Properties

Label 399.2.bh.d
Level 399399
Weight 22
Character orbit 399.bh
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(94,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.94");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.bh (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+ζ122q3ζ122q4+(ζ1222ζ12+1)q5+ζ123q6+(3ζ1221)q73ζ123q8+(ζ1221)q9++(2ζ1234ζ123)q99+O(q100) q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} - \zeta_{12}^{2} q^{4} + (\zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{5} + \zeta_{12}^{3} q^{6} + (3 \zeta_{12}^{2} - 1) q^{7} - 3 \zeta_{12}^{3} q^{8} + (\zeta_{12}^{2} - 1) q^{9} + \cdots + (2 \zeta_{12}^{3} - 4 \zeta_{12} - 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q32q4+6q5+2q72q94q10+6q11+2q12+2q162q198q21+6q23+4q25+12q264q27+8q28+4q306q33+16q34+12q99+O(q100) 4 q + 2 q^{3} - 2 q^{4} + 6 q^{5} + 2 q^{7} - 2 q^{9} - 4 q^{10} + 6 q^{11} + 2 q^{12} + 2 q^{16} - 2 q^{19} - 8 q^{21} + 6 q^{23} + 4 q^{25} + 12 q^{26} - 4 q^{27} + 8 q^{28} + 4 q^{30} - 6 q^{33} + 16 q^{34}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 1ζ1221 - \zeta_{12}^{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
94.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0.500000 0.866025i −0.500000 + 0.866025i 3.23205 1.86603i 1.00000i 0.500000 2.59808i 3.00000i −0.500000 0.866025i −1.86603 + 3.23205i
94.2 0.866025 0.500000i 0.500000 0.866025i −0.500000 + 0.866025i −0.232051 + 0.133975i 1.00000i 0.500000 2.59808i 3.00000i −0.500000 0.866025i −0.133975 + 0.232051i
208.1 −0.866025 0.500000i 0.500000 + 0.866025i −0.500000 0.866025i 3.23205 + 1.86603i 1.00000i 0.500000 + 2.59808i 3.00000i −0.500000 + 0.866025i −1.86603 3.23205i
208.2 0.866025 + 0.500000i 0.500000 + 0.866025i −0.500000 0.866025i −0.232051 0.133975i 1.00000i 0.500000 + 2.59808i 3.00000i −0.500000 + 0.866025i −0.133975 0.232051i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.bh.d yes 4
7.d odd 6 1 399.2.bh.c 4
19.b odd 2 1 399.2.bh.c 4
133.o even 6 1 inner 399.2.bh.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.bh.c 4 7.d odd 6 1
399.2.bh.c 4 19.b odd 2 1
399.2.bh.d yes 4 1.a even 1 1 trivial
399.2.bh.d yes 4 133.o even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]):

T24T22+1 T_{2}^{4} - T_{2}^{2} + 1 Copy content Toggle raw display
T13212 T_{13}^{2} - 12 Copy content Toggle raw display
T53424T533+224T532768T53+1024 T_{53}^{4} - 24T_{53}^{3} + 224T_{53}^{2} - 768T_{53} + 1024 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
77 (T2T+7)2 (T^{2} - T + 7)^{2} Copy content Toggle raw display
1111 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
1313 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
1717 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
1919 (T2+T+19)2 (T^{2} + T + 19)^{2} Copy content Toggle raw display
2323 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
2929 T4+104T2+1936 T^{4} + 104T^{2} + 1936 Copy content Toggle raw display
3131 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
3737 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2+6T39)2 (T^{2} + 6 T - 39)^{2} Copy content Toggle raw display
4747 T418T3++529 T^{4} - 18 T^{3} + \cdots + 529 Copy content Toggle raw display
5353 T424T3++1024 T^{4} - 24 T^{3} + \cdots + 1024 Copy content Toggle raw display
5959 T4+108T2+11664 T^{4} + 108 T^{2} + 11664 Copy content Toggle raw display
6161 T4+6T3++19881 T^{4} + 6 T^{3} + \cdots + 19881 Copy content Toggle raw display
6767 T4144T2+20736 T^{4} - 144 T^{2} + 20736 Copy content Toggle raw display
7171 T4+224T2+256 T^{4} + 224T^{2} + 256 Copy content Toggle raw display
7373 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
7979 (T212T+48)2 (T^{2} - 12 T + 48)^{2} Copy content Toggle raw display
8383 T4+158T2+5041 T^{4} + 158T^{2} + 5041 Copy content Toggle raw display
8989 T424T3++17424 T^{4} - 24 T^{3} + \cdots + 17424 Copy content Toggle raw display
9797 (T2+8T92)2 (T^{2} + 8 T - 92)^{2} Copy content Toggle raw display
show more
show less