Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(5,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 15, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 399.cb (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
0 | −0.592396 | − | 1.62760i | −1.87939 | − | 0.684040i | 0 | 0 | −1.35844 | + | 2.27038i | 0 | −2.29813 | + | 1.92836i | 0 | ||||||||||||||||||||||||||||
80.1 | 0 | −0.592396 | + | 1.62760i | −1.87939 | + | 0.684040i | 0 | 0 | −1.35844 | − | 2.27038i | 0 | −2.29813 | − | 1.92836i | 0 | |||||||||||||||||||||||||||||
101.1 | 0 | −1.11334 | − | 1.32683i | 1.53209 | + | 1.28558i | 0 | 0 | −1.28699 | + | 2.31164i | 0 | −0.520945 | + | 2.95442i | 0 | |||||||||||||||||||||||||||||
131.1 | 0 | 1.70574 | + | 0.300767i | 0.347296 | + | 1.96962i | 0 | 0 | 2.64543 | + | 0.0412527i | 0 | 2.81908 | + | 1.02606i | 0 | |||||||||||||||||||||||||||||
320.1 | 0 | −1.11334 | + | 1.32683i | 1.53209 | − | 1.28558i | 0 | 0 | −1.28699 | − | 2.31164i | 0 | −0.520945 | − | 2.95442i | 0 | |||||||||||||||||||||||||||||
332.1 | 0 | 1.70574 | − | 0.300767i | 0.347296 | − | 1.96962i | 0 | 0 | 2.64543 | − | 0.0412527i | 0 | 2.81908 | − | 1.02606i | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
133.z | odd | 18 | 1 | inner |
399.cb | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.cb.a | ✓ | 6 |
3.b | odd | 2 | 1 | CM | 399.2.cb.a | ✓ | 6 |
7.d | odd | 6 | 1 | 399.2.ci.a | yes | 6 | |
19.e | even | 9 | 1 | 399.2.ci.a | yes | 6 | |
21.g | even | 6 | 1 | 399.2.ci.a | yes | 6 | |
57.l | odd | 18 | 1 | 399.2.ci.a | yes | 6 | |
133.z | odd | 18 | 1 | inner | 399.2.cb.a | ✓ | 6 |
399.cb | even | 18 | 1 | inner | 399.2.cb.a | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.cb.a | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
399.2.cb.a | ✓ | 6 | 3.b | odd | 2 | 1 | CM |
399.2.cb.a | ✓ | 6 | 133.z | odd | 18 | 1 | inner |
399.2.cb.a | ✓ | 6 | 399.cb | even | 18 | 1 | inner |
399.2.ci.a | yes | 6 | 7.d | odd | 6 | 1 | |
399.2.ci.a | yes | 6 | 19.e | even | 9 | 1 | |
399.2.ci.a | yes | 6 | 21.g | even | 6 | 1 | |
399.2.ci.a | yes | 6 | 57.l | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .