Properties

Label 399.2.k.c
Level 399399
Weight 22
Character orbit 399.k
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(64,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.k (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+11x1010x9+90x879x7+275x6177x5+560x4++9 x^{12} - x^{11} + 11 x^{10} - 10 x^{9} + 90 x^{8} - 79 x^{7} + 275 x^{6} - 177 x^{5} + 560 x^{4} + \cdots + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2β7q3+(β10+β71)q4+(β11+β4)q5+(β2+β1)q6q7+(β9β82β4+1)q8++(β9+β7β5)q99+O(q100) q - \beta_1 q^{2} - \beta_{7} q^{3} + ( - \beta_{10} + \beta_{7} - 1) q^{4} + ( - \beta_{11} + \beta_{4}) q^{5} + (\beta_{2} + \beta_1) q^{6} - q^{7} + (\beta_{9} - \beta_{8} - 2 \beta_{4} + \cdots - 1) q^{8}+ \cdots + ( - \beta_{9} + \beta_{7} - \beta_{5}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12qq26q39q4q612q76q86q94q10+8q11+18q122q13+q1419q16+3q17+2q18+3q1926q20+6q21+2q22+4q99+O(q100) 12 q - q^{2} - 6 q^{3} - 9 q^{4} - q^{6} - 12 q^{7} - 6 q^{8} - 6 q^{9} - 4 q^{10} + 8 q^{11} + 18 q^{12} - 2 q^{13} + q^{14} - 19 q^{16} + 3 q^{17} + 2 q^{18} + 3 q^{19} - 26 q^{20} + 6 q^{21} + 2 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12x11+11x1010x9+90x879x7+275x6177x5+560x4++9 x^{12} - x^{11} + 11 x^{10} - 10 x^{9} + 90 x^{8} - 79 x^{7} + 275 x^{6} - 177 x^{5} + 560 x^{4} + \cdots + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (5576235ν11+4006708ν10+52642890ν9+38804014ν8+439627424ν7++566549244)/3919460469 ( 5576235 \nu^{11} + 4006708 \nu^{10} + 52642890 \nu^{9} + 38804014 \nu^{8} + 439627424 \nu^{7} + \cdots + 566549244 ) / 3919460469 Copy content Toggle raw display
β3\beta_{3}== (9582943ν118695695ν10+94566364ν962233726ν8+755727611ν7++15627655761)/3919460469 ( 9582943 \nu^{11} - 8695695 \nu^{10} + 94566364 \nu^{9} - 62233726 \nu^{8} + 755727611 \nu^{7} + \cdots + 15627655761 ) / 3919460469 Copy content Toggle raw display
β4\beta_{4}== (45555061ν11+74797351ν10419624797ν9+572692130ν8+42131100258)/11758381407 ( - 45555061 \nu^{11} + 74797351 \nu^{10} - 419624797 \nu^{9} + 572692130 \nu^{8} + \cdots - 42131100258 ) / 11758381407 Copy content Toggle raw display
β5\beta_{5}== (88687263ν11+62160086ν10+1066737554ν9+801080883ν8++41824379079)/11758381407 ( 88687263 \nu^{11} + 62160086 \nu^{10} + 1066737554 \nu^{9} + 801080883 \nu^{8} + \cdots + 41824379079 ) / 11758381407 Copy content Toggle raw display
β6\beta_{6}== (149438023ν11+3720477ν101301282363ν9+76165883ν8+35591284287)/11758381407 ( - 149438023 \nu^{11} + 3720477 \nu^{10} - 1301282363 \nu^{9} + 76165883 \nu^{8} + \cdots - 35591284287 ) / 11758381407 Copy content Toggle raw display
β7\beta_{7}== (62949916ν11+68526151ν10688442368ν9+682142050ν8++550554462)/3919460469 ( - 62949916 \nu^{11} + 68526151 \nu^{10} - 688442368 \nu^{9} + 682142050 \nu^{8} + \cdots + 550554462 ) / 3919460469 Copy content Toggle raw display
β8\beta_{8}== (296159965ν11421316621ν10+3495458979ν94062702137ν8++20612935080)/11758381407 ( 296159965 \nu^{11} - 421316621 \nu^{10} + 3495458979 \nu^{9} - 4062702137 \nu^{8} + \cdots + 20612935080 ) / 11758381407 Copy content Toggle raw display
