Properties

Label 399.2.cb.a
Level $399$
Weight $2$
Character orbit 399.cb
Analytic conductor $3.186$
Analytic rank $0$
Dimension $6$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(5,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 15, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.cb (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{18}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{18}^{4} - \zeta_{18}) q^{3} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{2}) q^{4} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{2}) q^{7} - 3 \zeta_{18}^{2} q^{9} + ( - 4 \zeta_{18}^{3} + 2) q^{12} + ( - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + \cdots - 3) q^{13} + \cdots + ( - 22 \zeta_{18}^{4} + 11 \zeta_{18}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{13} - 3 q^{19} + 27 q^{21} + 27 q^{27} - 24 q^{43} + 12 q^{52} - 39 q^{61} - 24 q^{64} + 15 q^{67} - 21 q^{73} + 45 q^{75} - 39 q^{79} - 51 q^{91} - 54 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(\zeta_{18}^{3}\) \(-1\) \(\zeta_{18}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.939693 0.342020i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
−0.766044 0.642788i
−0.173648 0.984808i
0 −0.592396 1.62760i −1.87939 0.684040i 0 0 −1.35844 + 2.27038i 0 −2.29813 + 1.92836i 0
80.1 0 −0.592396 + 1.62760i −1.87939 + 0.684040i 0 0 −1.35844 2.27038i 0 −2.29813 1.92836i 0
101.1 0 −1.11334 1.32683i 1.53209 + 1.28558i 0 0 −1.28699 + 2.31164i 0 −0.520945 + 2.95442i 0
131.1 0 1.70574 + 0.300767i 0.347296 + 1.96962i 0 0 2.64543 + 0.0412527i 0 2.81908 + 1.02606i 0
320.1 0 −1.11334 + 1.32683i 1.53209 1.28558i 0 0 −1.28699 2.31164i 0 −0.520945 2.95442i 0
332.1 0 1.70574 0.300767i 0.347296 1.96962i 0 0 2.64543 0.0412527i 0 2.81908 1.02606i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
133.z odd 18 1 inner
399.cb even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.cb.a 6
3.b odd 2 1 CM 399.2.cb.a 6
7.d odd 6 1 399.2.ci.a yes 6
19.e even 9 1 399.2.ci.a yes 6
21.g even 6 1 399.2.ci.a yes 6
57.l odd 18 1 399.2.ci.a yes 6
133.z odd 18 1 inner 399.2.cb.a 6
399.cb even 18 1 inner 399.2.cb.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.cb.a 6 1.a even 1 1 trivial
399.2.cb.a 6 3.b odd 2 1 CM
399.2.cb.a 6 133.z odd 18 1 inner
399.2.cb.a 6 399.cb even 18 1 inner
399.2.ci.a yes 6 7.d odd 6 1
399.2.ci.a yes 6 19.e even 9 1
399.2.ci.a yes 6 21.g even 6 1
399.2.ci.a yes 6 57.l odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 9T^{3} + 27 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 37T^{3} + 343 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 867 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} - 93 T^{4} + \cdots + 35643 \) Copy content Toggle raw display
$37$ \( T^{6} + 111 T^{4} + \cdots + 187489 \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} + 24 T^{5} + \cdots + 201601 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} + 39 T^{5} + \cdots + 96123 \) Copy content Toggle raw display
$67$ \( T^{6} - 15 T^{5} + \cdots + 16129 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 21 T^{5} + \cdots + 711507 \) Copy content Toggle raw display
$79$ \( T^{6} + 39 T^{5} + \cdots + 253009 \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} + 11979 T^{3} + 47832147 \) Copy content Toggle raw display
show more
show less