Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(64,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 399.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
−1.34639 | − | 2.33202i | −0.500000 | − | 0.866025i | −2.62554 | + | 4.54758i | −1.03963 | − | 1.80069i | −1.34639 | + | 2.33202i | −1.00000 | 8.75448 | −0.500000 | + | 0.866025i | −2.79950 | + | 4.84888i | ||||||||||||||||||||||||||||||||||||||||
64.2 | −0.777141 | − | 1.34605i | −0.500000 | − | 0.866025i | −0.207897 | + | 0.360089i | 2.07326 | + | 3.59099i | −0.777141 | + | 1.34605i | −1.00000 | −2.46230 | −0.500000 | + | 0.866025i | 3.22243 | − | 5.58142i | |||||||||||||||||||||||||||||||||||||||||
64.3 | −0.597305 | − | 1.03456i | −0.500000 | − | 0.866025i | 0.286453 | − | 0.496151i | 0.0760004 | + | 0.131637i | −0.597305 | + | 1.03456i | −1.00000 | −3.07362 | −0.500000 | + | 0.866025i | 0.0907909 | − | 0.157254i | |||||||||||||||||||||||||||||||||||||||||
64.4 | 0.0695651 | + | 0.120490i | −0.500000 | − | 0.866025i | 0.990321 | − | 1.71529i | −1.78910 | − | 3.09882i | 0.0695651 | − | 0.120490i | −1.00000 | 0.553828 | −0.500000 | + | 0.866025i | 0.248918 | − | 0.431139i | |||||||||||||||||||||||||||||||||||||||||
64.5 | 0.794855 | + | 1.37673i | −0.500000 | − | 0.866025i | −0.263589 | + | 0.456549i | −0.818550 | − | 1.41777i | 0.794855 | − | 1.37673i | −1.00000 | 2.34136 | −0.500000 | + | 0.866025i | 1.30126 | − | 2.25384i | |||||||||||||||||||||||||||||||||||||||||
64.6 | 1.35642 | + | 2.34939i | −0.500000 | − | 0.866025i | −2.67974 | + | 4.64145i | 1.49802 | + | 2.59465i | 1.35642 | − | 2.34939i | −1.00000 | −9.11374 | −0.500000 | + | 0.866025i | −4.06389 | + | 7.03887i | |||||||||||||||||||||||||||||||||||||||||
106.1 | −1.34639 | + | 2.33202i | −0.500000 | + | 0.866025i | −2.62554 | − | 4.54758i | −1.03963 | + | 1.80069i | −1.34639 | − | 2.33202i | −1.00000 | 8.75448 | −0.500000 | − | 0.866025i | −2.79950 | − | 4.84888i | |||||||||||||||||||||||||||||||||||||||||
106.2 | −0.777141 | + | 1.34605i | −0.500000 | + | 0.866025i | −0.207897 | − | 0.360089i | 2.07326 | − | 3.59099i | −0.777141 | − | 1.34605i | −1.00000 | −2.46230 | −0.500000 | − | 0.866025i | 3.22243 | + | 5.58142i | |||||||||||||||||||||||||||||||||||||||||
106.3 | −0.597305 | + | 1.03456i | −0.500000 | + | 0.866025i | 0.286453 | + | 0.496151i | 0.0760004 | − | 0.131637i | −0.597305 | − | 1.03456i | −1.00000 | −3.07362 | −0.500000 | − | 0.866025i | 0.0907909 | + | 0.157254i | |||||||||||||||||||||||||||||||||||||||||
106.4 | 0.0695651 | − | 0.120490i | −0.500000 | + | 0.866025i | 0.990321 | + | 1.71529i | −1.78910 | + | 3.09882i | 0.0695651 | + | 0.120490i | −1.00000 | 0.553828 | −0.500000 | − | 0.866025i | 0.248918 | + | 0.431139i | |||||||||||||||||||||||||||||||||||||||||
106.5 | 0.794855 | − | 1.37673i | −0.500000 | + | 0.866025i | −0.263589 | − | 0.456549i | −0.818550 | + | 1.41777i | 0.794855 | + | 1.37673i | −1.00000 | 2.34136 | −0.500000 | − | 0.866025i | 1.30126 | + | 2.25384i | |||||||||||||||||||||||||||||||||||||||||
106.6 | 1.35642 | − | 2.34939i | −0.500000 | + | 0.866025i | −2.67974 | − | 4.64145i | 1.49802 | − | 2.59465i | 1.35642 | + | 2.34939i | −1.00000 | −9.11374 | −0.500000 | − | 0.866025i | −4.06389 | − | 7.03887i | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.k.c | ✓ | 12 |
3.b | odd | 2 | 1 | 1197.2.k.i | 12 | ||
19.c | even | 3 | 1 | inner | 399.2.k.c | ✓ | 12 |
19.c | even | 3 | 1 | 7581.2.a.bc | 6 | ||
19.d | odd | 6 | 1 | 7581.2.a.ba | 6 | ||
57.h | odd | 6 | 1 | 1197.2.k.i | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.k.c | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
399.2.k.c | ✓ | 12 | 19.c | even | 3 | 1 | inner |
1197.2.k.i | 12 | 3.b | odd | 2 | 1 | ||
1197.2.k.i | 12 | 57.h | odd | 6 | 1 | ||
7581.2.a.ba | 6 | 19.d | odd | 6 | 1 | ||
7581.2.a.bc | 6 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .