Properties

Label 3960.2.d.j.3169.8
Level $3960$
Weight $2$
Character 3960.3169
Analytic conductor $31.621$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(3169,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.3169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 226x^{10} + 1052x^{8} + 2497x^{6} + 2788x^{4} + 1156x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.8
Root \(-2.21557i\) of defining polynomial
Character \(\chi\) \(=\) 3960.3169
Dual form 3960.2.d.j.3169.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.101079 + 2.23378i) q^{5} -3.61424i q^{7} +1.00000 q^{11} -0.816900i q^{13} +1.81640i q^{17} -0.723148 q^{19} +4.63330i q^{23} +(-4.97957 + 0.451576i) q^{25} -0.539435 q^{29} +9.04600 q^{31} +(8.07343 - 0.365324i) q^{35} -9.34550i q^{37} +1.11112 q^{41} +5.63391i q^{43} +2.01967i q^{47} -6.06275 q^{49} +1.29901i q^{53} +(0.101079 + 2.23378i) q^{55} +7.11762 q^{59} +3.61313 q^{61} +(1.82478 - 0.0825713i) q^{65} +2.26541i q^{67} +11.8131 q^{71} -11.3652i q^{73} -3.61424i q^{77} +3.97230 q^{79} -2.50893i q^{83} +(-4.05744 + 0.183600i) q^{85} +6.19771 q^{89} -2.95247 q^{91} +(-0.0730949 - 1.61535i) q^{95} +0.0431733i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{11} - 2 q^{25} - 12 q^{35} + 32 q^{41} - 6 q^{49} + 24 q^{59} + 4 q^{61} + 4 q^{65} - 8 q^{71} - 32 q^{79} + 4 q^{85} - 48 q^{89} + 56 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.101079 + 2.23378i 0.0452038 + 0.998978i
\(6\) 0 0
\(7\) 3.61424i 1.36606i −0.730393 0.683028i \(-0.760663\pi\)
0.730393 0.683028i \(-0.239337\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0.816900i 0.226567i −0.993563 0.113284i \(-0.963863\pi\)
0.993563 0.113284i \(-0.0361369\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.81640i 0.440542i 0.975439 + 0.220271i \(0.0706941\pi\)
−0.975439 + 0.220271i \(0.929306\pi\)
\(18\) 0 0
\(19\) −0.723148 −0.165901 −0.0829507 0.996554i \(-0.526434\pi\)
−0.0829507 + 0.996554i \(0.526434\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.63330i 0.966110i 0.875590 + 0.483055i \(0.160473\pi\)
−0.875590 + 0.483055i \(0.839527\pi\)
\(24\) 0 0
\(25\) −4.97957 + 0.451576i −0.995913 + 0.0903153i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.539435 −0.100171 −0.0500853 0.998745i \(-0.515949\pi\)
−0.0500853 + 0.998745i \(0.515949\pi\)
\(30\) 0 0
\(31\) 9.04600 1.62471 0.812355 0.583164i \(-0.198185\pi\)
0.812355 + 0.583164i \(0.198185\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.07343 0.365324i 1.36466 0.0617510i
\(36\) 0 0
\(37\) 9.34550i 1.53639i −0.640215 0.768196i \(-0.721155\pi\)
0.640215 0.768196i \(-0.278845\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.11112 0.173527 0.0867636 0.996229i \(-0.472348\pi\)
0.0867636 + 0.996229i \(0.472348\pi\)
\(42\) 0 0
\(43\) 5.63391i 0.859164i 0.903028 + 0.429582i \(0.141339\pi\)
−0.903028 + 0.429582i \(0.858661\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.01967i 0.294599i 0.989092 + 0.147300i \(0.0470581\pi\)
−0.989092 + 0.147300i \(0.952942\pi\)
\(48\) 0 0
\(49\) −6.06275 −0.866107
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.29901i 0.178432i 0.996012 + 0.0892160i \(0.0284362\pi\)
−0.996012 + 0.0892160i \(0.971564\pi\)
\(54\) 0 0
\(55\) 0.101079 + 2.23378i 0.0136295 + 0.301203i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.11762 0.926635 0.463317 0.886192i \(-0.346659\pi\)
0.463317 + 0.886192i \(0.346659\pi\)
\(60\) 0 0
\(61\) 3.61313 0.462614 0.231307 0.972881i \(-0.425700\pi\)
0.231307 + 0.972881i \(0.425700\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.82478 0.0825713i 0.226336 0.0102417i
\(66\) 0 0
\(67\) 2.26541i 0.276763i 0.990379 + 0.138382i \(0.0441901\pi\)
−0.990379 + 0.138382i \(0.955810\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8131 1.40195 0.700977 0.713184i \(-0.252748\pi\)
0.700977 + 0.713184i \(0.252748\pi\)
\(72\) 0 0
\(73\) 11.3652i 1.33019i −0.746758 0.665096i \(-0.768391\pi\)
0.746758 0.665096i \(-0.231609\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.61424i 0.411881i
\(78\) 0 0
\(79\) 3.97230 0.446919 0.223459 0.974713i \(-0.428265\pi\)
0.223459 + 0.974713i \(0.428265\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.50893i 0.275391i −0.990475 0.137696i \(-0.956030\pi\)
0.990475 0.137696i \(-0.0439695\pi\)
\(84\) 0 0
\(85\) −4.05744 + 0.183600i −0.440091 + 0.0199142i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.19771 0.656956 0.328478 0.944512i \(-0.393464\pi\)
0.328478 + 0.944512i \(0.393464\pi\)
\(90\) 0 0
\(91\) −2.95247 −0.309503
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0730949 1.61535i −0.00749938 0.165732i
\(96\) 0 0
\(97\) 0.0431733i 0.00438359i 0.999998 + 0.00219179i \(0.000697670\pi\)
−0.999998 + 0.00219179i \(0.999302\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.58142 −0.157357 −0.0786783 0.996900i \(-0.525070\pi\)
−0.0786783 + 0.996900i \(0.525070\pi\)
\(102\) 0 0
\(103\) 3.76535i 0.371011i 0.982643 + 0.185505i \(0.0593922\pi\)
−0.982643 + 0.185505i \(0.940608\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.2756i 1.38007i −0.723774 0.690037i \(-0.757594\pi\)
0.723774 0.690037i \(-0.242406\pi\)
\(108\) 0 0
\(109\) 0.939575 0.0899949 0.0449975 0.998987i \(-0.485672\pi\)
0.0449975 + 0.998987i \(0.485672\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.3723i 1.06982i −0.844909 0.534909i \(-0.820346\pi\)
0.844909 0.534909i \(-0.179654\pi\)
\(114\) 0 0
\(115\) −10.3498 + 0.468329i −0.965122 + 0.0436719i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.56491 0.601804
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.51205 11.0776i −0.135242 0.990813i
\(126\) 0 0
\(127\) 0.916571i 0.0813325i 0.999173 + 0.0406663i \(0.0129480\pi\)
−0.999173 + 0.0406663i \(0.987052\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.03198 0.701757 0.350879 0.936421i \(-0.385883\pi\)
0.350879 + 0.936421i \(0.385883\pi\)
\(132\) 0 0
\(133\) 2.61363i 0.226631i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0807i 0.861252i 0.902530 + 0.430626i \(0.141707\pi\)
−0.902530 + 0.430626i \(0.858293\pi\)
\(138\) 0 0
\(139\) −2.52945 −0.214545 −0.107273 0.994230i \(-0.534212\pi\)
−0.107273 + 0.994230i \(0.534212\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.816900i 0.0683126i
\(144\) 0 0
\(145\) −0.0545255 1.20498i −0.00452810 0.100068i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.6623 1.11926 0.559629 0.828743i \(-0.310944\pi\)
0.559629 + 0.828743i \(0.310944\pi\)
\(150\) 0 0
\(151\) 10.8671 0.884351 0.442176 0.896928i \(-0.354207\pi\)
0.442176 + 0.896928i \(0.354207\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.914359 + 20.2068i 0.0734431 + 1.62305i
\(156\) 0 0
\(157\) 14.8226i 1.18298i 0.806314 + 0.591488i \(0.201459\pi\)
−0.806314 + 0.591488i \(0.798541\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.7459 1.31976
\(162\) 0 0
\(163\) 14.4699i 1.13337i 0.823935 + 0.566685i \(0.191774\pi\)
−0.823935 + 0.566685i \(0.808226\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.9669i 1.15817i −0.815266 0.579087i \(-0.803409\pi\)
0.815266 0.579087i \(-0.196591\pi\)
\(168\) 0 0
\(169\) 12.3327 0.948667
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.91447i 0.525698i 0.964837 + 0.262849i \(0.0846620\pi\)
−0.964837 + 0.262849i \(0.915338\pi\)
\(174\) 0 0
\(175\) 1.63211 + 17.9974i 0.123376 + 1.36047i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.4553 1.15519 0.577593 0.816325i \(-0.303992\pi\)
0.577593 + 0.816325i \(0.303992\pi\)
\(180\) 0 0
\(181\) 1.59528 0.118576 0.0592881 0.998241i \(-0.481117\pi\)
0.0592881 + 0.998241i \(0.481117\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.8758 0.944633i 1.53482 0.0694508i
\(186\) 0 0
\(187\) 1.81640i 0.132828i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.39655 0.679910 0.339955 0.940442i \(-0.389588\pi\)
0.339955 + 0.940442i \(0.389588\pi\)
\(192\) 0 0
\(193\) 4.50410i 0.324212i −0.986773 0.162106i \(-0.948171\pi\)
0.986773 0.162106i \(-0.0518287\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.24472i 0.373671i 0.982391 + 0.186835i \(0.0598231\pi\)
−0.982391 + 0.186835i \(0.940177\pi\)
\(198\) 0 0
\(199\) −8.78674 −0.622875 −0.311438 0.950267i \(-0.600811\pi\)
−0.311438 + 0.950267i \(0.600811\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.94965i 0.136839i
\(204\) 0 0
\(205\) 0.112310 + 2.48199i 0.00784410 + 0.173350i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.723148 −0.0500212
\(210\) 0 0
\(211\) 1.39770 0.0962218 0.0481109 0.998842i \(-0.484680\pi\)
0.0481109 + 0.998842i \(0.484680\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.5849 + 0.569469i −0.858285 + 0.0388375i
\(216\) 0 0
\(217\) 32.6944i 2.21944i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.48382 0.0998123
\(222\) 0 0
\(223\) 28.6609i 1.91928i 0.281236 + 0.959639i \(0.409256\pi\)
−0.281236 + 0.959639i \(0.590744\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.45142i 0.494568i 0.968943 + 0.247284i \(0.0795381\pi\)
−0.968943 + 0.247284i \(0.920462\pi\)
\(228\) 0 0
\(229\) −16.1289 −1.06583 −0.532913 0.846170i \(-0.678903\pi\)
−0.532913 + 0.846170i \(0.678903\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.5649i 1.01969i −0.860266 0.509846i \(-0.829703\pi\)
0.860266 0.509846i \(-0.170297\pi\)
\(234\) 0 0
\(235\) −4.51150 + 0.204146i −0.294298 + 0.0133170i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.5692 1.45988 0.729939 0.683513i \(-0.239549\pi\)
0.729939 + 0.683513i \(0.239549\pi\)
\(240\) 0 0
\(241\) 21.1219 1.36058 0.680289 0.732944i \(-0.261854\pi\)
0.680289 + 0.732944i \(0.261854\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.612816 13.5429i −0.0391514 0.865222i
\(246\) 0 0
\(247\) 0.590739i 0.0375878i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.5841 −1.55173 −0.775866 0.630898i \(-0.782687\pi\)
−0.775866 + 0.630898i \(0.782687\pi\)
\(252\) 0 0
\(253\) 4.63330i 0.291293i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.0484i 1.25059i 0.780390 + 0.625293i \(0.215020\pi\)
−0.780390 + 0.625293i \(0.784980\pi\)
\(258\) 0 0
\(259\) −33.7769 −2.09880
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.4128i 1.44369i 0.692053 + 0.721846i \(0.256706\pi\)
−0.692053 + 0.721846i \(0.743294\pi\)
\(264\) 0 0
\(265\) −2.90169 + 0.131302i −0.178250 + 0.00806582i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.2146 −1.04960 −0.524798 0.851227i \(-0.675859\pi\)
−0.524798 + 0.851227i \(0.675859\pi\)
\(270\) 0 0
\(271\) 6.86909 0.417268 0.208634 0.977994i \(-0.433098\pi\)
0.208634 + 0.977994i \(0.433098\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.97957 + 0.451576i −0.300279 + 0.0272311i
\(276\) 0 0
\(277\) 27.3132i 1.64109i −0.571581 0.820546i \(-0.693670\pi\)
0.571581 0.820546i \(-0.306330\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 27.1841 1.62167 0.810835 0.585275i \(-0.199013\pi\)
0.810835 + 0.585275i \(0.199013\pi\)
\(282\) 0 0
\(283\) 12.0909i 0.718728i −0.933197 0.359364i \(-0.882994\pi\)
0.933197 0.359364i \(-0.117006\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.01585i 0.237048i
\(288\) 0 0
\(289\) 13.7007 0.805923
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.95136i 0.406103i 0.979168 + 0.203051i \(0.0650859\pi\)
−0.979168 + 0.203051i \(0.934914\pi\)
\(294\) 0 0
\(295\) 0.719441 + 15.8992i 0.0418875 + 0.925688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.78494 0.218889
\(300\) 0 0
\(301\) 20.3623 1.17366
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.365211 + 8.07095i 0.0209119 + 0.462141i
\(306\) 0 0
\(307\) 6.07977i 0.346991i 0.984835 + 0.173495i \(0.0555062\pi\)
−0.984835 + 0.173495i \(0.944494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.8406 0.784829 0.392414 0.919789i \(-0.371640\pi\)
0.392414 + 0.919789i \(0.371640\pi\)
\(312\) 0 0
\(313\) 11.9924i 0.677851i −0.940813 0.338926i \(-0.889936\pi\)
0.940813 0.338926i \(-0.110064\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 27.1872i 1.52698i 0.645817 + 0.763492i \(0.276517\pi\)
−0.645817 + 0.763492i \(0.723483\pi\)
\(318\) 0 0
\(319\) −0.539435 −0.0302026
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.31353i 0.0730865i
\(324\) 0 0
\(325\) 0.368893 + 4.06781i 0.0204625 + 0.225641i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.29958 0.402439
\(330\) 0 0
\(331\) −19.2623 −1.05875 −0.529375 0.848388i \(-0.677573\pi\)
−0.529375 + 0.848388i \(0.677573\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.06043 + 0.228985i −0.276481 + 0.0125108i
\(336\) 0 0
\(337\) 34.6352i 1.88670i −0.331799 0.943350i \(-0.607656\pi\)
0.331799 0.943350i \(-0.392344\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.04600 0.489868
\(342\) 0 0
\(343\) 3.38745i 0.182905i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.7765i 0.739563i −0.929119 0.369781i \(-0.879433\pi\)
0.929119 0.369781i \(-0.120567\pi\)
\(348\) 0 0
\(349\) 25.0456 1.34066 0.670329 0.742064i \(-0.266153\pi\)
0.670329 + 0.742064i \(0.266153\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.6377i 0.991985i 0.868327 + 0.495992i \(0.165196\pi\)
−0.868327 + 0.495992i \(0.834804\pi\)
\(354\) 0 0
\(355\) 1.19405 + 26.3878i 0.0633737 + 1.40052i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.81027 0.201098 0.100549 0.994932i \(-0.467940\pi\)
0.100549 + 0.994932i \(0.467940\pi\)
\(360\) 0 0
\(361\) −18.4771 −0.972477
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.3873 1.14878i 1.32883 0.0601298i
\(366\) 0 0
\(367\) 17.8577i 0.932166i −0.884741 0.466083i \(-0.845665\pi\)
0.884741 0.466083i \(-0.154335\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.69492 0.243748
\(372\) 0 0
\(373\) 18.4880i 0.957274i 0.878013 + 0.478637i \(0.158869\pi\)
−0.878013 + 0.478637i \(0.841131\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.440665i 0.0226954i
\(378\) 0 0
\(379\) 12.1809 0.625689 0.312845 0.949804i \(-0.398718\pi\)
0.312845 + 0.949804i \(0.398718\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.81925i 0.501740i 0.968021 + 0.250870i \(0.0807167\pi\)
−0.968021 + 0.250870i \(0.919283\pi\)
\(384\) 0 0
\(385\) 8.07343 0.365324i 0.411460 0.0186186i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −25.9642 −1.31644 −0.658220 0.752826i \(-0.728690\pi\)
−0.658220 + 0.752826i \(0.728690\pi\)
\(390\) 0 0
\(391\) −8.41593 −0.425612
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.401516 + 8.87326i 0.0202024 + 0.446462i
\(396\) 0 0
\(397\) 21.7476i 1.09148i −0.837954 0.545740i \(-0.816249\pi\)
0.837954 0.545740i \(-0.183751\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.2397 0.761034 0.380517 0.924774i \(-0.375746\pi\)
0.380517 + 0.924774i \(0.375746\pi\)
\(402\) 0 0
\(403\) 7.38967i 0.368106i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.34550i 0.463239i
\(408\) 0 0
\(409\) −32.9324 −1.62840 −0.814201 0.580583i \(-0.802825\pi\)
−0.814201 + 0.580583i \(0.802825\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.7248i 1.26583i
\(414\) 0 0
\(415\) 5.60441 0.253600i 0.275110 0.0124487i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.11582 0.152218 0.0761090 0.997100i \(-0.475750\pi\)
0.0761090 + 0.997100i \(0.475750\pi\)
\(420\) 0 0
\(421\) −29.6279 −1.44398 −0.721988 0.691905i \(-0.756772\pi\)
−0.721988 + 0.691905i \(0.756772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.820243 9.04489i −0.0397877 0.438741i
\(426\) 0 0
\(427\) 13.0587i 0.631956i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −31.1805 −1.50191 −0.750955 0.660353i \(-0.770407\pi\)
−0.750955 + 0.660353i \(0.770407\pi\)
\(432\) 0 0
\(433\) 14.5723i 0.700299i −0.936694 0.350149i \(-0.886131\pi\)
0.936694 0.350149i \(-0.113869\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.35056i 0.160279i
\(438\) 0 0
\(439\) 36.3330 1.73408 0.867041 0.498238i \(-0.166019\pi\)
0.867041 + 0.498238i \(0.166019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.4100i 1.44482i −0.691462 0.722412i \(-0.743033\pi\)
0.691462 0.722412i \(-0.256967\pi\)
\(444\) 0 0
\(445\) 0.626458 + 13.8443i 0.0296969 + 0.656285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.2169 0.576549 0.288275 0.957548i \(-0.406918\pi\)
0.288275 + 0.957548i \(0.406918\pi\)
\(450\) 0 0
\(451\) 1.11112 0.0523204
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.298433 6.59518i −0.0139907 0.309187i
\(456\) 0 0
\(457\) 20.3685i 0.952798i −0.879229 0.476399i \(-0.841942\pi\)
0.879229 0.476399i \(-0.158058\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −22.6336 −1.05415 −0.527077 0.849818i \(-0.676712\pi\)
−0.527077 + 0.849818i \(0.676712\pi\)
\(462\) 0 0
\(463\) 15.0582i 0.699814i 0.936784 + 0.349907i \(0.113787\pi\)
−0.936784 + 0.349907i \(0.886213\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.14202i 0.145395i 0.997354 + 0.0726976i \(0.0231608\pi\)
−0.997354 + 0.0726976i \(0.976839\pi\)
\(468\) 0 0
\(469\) 8.18773 0.378074
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.63391i 0.259048i
\(474\) 0 0
\(475\) 3.60096 0.326556i 0.165223 0.0149834i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −27.0401 −1.23549 −0.617747 0.786377i \(-0.711955\pi\)
−0.617747 + 0.786377i \(0.711955\pi\)
\(480\) 0 0
\(481\) −7.63434 −0.348096
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.0964398 + 0.00436391i −0.00437911 + 0.000198155i
\(486\) 0 0
\(487\) 22.5873i 1.02353i −0.859126 0.511764i \(-0.828992\pi\)
0.859126 0.511764i \(-0.171008\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.0875 −0.996797 −0.498399 0.866948i \(-0.666078\pi\)
−0.498399 + 0.866948i \(0.666078\pi\)
\(492\) 0 0
\(493\) 0.979831i 0.0441294i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.6953i 1.91515i
\(498\) 0 0
\(499\) 22.5568 1.00978 0.504891 0.863183i \(-0.331533\pi\)
0.504891 + 0.863183i \(0.331533\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.76778i 0.301761i 0.988552 + 0.150880i \(0.0482108\pi\)
−0.988552 + 0.150880i \(0.951789\pi\)
\(504\) 0 0
\(505\) −0.159848 3.53254i −0.00711313 0.157196i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.1742 −0.539614 −0.269807 0.962914i \(-0.586960\pi\)
−0.269807 + 0.962914i \(0.586960\pi\)
\(510\) 0 0
\(511\) −41.0764 −1.81711
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.41096 + 0.380597i −0.370631 + 0.0167711i
\(516\) 0 0
\(517\) 2.01967i 0.0888250i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.5005 1.20482 0.602410 0.798187i \(-0.294207\pi\)
0.602410 + 0.798187i \(0.294207\pi\)
\(522\) 0 0
\(523\) 24.4783i 1.07036i 0.844738 + 0.535180i \(0.179756\pi\)
−0.844738 + 0.535180i \(0.820244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.4312i 0.715752i
\(528\) 0 0
\(529\) 1.53253 0.0666317
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.907671i 0.0393156i
\(534\) 0 0
\(535\) 31.8886 1.44296i 1.37866 0.0623846i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.06275 −0.261141
\(540\) 0 0
\(541\) −13.3690 −0.574778 −0.287389 0.957814i \(-0.592787\pi\)
−0.287389 + 0.957814i \(0.592787\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.0949711 + 2.09881i 0.00406812 + 0.0899029i
\(546\) 0 0
\(547\) 22.8525i 0.977103i 0.872535 + 0.488551i \(0.162474\pi\)
−0.872535 + 0.488551i \(0.837526\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.390091 0.0166185
\(552\) 0 0
\(553\) 14.3569i 0.610516i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.5997i 0.533867i 0.963715 + 0.266933i \(0.0860103\pi\)
−0.963715 + 0.266933i \(0.913990\pi\)
\(558\) 0 0
\(559\) 4.60234 0.194658
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.1322i 0.553458i −0.960948 0.276729i \(-0.910750\pi\)
0.960948 0.276729i \(-0.0892504\pi\)
\(564\) 0 0
\(565\) 25.4033 1.14950i 1.06873 0.0483599i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −43.3113 −1.81570 −0.907852 0.419290i \(-0.862279\pi\)
−0.907852 + 0.419290i \(0.862279\pi\)
\(570\) 0 0
\(571\) 31.3488 1.31191 0.655954 0.754801i \(-0.272266\pi\)
0.655954 + 0.754801i \(0.272266\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.09229 23.0718i −0.0872545 0.962162i
\(576\) 0 0
\(577\) 41.4085i 1.72386i −0.507027 0.861930i \(-0.669256\pi\)
0.507027 0.861930i \(-0.330744\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.06789 −0.376199
\(582\) 0 0
\(583\) 1.29901i 0.0537993i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.9686i 0.906742i 0.891322 + 0.453371i \(0.149779\pi\)
−0.891322 + 0.453371i \(0.850221\pi\)
\(588\) 0 0
\(589\) −6.54159 −0.269542
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.5210i 0.637373i −0.947860 0.318686i \(-0.896758\pi\)
0.947860 0.318686i \(-0.103242\pi\)
\(594\) 0 0
\(595\) 0.663574 + 14.6646i 0.0272039 + 0.601189i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.1776 0.661000 0.330500 0.943806i \(-0.392783\pi\)
0.330500 + 0.943806i \(0.392783\pi\)
\(600\) 0 0
\(601\) −20.0214 −0.816688 −0.408344 0.912828i \(-0.633894\pi\)
