Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(17,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 3, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 399 = 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 399.ci (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18603104065\) |
Analytic rank: | \(0\) |
Dimension: | \(288\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −0.944541 | − | 2.59511i | −0.0712555 | + | 1.73058i | −4.31033 | + | 3.61679i | −0.697332 | − | 0.585131i | 4.55835 | − | 1.44969i | 2.08636 | − | 1.62699i | 8.67392 | + | 5.00789i | −2.98985 | − | 0.246627i | −0.859818 | + | 2.36233i |
17.2 | −0.893748 | − | 2.45555i | −0.925847 | − | 1.46383i | −3.69886 | + | 3.10371i | 2.22061 | + | 1.86331i | −2.76705 | + | 3.58176i | −0.00711626 | + | 2.64574i | 6.40108 | + | 3.69566i | −1.28562 | + | 2.71057i | 2.59080 | − | 7.11815i |
17.3 | −0.886472 | − | 2.43556i | 1.59092 | + | 0.684809i | −3.61404 | + | 3.03254i | 0.848702 | + | 0.712146i | 0.257585 | − | 4.48185i | −1.72566 | + | 2.00552i | 6.10042 | + | 3.52208i | 2.06207 | + | 2.17896i | 0.982124 | − | 2.69836i |
17.4 | −0.858572 | − | 2.35891i | 0.919907 | − | 1.46757i | −3.29521 | + | 2.76501i | −3.13043 | − | 2.62674i | −4.25167 | − | 0.909959i | 1.76041 | + | 1.97509i | 5.00361 | + | 2.88883i | −1.30754 | − | 2.70006i | −3.50854 | + | 9.63963i |
17.5 | −0.832364 | − | 2.28690i | 1.37101 | − | 1.05845i | −3.00500 | + | 2.52149i | 1.42292 | + | 1.19397i | −3.56176 | − | 2.25435i | −0.688785 | − | 2.55452i | 4.05242 | + | 2.33967i | 0.759356 | − | 2.90231i | 1.54610 | − | 4.24789i |
17.6 | −0.801571 | − | 2.20230i | −1.43427 | + | 0.971012i | −2.67551 | + | 2.24502i | −1.45856 | − | 1.22387i | 3.28813 | + | 2.38036i | −2.60326 | + | 0.472262i | 3.02951 | + | 1.74909i | 1.11427 | − | 2.78539i | −1.52620 | + | 4.19320i |
17.7 | −0.790453 | − | 2.17175i | −1.73099 | + | 0.0605998i | −2.55960 | + | 2.14776i | 0.227510 | + | 0.190904i | 1.49987 | + | 3.71138i | 2.62191 | − | 0.354408i | 2.68464 | + | 1.54998i | 2.99266 | − | 0.209795i | 0.234759 | − | 0.644995i |
17.8 | −0.683230 | − | 1.87716i | 1.56993 | + | 0.731654i | −1.52483 | + | 1.27949i | −0.743891 | − | 0.624199i | 0.300807 | − | 3.44690i | 2.28326 | + | 1.33668i | −0.0163842 | − | 0.00945940i | 1.92936 | + | 2.29729i | −0.663472 | + | 1.82287i |
17.9 | −0.670554 | − | 1.84233i | 0.104808 | − | 1.72888i | −1.41246 | + | 1.18519i | −1.01401 | − | 0.850853i | −3.25545 | + | 0.966215i | −2.63497 | − | 0.238651i | −0.265159 | − | 0.153089i | −2.97803 | − | 0.362399i | −0.887608 | + | 2.43868i |
17.10 | −0.643648 | − | 1.76841i | −1.72242 | − | 0.182359i | −1.18089 | + | 0.990888i | 2.53819 | + | 2.12979i | 0.786150 | + | 3.16332i | −1.59960 | − | 2.10743i | −0.747172 | − | 0.431380i | 2.93349 | + | 0.628198i | 2.13265 | − | 5.85939i |
17.11 | −0.573945 | − | 1.57690i | 0.763523 | + | 1.55468i | −0.625116 | + | 0.524535i | −2.02899 | − | 1.70252i | 2.01336 | − | 2.09630i | −1.81327 | − | 1.92667i | −1.72064 | − | 0.993411i | −1.83407 | + | 2.37407i | −1.52018 | + | 4.17667i |
17.12 | −0.564636 | − | 1.55133i | −0.554355 | + | 1.64094i | −0.555707 | + | 0.466294i | 1.94099 | + | 1.62868i | 2.85864 | − | 0.0665512i | 2.16148 | + | 1.52579i | −1.82227 | − | 1.05209i | −2.38538 | − | 1.81933i | 1.43066 | − | 3.93072i |
