Properties

Label 399.2.bh.d
Level $399$
Weight $2$
Character orbit 399.bh
Analytic conductor $3.186$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(94,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.94");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} - \zeta_{12}^{2} q^{4} + (\zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{5} + \zeta_{12}^{3} q^{6} + (3 \zeta_{12}^{2} - 1) q^{7} - 3 \zeta_{12}^{3} q^{8} + (\zeta_{12}^{2} - 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} - \zeta_{12}^{2} q^{4} + (\zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{5} + \zeta_{12}^{3} q^{6} + (3 \zeta_{12}^{2} - 1) q^{7} - 3 \zeta_{12}^{3} q^{8} + (\zeta_{12}^{2} - 1) q^{9} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} + \zeta_{12}) q^{10} + (2 \zeta_{12}^{3} + \cdots + 2 \zeta_{12}) q^{11} + \cdots + (2 \zeta_{12}^{3} - 4 \zeta_{12} - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{4} + 6 q^{5} + 2 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} - 2 q^{4} + 6 q^{5} + 2 q^{7} - 2 q^{9} - 4 q^{10} + 6 q^{11} + 2 q^{12} + 2 q^{16} - 2 q^{19} - 8 q^{21} + 6 q^{23} + 4 q^{25} + 12 q^{26} - 4 q^{27} + 8 q^{28} + 4 q^{30} - 6 q^{33} + 16 q^{34} - 6 q^{35} + 4 q^{36} - 12 q^{40} - 12 q^{43} + 6 q^{44} - 6 q^{45} - 12 q^{46} + 18 q^{47} + 4 q^{48} - 26 q^{49} + 24 q^{53} - 16 q^{57} + 4 q^{58} + 6 q^{60} - 6 q^{61} - 10 q^{63} - 28 q^{64} - 24 q^{65} - 12 q^{66} + 12 q^{69} + 16 q^{70} + 6 q^{73} - 12 q^{74} - 4 q^{75} + 16 q^{76} - 24 q^{77} + 24 q^{79} + 6 q^{80} - 2 q^{81} + 10 q^{84} - 32 q^{85} - 24 q^{86} + 24 q^{87} + 36 q^{88} + 24 q^{89} + 8 q^{90} - 12 q^{92} + 4 q^{94} - 18 q^{95} - 16 q^{97} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0.500000 0.866025i −0.500000 + 0.866025i 3.23205 1.86603i 1.00000i 0.500000 2.59808i 3.00000i −0.500000 0.866025i −1.86603 + 3.23205i
94.2 0.866025 0.500000i 0.500000 0.866025i −0.500000 + 0.866025i −0.232051 + 0.133975i 1.00000i 0.500000 2.59808i 3.00000i −0.500000 0.866025i −0.133975 + 0.232051i
208.1 −0.866025 0.500000i 0.500000 + 0.866025i −0.500000 0.866025i 3.23205 + 1.86603i 1.00000i 0.500000 + 2.59808i 3.00000i −0.500000 + 0.866025i −1.86603 3.23205i
208.2 0.866025 + 0.500000i 0.500000 + 0.866025i −0.500000 0.866025i −0.232051 0.133975i 1.00000i 0.500000 + 2.59808i 3.00000i −0.500000 + 0.866025i −0.133975 0.232051i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.bh.d yes 4
7.d odd 6 1 399.2.bh.c 4
19.b odd 2 1 399.2.bh.c 4
133.o even 6 1 inner 399.2.bh.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.bh.c 4 7.d odd 6 1
399.2.bh.c 4 19.b odd 2 1
399.2.bh.d yes 4 1.a even 1 1 trivial
399.2.bh.d yes 4 133.o even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\):

\( T_{2}^{4} - T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display
\( T_{53}^{4} - 24T_{53}^{3} + 224T_{53}^{2} - 768T_{53} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{4} + 104T^{2} + 1936 \) Copy content Toggle raw display
$31$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$37$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T - 39)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 18 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$53$ \( T^{4} - 24 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$59$ \( T^{4} + 108 T^{2} + 11664 \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots + 19881 \) Copy content Toggle raw display
$67$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$71$ \( T^{4} + 224T^{2} + 256 \) Copy content Toggle raw display
$73$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 158T^{2} + 5041 \) Copy content Toggle raw display
$89$ \( T^{4} - 24 T^{3} + \cdots + 17424 \) Copy content Toggle raw display
$97$ \( (T^{2} + 8 T - 92)^{2} \) Copy content Toggle raw display
show more
show less