−0.408344 + 0.912828i \(0.633894\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.101079 + 2.23378i 0.00410944 + 0.0908162i
\(606\) 0 0
\(607\) 10.6411i 0.431911i 0.976403 + 0.215955i \(0.0692865\pi\)
−0.976403 + 0.215955i \(0.930713\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.64987 0.0667465
\(612\) 0 0
\(613\) 20.8149i 0.840706i 0.907361 + 0.420353i \(0.138094\pi\)
−0.907361 + 0.420353i \(0.861906\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.66579i 0.187838i 0.995580 + 0.0939188i \(0.0299394\pi\)
−0.995580 + 0.0939188i \(0.970061\pi\)
\(618\) 0 0
\(619\) −23.9917 −0.964309 −0.482155 0.876086i \(-0.660146\pi\)
−0.482155 + 0.876086i \(0.660146\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.4000i 0.897438i
\(624\) 0 0
\(625\) 24.5922 4.49731i 0.983686 0.179892i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.9752 0.676844
\(630\) 0 0
\(631\) −15.7945 −0.628768 −0.314384 0.949296i \(-0.601798\pi\)
−0.314384 + 0.949296i \(0.601798\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.04742 + 0.0926459i −0.0812494 + 0.00367654i
\(636\) 0 0
\(637\) 4.95266i 0.196232i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −47.9574 −1.89420 −0.947101 0.320935i \(-0.896003\pi\)
−0.947101 + 0.320935i \(0.896003\pi\)
\(642\) 0 0
\(643\) 36.5230i 1.44033i 0.693804 + 0.720164i \(0.255933\pi\)
−0.693804 + 0.720164i \(0.744067\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.8327i 0.936962i −0.883474 0.468481i \(-0.844801\pi\)
0.883474 0.468481i \(-0.155199\pi\)
\(648\) 0 0
\(649\) 7.11762 0.279391
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.5248i 0.685797i −0.939372 0.342899i \(-0.888591\pi\)
0.939372 0.342899i \(-0.111409\pi\)
\(654\) 0 0
\(655\) 0.811863 + 17.9417i 0.0317221 + 0.701040i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.4640 0.680301 0.340150 0.940371i \(-0.389522\pi\)
0.340150 + 0.940371i \(0.389522\pi\)
\(660\) 0 0
\(661\) −28.2391 −1.09837 −0.549186 0.835700i \(-0.685062\pi\)
−0.549186 + 0.835700i \(0.685062\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.83828 + 0.264183i −0.226399 + 0.0102446i
\(666\) 0 0
\(667\) 2.49937i 0.0967759i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.61313 0.139483
\(672\) 0 0
\(673\) 4.71350i 0.181692i −0.995865 0.0908460i \(-0.971043\pi\)
0.995865 0.0908460i \(-0.0289571\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.6515i 1.29333i −0.762774 0.646665i \(-0.776163\pi\)
0.762774 0.646665i \(-0.223837\pi\)
\(678\) 0 0
\(679\) 0.156039 0.00598822
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.162226i 0.00620740i 0.999995 + 0.00310370i \(0.000987940\pi\)
−0.999995 + 0.00310370i \(0.999012\pi\)
\(684\) 0 0
\(685\) −22.5181 + 1.01895i −0.860372 + 0.0389319i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.06116 0.0404269
\(690\) 0 0
\(691\) 14.8444 0.564706 0.282353 0.959311i \(-0.408885\pi\)
0.282353 + 0.959311i \(0.408885\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.255674 5.65025i −0.00969828 0.214326i
\(696\) 0 0
\(697\) 2.01823i 0.0764460i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.8929 −0.751344 −0.375672 0.926753i \(-0.622588\pi\)
−0.375672 + 0.926753i \(0.622588\pi\)
\(702\) 0 0
\(703\) 6.75818i 0.254889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.71562i 0.214958i
\(708\) 0 0
\(709\) −49.2654 −1.85020 −0.925100 0.379723i \(-0.876019\pi\)
−0.925100 + 0.379723i \(0.876019\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 41.9128i 1.56965i
\(714\) 0 0
\(715\) 1.82478 0.0825713i 0.0682428 0.00308799i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13.4245 −0.500651 −0.250326 0.968162i \(-0.580538\pi\)
−0.250326 + 0.968162i \(0.580538\pi\)
\(720\) 0 0
\(721\) 13.6089 0.506821
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.68615 0.243596i 0.0997613 0.00904694i
\(726\) 0 0
\(727\) 3.98768i 0.147895i −0.997262 0.0739475i \(-0.976440\pi\)
0.997262 0.0739475i \(-0.0235597\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.2334 −0.378497
\(732\) 0 0
\(733\) 23.2839i 0.860012i 0.902826 + 0.430006i \(0.141489\pi\)
−0.902826 + 0.430006i \(0.858511\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.26541i 0.0834473i
\(738\) 0 0
\(739\) 47.3733 1.74265 0.871327 0.490703i \(-0.163260\pi\)
0.871327 + 0.490703i \(0.163260\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.4488i 1.55729i 0.627462 + 0.778647i \(0.284094\pi\)
−0.627462 + 0.778647i \(0.715906\pi\)
\(744\) 0 0
\(745\) 1.38097 + 30.5186i 0.0505948 + 1.11811i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −51.5955 −1.88526
\(750\) 0 0
\(751\) −18.1889 −0.663724 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.09843 + 24.2747i 0.0399761 + 0.883447i
\(756\) 0 0
\(757\) 1.11035i 0.0403563i −0.999796 0.0201782i \(-0.993577\pi\)
0.999796 0.0201782i \(-0.00642335\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.8455 −1.33565 −0.667824 0.744319i \(-0.732774\pi\)
−0.667824 + 0.744319i \(0.732774\pi\)
\(762\) 0 0
\(763\) 3.39585i 0.122938i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.81438i 0.209945i
\(768\) 0 0
\(769\) 15.6879 0.565719 0.282859 0.959161i \(-0.408717\pi\)
0.282859 + 0.959161i \(0.408717\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25.4231i 0.914404i 0.889363 + 0.457202i \(0.151148\pi\)
−0.889363 + 0.457202i \(0.848852\pi\)
\(774\) 0 0
\(775\) −45.0451 + 4.08496i −1.61807 + 0.146736i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.803501 −0.0287884
\(780\) 0 0
\(781\) 11.8131 0.422705
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −33.1106 + 1.49826i −1.18177 + 0.0534750i
\(786\) 0 0
\(787\) 36.7797i 1.31105i −0.755172 0.655527i \(-0.772447\pi\)
0.755172 0.655527i \(-0.227553\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −41.1024 −1.46143
\(792\) 0 0
\(793\) 2.95157i 0.104813i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.9039i 0.952987i 0.879178 + 0.476493i \(0.158092\pi\)
−0.879178 + 0.476493i \(0.841908\pi\)
\(798\) 0 0
\(799\) −3.66853 −0.129783
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.3652i 0.401068i
\(804\) 0 0
\(805\) 1.69265 + 37.4066i 0.0596582 + 1.31841i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −37.8033 −1.32909 −0.664547 0.747246i \(-0.731375\pi\)
−0.664547 + 0.747246i \(0.731375\pi\)
\(810\) 0 0
\(811\) 5.87234 0.206206 0.103103 0.994671i \(-0.467123\pi\)
0.103103 + 0.994671i \(0.467123\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −32.3226 + 1.46260i −1.13221 + 0.0512326i
\(816\) 0 0
\(817\) 4.07415i 0.142536i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.6585 −1.48879 −0.744396 0.667739i \(-0.767262\pi\)
−0.744396 + 0.667739i \(0.767262\pi\)
\(822\) 0 0
\(823\) 0.176308i 0.00614570i −0.999995 0.00307285i \(-0.999022\pi\)
0.999995 0.00307285i \(-0.000978120\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.5050i 1.30418i 0.758143 + 0.652088i \(0.226107\pi\)
−0.758143 + 0.652088i \(0.773893\pi\)
\(828\) 0 0
\(829\) 48.4565 1.68296 0.841482 0.540285i \(-0.181683\pi\)
0.841482 + 0.540285i \(0.181683\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.0124i 0.381556i
\(834\) 0 0
\(835\) 33.4328 1.51284i 1.15699 0.0523539i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.6085 1.02220 0.511100 0.859521i \(-0.329238\pi\)
0.511100 + 0.859521i \(0.329238\pi\)
\(840\) 0 0
\(841\) −28.7090 −0.989966
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.24657 + 27.5485i 0.0428834 + 0.947698i
\(846\) 0 0
\(847\) 3.61424i 0.124187i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.3005 1.48432
\(852\) 0 0
\(853\) 15.3196i 0.524534i 0.964995 + 0.262267i \(0.0844701\pi\)
−0.964995 + 0.262267i \(0.915530\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.7644i 0.538502i −0.963070 0.269251i \(-0.913224\pi\)
0.963070 0.269251i \(-0.0867762\pi\)
\(858\) 0 0
\(859\) −30.8230 −1.05167 −0.525834 0.850587i \(-0.676247\pi\)
−0.525834 + 0.850587i \(0.676247\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.5651i 1.04045i 0.854030 + 0.520224i \(0.174152\pi\)
−0.854030 + 0.520224i \(0.825848\pi\)
\(864\) 0 0
\(865\) −15.4454 + 0.698907i −0.525160 + 0.0237635i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.97230 0.134751
\(870\) 0 0
\(871\) 1.85061 0.0627055
