Properties

Label 3971.2.p
Level 39713971
Weight 22
Character orbit 3971.p
Rep. character χ3971(307,)\chi_{3971}(307,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 19441944
Sturm bound 760760

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3971=11192 3971 = 11 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3971.p (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 209 209
Character field: Q(ζ18)\Q(\zeta_{18})
Sturm bound: 760760

Dimensions

The following table gives the dimensions of various subspaces of M2(3971,[χ])M_{2}(3971, [\chi]).

Total New Old
Modular forms 2400 2136 264
Cusp forms 2160 1944 216
Eisenstein series 240 192 48

Trace form

1944q+6q3+12q4+12q56q9+9q11+18q12+36q15348q20+36q22+12q23+12q25+114q26+36q2745q3360q34+72q36+66q42+63q99+O(q100) 1944 q + 6 q^{3} + 12 q^{4} + 12 q^{5} - 6 q^{9} + 9 q^{11} + 18 q^{12} + 36 q^{15} - 348 q^{20} + 36 q^{22} + 12 q^{23} + 12 q^{25} + 114 q^{26} + 36 q^{27} - 45 q^{33} - 60 q^{34} + 72 q^{36} + 66 q^{42}+ \cdots - 63 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3971,[χ])S_{2}^{\mathrm{new}}(3971, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3971,[χ])S_{2}^{\mathrm{old}}(3971, [\chi]) into lower level spaces

S2old(3971,[χ]) S_{2}^{\mathrm{old}}(3971, [\chi]) \simeq S2new(209,[χ])S_{2}^{\mathrm{new}}(209, [\chi])2^{\oplus 2}