17.13 | −0.545272 | − | 1.49812i | −1.37264 | − | 1.05634i | −0.414961 | + | 0.348193i | −2.91953 | − | 2.44978i | −0.834058 | + | 2.63238i | 1.45517 | − | 2.20963i | −2.01345 | − | 1.16247i | 0.768304 | + | 2.89995i | −2.07813 | + | 5.70961i |
17.14 | −0.486094 | − | 1.33553i | 1.30387 | − | 1.14014i | −0.0152680 | + | 0.0128114i | 3.09898 | + | 2.60035i | −2.15650 | − | 1.18715i | 0.690003 | + | 2.55419i | −2.43713 | − | 1.40708i | 0.400166 | − | 2.97319i | 1.96646 | − | 5.40280i |
17.15 | −0.474788 | − | 1.30447i | −1.17011 | − | 1.27705i | 0.0558696 | − | 0.0468801i | −0.769103 | − | 0.645354i | −1.11032 | + | 2.13270i | −0.646012 | + | 2.56567i | −2.49209 | − | 1.43881i | −0.261701 | + | 2.98856i | −0.476684 | + | 1.30968i |
17.16 | −0.452293 | − | 1.24266i | 1.69039 | − | 0.377593i | 0.192445 | − | 0.161480i | −0.715648 | − | 0.600500i | −1.23377 | − | 1.92981i | 1.73245 | − | 1.99965i | −2.57820 | − | 1.48852i | 2.71485 | − | 1.27656i | −0.422537 | + | 1.16091i |
17.17 | −0.302600 | − | 0.831388i | 1.58612 | + | 0.695859i | 0.932451 | − | 0.782419i | 2.27405 | + | 1.90816i | 0.0985676 | − | 1.52925i | −2.64547 | − | 0.0388495i | −2.46508 | − | 1.42321i | 2.03156 | + | 2.20743i | 0.898290 | − | 2.46803i |
17.18 | −0.300160 | − | 0.824683i | −0.896180 | + | 1.48218i | 0.942083 | − | 0.790502i | 0.767308 | + | 0.643848i | 1.49133 | + | 0.294172i | −0.609997 | − | 2.57447i | −2.45475 | − | 1.41725i | −1.39372 | − | 2.65660i | 0.300655 | − | 0.826043i |
17.19 | −0.285944 | − | 0.785625i | −1.56622 | + | 0.739569i | 0.996646 | − | 0.836286i | −0.861028 | − | 0.722488i | 1.02887 | + | 1.01898i | −0.200186 | + | 2.63817i | −2.39006 | − | 1.37990i | 1.90607 | − | 2.31665i | −0.321399 | + | 0.883036i |
17.20 | −0.259349 | − | 0.712555i | −0.812731 | − | 1.52953i | 1.09162 | − | 0.915975i | 2.36676 | + | 1.98594i | −0.879095 | + | 0.975798i | 1.09932 | − | 2.40655i | −2.24918 | − | 1.29856i | −1.67894 | + | 2.48620i | 0.801279 | − | 2.20150i |
See next 80 embeddings (of 288 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
133.x | odd | 18 | 1 | inner |
399.ci | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.ci.b | yes | 288 |
3.b | odd | 2 | 1 | inner | 399.2.ci.b | yes | 288 |
7.d | odd | 6 | 1 | 399.2.cb.b | ✓ | 288 | |
19.e | even | 9 | 1 | 399.2.cb.b | ✓ | 288 | |
21.g | even | 6 | 1 | 399.2.cb.b | ✓ | 288 | |
57.l | odd | 18 | 1 | 399.2.cb.b | ✓ | 288 | |
133.x | odd | 18 | 1 | inner | 399.2.ci.b | yes | 288 |
399.ci | even | 18 | 1 | inner | 399.2.ci.b | yes | 288 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.cb.b | ✓ | 288 | 7.d | odd | 6 | 1 | |
399.2.cb.b | ✓ | 288 | 19.e | even | 9 | 1 | |
399.2.cb.b | ✓ | 288 | 21.g | even | 6 | 1 | |
399.2.cb.b | ✓ | 288 | 57.l | odd | 18 | 1 | |
399.2.ci.b | yes | 288 | 1.a | even | 1 | 1 | trivial |
399.2.ci.b | yes | 288 | 3.b | odd | 2 | 1 | inner |
399.2.ci.b | yes | 288 | 133.x | odd | 18 | 1 | inner |
399.2.ci.b | yes | 288 | 399.ci | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{288} + 3 T_{2}^{286} - 6 T_{2}^{284} - 1974 T_{2}^{282} - 5031 T_{2}^{280} + \cdots + 13\!\cdots\!29 \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\).