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −40.0372 + 5.46492i −1.35350 + 0.184748i
\(876\) 0 0
\(877\) 29.9110i 1.01002i −0.863112 0.505012i \(-0.831488\pi\)
0.863112 0.505012i \(-0.168512\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.0435 1.14695 0.573477 0.819222i \(-0.305594\pi\)
0.573477 + 0.819222i \(0.305594\pi\)
\(882\) 0 0
\(883\) 8.32611i 0.280196i 0.990138 + 0.140098i \(0.0447417\pi\)
−0.990138 + 0.140098i \(0.955258\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.9548i 0.502133i −0.967970 0.251067i \(-0.919219\pi\)
0.967970 0.251067i \(-0.0807813\pi\)
\(888\) 0 0
\(889\) 3.31271 0.111105
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.46052i 0.0488744i
\(894\) 0 0
\(895\) 1.56221 + 34.5238i 0.0522188 + 1.15400i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.87973 −0.162748
\(900\) 0 0
\(901\) −2.35951 −0.0786068
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.161249 + 3.56350i 0.00536010 + 0.118455i
\(906\) 0 0
\(907\) 43.1993i 1.43441i −0.696863 0.717205i \(-0.745421\pi\)
0.696863 0.717205i \(-0.254579\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42.7918 −1.41776 −0.708879 0.705331i \(-0.750799\pi\)
−0.708879 + 0.705331i \(0.750799\pi\)
\(912\) 0 0
\(913\) 2.50893i 0.0830335i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.0295i 0.958639i
\(918\) 0 0
\(919\) −20.7373 −0.684062 −0.342031 0.939689i \(-0.611115\pi\)
−0.342031 + 0.939689i \(0.611115\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.65009i 0.317637i
\(924\) 0 0
\(925\) 4.22021 + 46.5365i 0.138760 + 1.53011i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.7519 −0.779275 −0.389638 0.920968i \(-0.627400\pi\)
−0.389638 + 0.920968i \(0.627400\pi\)
\(930\) 0 0
\(931\) 4.38426 0.143688
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.05744 + 0.183600i −0.132693 + 0.00600435i
\(936\) 0 0
\(937\) 34.1030i 1.11410i −0.830480 0.557048i \(-0.811934\pi\)
0.830480 0.557048i \(-0.188066\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.1514 1.76529 0.882643 0.470044i \(-0.155762\pi\)
0.882643 + 0.470044i \(0.155762\pi\)
\(942\) 0 0
\(943\) 5.14814i 0.167646i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.1491i 1.30467i 0.757931 + 0.652335i \(0.226210\pi\)
−0.757931 + 0.652335i \(0.773790\pi\)
\(948\) 0 0
\(949\) −9.28420 −0.301378
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.6388i 0.668557i 0.942474 + 0.334278i \(0.108493\pi\)
−0.942474 + 0.334278i \(0.891507\pi\)
\(954\) 0 0
\(955\) 0.949792 + 20.9898i 0.0307346 + 0.679215i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.4341 1.17652
\(960\) 0 0
\(961\) 50.8301 1.63968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.0612 0.455269i 0.323881 0.0146556i
\(966\) 0 0
\(967\) 44.9658i 1.44600i −0.690847 0.723001i \(-0.742762\pi\)
0.690847 0.723001i \(-0.257238\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.67273 −0.246230 −0.123115 0.992392i \(-0.539288\pi\)
−0.123115 + 0.992392i \(0.539288\pi\)
\(972\) 0 0
\(973\) 9.14206i 0.293081i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.0672i 0.642007i −0.947078 0.321003i \(-0.895980\pi\)
0.947078 0.321003i \(-0.104020\pi\)
\(978\) 0 0
\(979\) 6.19771 0.198080
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.17776i 0.260830i −0.991460 0.130415i \(-0.958369\pi\)
0.991460 0.130415i \(-0.0416310\pi\)
\(984\) 0 0
\(985\) −11.7156 + 0.530130i −0.373289 + 0.0168914i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −26.1036 −0.830046
\(990\) 0 0
\(991\) −30.2960 −0.962385 −0.481193 0.876615i \(-0.659796\pi\)
−0.481193 + 0.876615i \(0.659796\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.888154 19.6277i −0.0281564 0.622239i
\(996\) 0 0
\(997\) 28.5847i 0.905286i 0.891692 + 0.452643i \(0.149519\pi\)
−0.891692 + 0.452643i \(0.850481\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.d.j.3169.8 yes 14
3.2 odd 2 3960.2.d.i.3169.7 14
5.4 even 2 inner 3960.2.d.j.3169.7 yes 14
15.14 odd 2 3960.2.d.i.3169.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.2.d.i.3169.7 14 3.2 odd 2
3960.2.d.i.3169.8 yes 14 15.14 odd 2
3960.2.d.j.3169.7 yes 14 5.4 even 2 inner
3960.2.d.j.3169.8 yes 14 1.1 even 1 trivial