.610267 0.305133 0.952310i \(-0.401299\pi\)
0.305133 + 0.952310i \(0.401299\pi\)
\(348\) 0 0
\(349\) 25.3567 1.35731 0.678657 0.734455i \(-0.262562\pi\)
0.678657 + 0.734455i \(0.262562\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.9429 −1.32758 −0.663789 0.747920i \(-0.731053\pi\)
−0.663789 + 0.747920i \(0.731053\pi\)
\(354\) 0 0
\(355\) −5.14982 −0.273324
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.43637 0.234143 0.117071 0.993123i \(-0.462649\pi\)
0.117071 + 0.993123i \(0.462649\pi\)
\(360\) 0 0
\(361\) −18.5862 −0.978221
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.6546 −0.557685
\(366\) 0 0
\(367\) 11.1498 0.582016 0.291008 0.956721i \(-0.406009\pi\)
0.291008 + 0.956721i \(0.406009\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −27.1498 −1.40955
\(372\) 0 0
\(373\) 3.27526 0.169587 0.0847933 0.996399i \(-0.472977\pi\)
0.0847933 + 0.996399i \(0.472977\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.1498 −0.574245
\(378\) 0 0
\(379\) −11.5862 −0.595143 −0.297572 0.954700i \(-0.596177\pi\)
−0.297572 + 0.954700i \(0.596177\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.3793 −0.990236 −0.495118 0.868826i \(-0.664875\pi\)
−0.495118 + 0.868826i \(0.664875\pi\)
\(384\) 0 0
\(385\) −4.21819 −0.214979
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.9524 −1.51865 −0.759323 0.650714i \(-0.774470\pi\)
−0.759323 + 0.650714i \(0.774470\pi\)
\(390\) 0 0
\(391\) 1.42690 0.0721616
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.14982 −0.359747
\(396\) 0 0
\(397\) −5.00947 −0.251418 −0.125709 0.992067i \(-0.540121\pi\)
−0.125709 + 0.992067i \(0.540121\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.9524 −0.796625 −0.398312 0.917250i \(-0.630404\pi\)
−0.398312 + 0.917250i \(0.630404\pi\)
\(402\) 0 0
\(403\) −7.56363 −0.376771
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 15.2865 0.755871 0.377936 0.925832i \(-0.376634\pi\)
0.377936 + 0.925832i \(0.376634\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.72292 0.281607
\(414\) 0 0
\(415\) 13.9411 0.684342
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 7.79310 0.379812 0.189906 0.981802i \(-0.439182\pi\)
0.189906 + 0.981802i \(0.439182\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.21819 0.107598
\(426\) 0 0
\(427\) 0.296019 0.0143254
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.14035 −0.199434 −0.0997169 0.995016i \(-0.531794\pi\)
−0.0997169 + 0.995016i \(0.531794\pi\)
\(432\) 0 0
\(433\) −13.1498 −0.631940 −0.315970 0.948769i \(-0.602330\pi\)
−0.315970 + 0.948769i \(0.602330\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.413802 0.0197948
\(438\) 0 0
\(439\) 7.12725 0.340165 0.170083 0.985430i \(-0.445597\pi\)
0.170083 + 0.985430i \(0.445597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.2996 −1.05949 −0.529744 0.848157i \(-0.677712\pi\)
−0.529744 + 0.848157i \(0.677712\pi\)
\(444\) 0 0
\(445\) 12.3662 0.586214
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.2389 1.56864 0.784321 0.620355i \(-0.213011\pi\)
0.784321 + 0.620355i \(0.213011\pi\)
\(450\) 0 0
\(451\) 2.00000 0.0941763
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 23.5160 1.10245
\(456\) 0 0
\(457\) 26.6771 1.24790 0.623952 0.781463i \(-0.285526\pi\)
0.623952 + 0.781463i \(0.285526\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.7360 1.33837 0.669185 0.743096i \(-0.266643\pi\)
0.669185 + 0.743096i \(0.266643\pi\)
\(462\) 0 0
\(463\) −27.0095 −1.25524 −0.627618 0.778521i \(-0.715970\pi\)
−0.627618 + 0.778521i \(0.715970\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.43637 0.205291 0.102645 0.994718i \(-0.467269\pi\)
0.102645 + 0.994718i \(0.467269\pi\)
\(468\) 0 0
\(469\) 52.4589 2.42233
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.86146 0.223530
\(474\) 0 0
\(475\) 0.643274 0.0295155
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −34.5957 −1.58072 −0.790358 0.612645i \(-0.790106\pi\)
−0.790358 + 0.612645i \(0.790106\pi\)
\(480\) 0 0
\(481\) 11.1498 0.508388
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.72292 0.350680
\(486\) 0 0
\(487\) 0.576727 0.0261340 0.0130670 0.999915i \(-0.495841\pi\)
0.0130670 + 0.999915i \(0.495841\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −40.4589 −1.82589 −0.912943 0.408086i \(-0.866196\pi\)
−0.912943 + 0.408086i \(0.866196\pi\)
\(492\) 0 0
\(493\) −4.43637 −0.199804
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.7229 −0.974406
\(498\) 0 0
\(499\) 17.4269 0.780135 0.390068 0.920786i \(-0.372452\pi\)
0.390068 + 0.920786i \(0.372452\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.21819 0.366431 0.183215 0.983073i \(-0.441349\pi\)
0.183215 + 0.983073i \(0.441349\pi\)
\(504\) 0 0
\(505\) 14.4364 0.642410
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −29.5386 −1.30928 −0.654638 0.755943i \(-0.727179\pi\)
−0.654638 + 0.755943i \(0.727179\pi\)
\(510\) 0 0
\(511\) −44.9429 −1.98816
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.8727 −0.743502
\(516\) 0 0
\(517\) 4.64327 0.204211
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.3793 −0.586158 −0.293079 0.956088i \(-0.594680\pi\)
−0.293079 + 0.956088i \(0.594680\pi\)
\(522\) 0 0
\(523\) −11.9887 −0.524230 −0.262115 0.965037i \(-0.584420\pi\)
−0.262115 + 0.965037i \(0.584420\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00947 −0.131095
\(528\) 0 0
\(529\) −22.5862 −0.982009
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.1498 −0.482953
\(534\) 0 0
\(535\) 2.49526 0.107880
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.7931 −0.464892
\(540\) 0 0
\(541\) −8.50655 −0.365725 −0.182863 0.983138i \(-0.558536\pi\)
−0.182863 + 0.983138i \(0.558536\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.20690 −0.0945333
\(546\) 0 0
\(547\) 33.0244 1.41202 0.706010 0.708201i \(-0.250493\pi\)
0.706010 + 0.708201i \(0.250493\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.28655 −0.0548088
\(552\) 0 0
\(553\) −30.1593 −1.28250
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.0909 −0.978394 −0.489197 0.872173i \(-0.662710\pi\)
−0.489197 + 0.872173i \(0.662710\pi\)
\(558\) 0 0
\(559\) −27.1022 −1.14630
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.3680 1.82774 0.913872 0.406003i \(-0.133078\pi\)
0.913872 + 0.406003i \(0.133078\pi\)
\(564\) 0 0
\(565\) 17.7931 0.748561
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.30912 −0.306414 −0.153207 0.988194i \(-0.548960\pi\)
−0.153207 + 0.988194i \(0.548960\pi\)
\(570\) 0 0
\(571\) −1.22000 −0.0510555 −0.0255277 0.999674i \(-0.508127\pi\)
−0.0255277 + 0.999674i \(0.508127\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.643274 0.0268264
\(576\) 0 0
\(577\) −37.1498 −1.54657 −0.773284 0.634060i \(-0.781387\pi\)
−0.773284 + 0.634060i \(0.781387\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 58.8062 2.43969
\(582\) 0 0
\(583\) −6.43637 −0.266567
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.4684 1.62904 0.814518 0.580138i \(-0.197002\pi\)
0.814518 + 0.580138i \(0.197002\pi\)
\(588\) 0 0
\(589\) −0.872747 −0.0359609
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −40.5178 −1.66387 −0.831934 0.554875i \(-0.812766\pi\)
−0.831934 + 0.554875i \(0.812766\pi\)
\(594\) 0 0
\(595\) 9.35673 0.383588
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.5066 1.08303 0.541514 0.840692i \(-0.317851\pi\)
0.541514 + 0.840692i \(0.317851\pi\)
\(600\) 0 0
\(601\) 5.00947 0.204341 0.102170 0.994767i \(-0.467421\pi\)
0.102170 + 0.994767i \(0.467421\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −16.3585 −0.663973 −0.331986 0.943284i \(-0.607719\pi\)
