Properties

Label 399.2.cb.a
Level 399399
Weight 22
Character orbit 399.cb
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 66
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(5,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 15, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.cb (of order 1818, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D18]\mathrm{U}(1)[D_{18}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ18\zeta_{18}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ184ζ18)q3+(2ζ1852ζ182)q4+(ζ1852ζ182)q73ζ182q9+(4ζ183+2)q12+(4ζ184+4ζ183+3)q13++(22ζ184+11ζ18)q97+O(q100) q + (2 \zeta_{18}^{4} - \zeta_{18}) q^{3} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{2}) q^{4} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{2}) q^{7} - 3 \zeta_{18}^{2} q^{9} + ( - 4 \zeta_{18}^{3} + 2) q^{12} + ( - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + \cdots - 3) q^{13} + \cdots + ( - 22 \zeta_{18}^{4} + 11 \zeta_{18}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q133q19+27q21+27q2724q43+12q5239q6124q64+15q6721q73+45q7539q7951q9154q93+O(q100) 6 q - 6 q^{13} - 3 q^{19} + 27 q^{21} + 27 q^{27} - 24 q^{43} + 12 q^{52} - 39 q^{61} - 24 q^{64} + 15 q^{67} - 21 q^{73} + 45 q^{75} - 39 q^{79} - 51 q^{91} - 54 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) ζ183\zeta_{18}^{3} 1-1 ζ182\zeta_{18}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
5.1
0.939693 0.342020i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
−0.766044 0.642788i
−0.173648 0.984808i
0 −0.592396 1.62760i −1.87939 0.684040i 0 0 −1.35844 + 2.27038i 0 −2.29813 + 1.92836i 0
80.1 0 −0.592396 + 1.62760i −1.87939 + 0.684040i 0 0 −1.35844 2.27038i 0 −2.29813 1.92836i 0
101.1 0 −1.11334 1.32683i 1.53209 + 1.28558i 0 0 −1.28699 + 2.31164i 0 −0.520945 + 2.95442i 0
131.1 0 1.70574 + 0.300767i 0.347296 + 1.96962i 0 0 2.64543 + 0.0412527i 0 2.81908 + 1.02606i 0
320.1 0 −1.11334 + 1.32683i 1.53209 1.28558i 0 0 −1.28699 2.31164i 0 −0.520945 2.95442i 0
332.1 0 1.70574 0.300767i 0.347296 1.96962i 0 0 2.64543 0.0412527i 0 2.81908 1.02606i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
133.z odd 18 1 inner
399.cb even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.cb.a 6
3.b odd 2 1 CM 399.2.cb.a 6
7.d odd 6 1 399.2.ci.a yes 6
19.e even 9 1 399.2.ci.a yes 6
21.g even 6 1 399.2.ci.a yes 6
57.l odd 18 1 399.2.ci.a yes 6
133.z odd 18 1 inner 399.2.cb.a 6
399.cb even 18 1 inner 399.2.cb.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.cb.a 6 1.a even 1 1 trivial
399.2.cb.a 6 3.b odd 2 1 CM
399.2.cb.a 6 133.z odd 18 1 inner
399.2.cb.a 6 399.cb even 18 1 inner
399.2.ci.a yes 6 7.d odd 6 1
399.2.ci.a yes 6 19.e even 9 1
399.2.ci.a yes 6 21.g even 6 1
399.2.ci.a yes 6 57.l odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T69T3+27 T^{6} - 9T^{3} + 27 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T637T3+343 T^{6} - 37T^{3} + 343 Copy content Toggle raw display
1111 T6 T^{6} Copy content Toggle raw display
1313 T6+6T5++867 T^{6} + 6 T^{5} + \cdots + 867 Copy content Toggle raw display
1717 T6 T^{6} Copy content Toggle raw display
1919 (T2+T+19)3 (T^{2} + T + 19)^{3} Copy content Toggle raw display
2323 T6 T^{6} Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T693T4++35643 T^{6} - 93 T^{4} + \cdots + 35643 Copy content Toggle raw display
3737 T6+111T4++187489 T^{6} + 111 T^{4} + \cdots + 187489 Copy content Toggle raw display
4141 T6 T^{6} Copy content Toggle raw display
4343 T6+24T5++201601 T^{6} + 24 T^{5} + \cdots + 201601 Copy content Toggle raw display
4747 T6 T^{6} Copy content Toggle raw display
5353 T6 T^{6} Copy content Toggle raw display
5959 T6 T^{6} Copy content Toggle raw display
6161 T6+39T5++96123 T^{6} + 39 T^{5} + \cdots + 96123 Copy content Toggle raw display
6767 T615T5++16129 T^{6} - 15 T^{5} + \cdots + 16129 Copy content Toggle raw display
7171 T6 T^{6} Copy content Toggle raw display
7373 T6+21T5++711507 T^{6} + 21 T^{5} + \cdots + 711507 Copy content Toggle raw display
7979 T6+39T5++253009 T^{6} + 39 T^{5} + \cdots + 253009 Copy content Toggle raw display
8383 T6 T^{6} Copy content Toggle raw display
8989 T6 T^{6} Copy content Toggle raw display
9797 T6+11979T3+47832147 T^{6} + 11979 T^{3} + 47832147 Copy content Toggle raw display
show more
show less