−0.331986 + 0.943284i \(0.607719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.8858 −1.04723
\(612\) 0 0
\(613\) 38.8840 1.57051 0.785256 0.619172i \(-0.212532\pi\)
0.785256 + 0.619172i \(0.212532\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.2200 0.612734 0.306367 0.951913i \(-0.400886\pi\)
0.306367 + 0.951913i \(0.400886\pi\)
\(618\) 0 0
\(619\) −11.5160 −0.462868 −0.231434 0.972851i \(-0.574342\pi\)
−0.231434 + 0.972851i \(0.574342\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 52.1629 2.08986
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.43637 0.176890
\(630\) 0 0
\(631\) 10.5731 0.420908 0.210454 0.977604i \(-0.432506\pi\)
0.210454 + 0.977604i \(0.432506\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.9316 0.433809
\(636\) 0 0
\(637\) 60.1706 2.38405
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.8062 1.21677 0.608386 0.793641i \(-0.291817\pi\)
0.608386 + 0.793641i \(0.291817\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −44.2520 −1.73973 −0.869864 0.493292i \(-0.835793\pi\)
−0.869864 + 0.493292i \(0.835793\pi\)
\(648\) 0 0
\(649\) 1.35673 0.0532561
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.57673 0.100835 0.0504176 0.998728i \(-0.483945\pi\)
0.0504176 + 0.998728i \(0.483945\pi\)
\(654\) 0 0
\(655\) 7.14982 0.279367
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31.5862 1.23042 0.615212 0.788362i \(-0.289070\pi\)
0.615212 + 0.788362i \(0.289070\pi\)
\(660\) 0 0
\(661\) 10.8727 0.422901 0.211450 0.977389i \(-0.432181\pi\)
0.211450 + 0.977389i \(0.432181\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.71345 0.105223
\(666\) 0 0
\(667\) −1.28655 −0.0498154
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.0701770 0.00270915
\(672\) 0 0
\(673\) −19.6451 −0.757263 −0.378631 0.925548i \(-0.623605\pi\)
−0.378631 + 0.925548i \(0.623605\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.2502 1.43164 0.715821 0.698284i \(-0.246053\pi\)
0.715821 + 0.698284i \(0.246053\pi\)
\(678\) 0 0
\(679\) 32.5767 1.25018
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.8633 0.989631 0.494815 0.868998i \(-0.335236\pi\)
0.494815 + 0.868998i \(0.335236\pi\)
\(684\) 0 0
\(685\) 13.7931 0.527007
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35.8822 1.36700
\(690\) 0 0
\(691\) 2.29965 0.0874828 0.0437414 0.999043i \(-0.486072\pi\)
0.0437414 + 0.999043i \(0.486072\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.07965 −0.344411
\(696\) 0 0
\(697\) −4.43637 −0.168040
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.159296 −0.00601651 −0.00300825 0.999995i \(-0.500958\pi\)
−0.00300825 + 0.999995i \(0.500958\pi\)
\(702\) 0 0
\(703\) 1.28655 0.0485231
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 60.8953 2.29020
\(708\) 0 0
\(709\) −38.8251 −1.45811 −0.729054 0.684456i \(-0.760040\pi\)
−0.729054 + 0.684456i \(0.760040\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.872747 −0.0326846
\(714\) 0 0
\(715\) 5.57491 0.208490
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.2520 −1.05362 −0.526812 0.849982i \(-0.676613\pi\)
−0.526812 + 0.849982i \(0.676613\pi\)
\(720\) 0 0
\(721\) −71.1724 −2.65060
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) −19.7266 −0.731617 −0.365809 0.930690i \(-0.619208\pi\)
−0.365809 + 0.930690i \(0.619208\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.7836 −0.398847
\(732\) 0 0
\(733\) −36.0302 −1.33081 −0.665403 0.746484i \(-0.731740\pi\)
−0.665403 + 0.746484i \(0.731740\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.4364 0.458100
\(738\) 0 0
\(739\) −5.22000 −0.192021 −0.0960104 0.995380i \(-0.530608\pi\)
−0.0960104 + 0.995380i \(0.530608\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.0684 1.21316 0.606580 0.795022i \(-0.292541\pi\)
0.606580 + 0.795022i \(0.292541\pi\)
\(744\) 0 0
\(745\) 17.1498 0.628321
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5255 0.384593
\(750\) 0 0
\(751\) −7.12725 −0.260077 −0.130039 0.991509i \(-0.541510\pi\)
−0.130039 + 0.991509i \(0.541510\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.43637 −0.161456
\(756\) 0 0
\(757\) 35.3091 1.28333 0.641666 0.766984i \(-0.278244\pi\)
0.641666 + 0.766984i \(0.278244\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.1688 1.27487 0.637433 0.770505i \(-0.279996\pi\)
0.637433 + 0.770505i \(0.279996\pi\)
\(762\) 0 0
\(763\) −9.30912 −0.337013
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.56363 −0.273107
\(768\) 0 0
\(769\) 18.9905 0.684816 0.342408 0.939551i \(-0.388757\pi\)
0.342408 + 0.939551i \(0.388757\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −51.4495 −1.85051 −0.925254 0.379347i \(-0.876149\pi\)
−0.925254 + 0.379347i \(0.876149\pi\)
\(774\) 0 0
\(775\) −1.35673 −0.0487350
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.28655 −0.0460954
\(780\) 0 0
\(781\) −5.14982 −0.184275
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.0226 0.786019
\(786\) 0 0
\(787\) −9.41562 −0.335630 −0.167815 0.985818i \(-0.553671\pi\)
−0.167815 + 0.985818i \(0.553671\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 75.0546 2.66863
\(792\) 0 0
\(793\) −0.391230 −0.0138930
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 53.4458 1.89315 0.946574 0.322485i \(-0.104518\pi\)
0.946574 + 0.322485i \(0.104518\pi\)
\(798\) 0 0
\(799\) −10.2996 −0.364375
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.6546 −0.375991
\(804\) 0 0
\(805\) 2.71345 0.0956366
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.14619 −0.110614 −0.0553072 0.998469i \(-0.517614\pi\)
−0.0553072 + 0.998469i \(0.517614\pi\)
\(810\) 0 0
\(811\) −26.8251 −0.941958 −0.470979 0.882144i \(-0.656099\pi\)
−0.470979 + 0.882144i \(0.656099\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.28655 0.325294
\(816\) 0 0
\(817\) −3.12725 −0.109409
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.8596 0.623306 0.311653 0.950196i \(-0.399117\pi\)
0.311653 + 0.950196i \(0.399117\pi\)
\(822\) 0 0
\(823\) −21.2865 −0.742002 −0.371001 0.928632i \(-0.620985\pi\)
−0.371001 + 0.928632i \(0.620985\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.3775 −0.499954 −0.249977 0.968252i \(-0.580423\pi\)
−0.249977 + 0.968252i \(0.580423\pi\)
\(828\) 0 0
\(829\) 29.0796 1.00998 0.504989 0.863126i \(-0.331497\pi\)
0.504989 + 0.863126i \(0.331497\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.9411 0.829510
\(834\) 0 0
\(835\) 25.0909 0.868308
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.5957 0.849137 0.424568 0.905396i \(-0.360426\pi\)
0.424568 + 0.905396i \(0.360426\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −18.0796 −0.621959
\(846\) 0 0
\(847\) −4.21819 −0.144939
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.28655 0.0441023
\(852\) 0 0
\(853\) 14.5880 0.499484 0.249742 0.968312i \(-0.419654\pi\)
0.249742 + 0.968312i \(0.419654\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40.1040 −1.36993 −0.684964 0.728577i \(-0.740182\pi\)
−0.684964 + 0.728577i \(0.740182\pi\)
\(858\) 0 0
\(859\) 29.8157 1.01730 0.508649 0.860974i \(-0.330145\pi\)
0.508649 + 0.860974i \(0.330145\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.5066 0.357647 0.178824 0.983881i \(-0.442771\pi\)
0.178824 + 0.983881i \(0.442771\pi\)
\(864\) 0 0
\(865\) 3.06836 0.104327
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.14982 −0.242541
\(870\) 0 0
\(871\) −69.3317 −2.34921
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.21819 0.142601
\(876\) 0 0
\(877\) −18.4477 −0.622933 −0.311467 0.950257i \(-0.600820\pi\)
−0.311467 + 0.950257i \(0.600820\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.4589 −0.554516 −0.277258 0.960796i \(-0.589426\pi\)
−0.277258 + 0.960796i \(0.589426\pi\)
\(882\) 0 0
\(883\) 36.0451 1.21302 0.606508 0.795078i \(-0.292570\pi\)
0.606508 + 0.795078i \(0.292570\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.24076 −0.276698 −0.138349 0.990384i \(-0.544179\pi\)
−0.138349 + 0.990384i \(0.544179\pi\)
\(888\) 0 0
\(889\) 46.1117 1.54654
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.98690 −0.0999528
\(894\) 0 0
\(895\) −12.8727 −0.430288
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.71345 0.0904987
\(900\) 0 0
\(901\) 14.2771 0.475638
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.50655 −0.216285
\(906\) 0 0
\(907\) 3.14982 0.104588 0.0522941 0.998632i \(-0.483347\pi\)
0.0522941 + 0.998632i \(0.483347\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −17.6338 −0.584234 −0.292117 0.956383i \(-0.594360\pi\)
−0.292117 + 0.956383i \(0.594360\pi\)
\(912\) 0 0
\(913\) 13.9411 0.461383
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.1593 0.995948
\(918\) 0 0
\(919\) 5.70035 0.188037 0.0940186 0.995570i \(-0.470029\pi\)
0.0940186 + 0.995570i \(0.470029\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.7098 0.944995
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 16.1404 0.529548 0.264774 0.964311i \(-0.414703\pi\)
0.264774 + 0.964311i \(0.414703\pi\)
\(930\) 0 0
\(931\) 6.94292 0.227545
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.21819 0.0725425
\(936\) 0 0
\(937\) −53.6640 −1.75313 −0.876564 0.481286i \(-0.840170\pi\)
−0.876564 + 0.481286i \(0.840170\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.2771 0.400221 0.200111 0.979773i \(-0.435870\pi\)
0.200111 + 0.979773i \(0.435870\pi\)
\(942\) 0 0
\(943\) −1.28655 −0.0418958
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.3091 1.08240 0.541200 0.840894i \(-0.317970\pi\)
0.541200 + 0.840894i \(0.317970\pi\)
\(948\) 0 0
\(949\) 59.3982 1.92815
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.0815 0.520930 0.260465 0.965483i \(-0.416124\pi\)
0.260465 + 0.965483i \(0.416124\pi\)
\(954\) 0 0
\(955\) 19.7931 0.640490
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 58.1819 1.87879
\(960\) 0 0
\(961\) −29.1593 −0.940622
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.9411 0.641927
\(966\) 0 0
\(967\) 44.2408 1.42269 0.711343 0.702845i \(-0.248087\pi\)
0.711343 + 0.702845i \(0.248087\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16.7324 −0.536968 −0.268484 0.963284i \(-0.586523\pi\)
−0.268484 + 0.963284i \(0.586523\pi\)
\(972\) 0 0
\(973\) −38.2996 −1.22783
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.66585 −0.213259 −0.106630 0.994299i \(-0.534006\pi\)
−0.106630 + 0.994299i \(0.534006\pi\)
\(978\) 0 0
\(979\) 12.3662 0.395225
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.3662 0.713371 0.356685 0.934225i \(-0.383907\pi\)
0.356685 + 0.934225i \(0.383907\pi\)
\(984\) 0 0
\(985\) −3.64509 −0.116142
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.12725 −0.0994409
\(990\) 0 0
\(991\) −18.0891 −0.574620 −0.287310 0.957838i \(-0.592761\pi\)
−0.287310 + 0.957838i \(0.592761\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.8727 −0.534902
\(996\) 0 0
\(997\) 5.55234 0.175844 0.0879222 0.996127i \(-0.471977\pi\)
0.0879222 + 0.996127i \(0.471977\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.a.bg.1.1 3
3.2 odd 2 3960.2.a.bh.1.1 yes 3
4.3 odd 2 7920.2.a.ck.1.3 3
12.11 even 2 7920.2.a.cl.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.2.a.bg.1.1 3 1.1 even 1 trivial
3960.2.a.bh.1.1 yes 3 3.2 odd 2
7920.2.a.ck.1.3 3 4.3 odd 2
7920.2.a.cl.1.3 3 12.11 even 2