β9\beta_{9}== (317442197ν11237708384ν10+3729551827ν92521958845ν8++3490321914)/11758381407 ( 317442197 \nu^{11} - 237708384 \nu^{10} + 3729551827 \nu^{9} - 2521958845 \nu^{8} + \cdots + 3490321914 ) / 11758381407 Copy content Toggle raw display
β10\beta_{10}== (62949916ν11+68526151ν10688442368ν9+682142050ν8+3368906007)/1306486823 ( - 62949916 \nu^{11} + 68526151 \nu^{10} - 688442368 \nu^{9} + 682142050 \nu^{8} + \cdots - 3368906007 ) / 1306486823 Copy content Toggle raw display
β11\beta_{11}== (693732367ν11+743763428ν107473534885ν9+7455115610ν8+36576464796)/11758381407 ( - 693732367 \nu^{11} + 743763428 \nu^{10} - 7473534885 \nu^{9} + 7455115610 \nu^{8} + \cdots - 36576464796 ) / 11758381407 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β10+3β73 -\beta_{10} + 3\beta_{7} - 3 Copy content Toggle raw display
ν3\nu^{3}== β9+β8+2β4+β3+5β2+1 -\beta_{9} + \beta_{8} + 2\beta_{4} + \beta_{3} + 5\beta_{2} + 1 Copy content Toggle raw display
ν4\nu^{4}== 8β10+2β9+β818β7β62β5+8β3β17 8\beta_{10} + 2\beta_{9} + \beta_{8} - 18\beta_{7} - \beta_{6} - 2\beta_{5} + 8\beta_{3} - \beta _1 - 7 Copy content Toggle raw display
ν5\nu^{5}== 19β11+9β10β910β8+19β7+10β6+9β5+18 - 19 \beta_{11} + 9 \beta_{10} - \beta_{9} - 10 \beta_{8} + 19 \beta_{7} + 10 \beta_{6} + 9 \beta_{5} + \cdots - 18 Copy content Toggle raw display
ν6\nu^{6}== 11β9+11β89β6+9β5+β459β310β2+165 -11\beta_{9} + 11\beta_{8} - 9\beta_{6} + 9\beta_{5} + \beta_{4} - 59\beta_{3} - 10\beta_{2} + 165 Copy content Toggle raw display
ν7\nu^{7}== 149β1168β10+80β9+11β8149β769β680β5++79 149 \beta_{11} - 68 \beta_{10} + 80 \beta_{9} + 11 \beta_{8} - 149 \beta_{7} - 69 \beta_{6} - 80 \beta_{5} + \cdots + 79 Copy content Toggle raw display
ν8\nu^{8}== 13β11430β1069β9161β8+892β7+161β6+823 - 13 \beta_{11} - 430 \beta_{10} - 69 \beta_{9} - 161 \beta_{8} + 892 \beta_{7} + 161 \beta_{6} + \cdots - 823 Copy content Toggle raw display
ν9\nu^{9}== 512β9+512β892β6+92β5+1113β4+495β3+1522β2+443 -512\beta_{9} + 512\beta_{8} - 92\beta_{6} + 92\beta_{5} + 1113\beta_{4} + 495\beta_{3} + 1522\beta_{2} + 443 Copy content Toggle raw display
ν10\nu^{10}== 126β11+3130β10+1222β9+512β86501β7710β6+2618 126 \beta_{11} + 3130 \beta_{10} + 1222 \beta_{9} + 512 \beta_{8} - 6501 \beta_{7} - 710 \beta_{6} + \cdots - 2618 Copy content Toggle raw display
ν11\nu^{11}== 8192β11+3568β10710β94478β8+8360β7+4478β6+7650 - 8192 \beta_{11} + 3568 \beta_{10} - 710 \beta_{9} - 4478 \beta_{8} + 8360 \beta_{7} + 4478 \beta_{6} + \cdots - 7650 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 11 11 1+β7-1 + \beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
64.1
1.34639 + 2.33202i
0.777141 + 1.34605i
0.597305 + 1.03456i
−0.0695651 0.120490i
−0.794855 1.37673i
−1.35642 2.34939i
1.34639 2.33202i
0.777141 1.34605i
0.597305 1.03456i
−0.0695651 + 0.120490i
−0.794855 + 1.37673i
−1.35642 + 2.34939i
−1.34639 2.33202i −0.500000 0.866025i −2.62554 + 4.54758i −1.03963 1.80069i −1.34639 + 2.33202i −1.00000 8.75448 −0.500000 + 0.866025i −2.79950 + 4.84888i
64.2 −0.777141 1.34605i −0.500000 0.866025i −0.207897 + 0.360089i 2.07326 + 3.59099i −0.777141 + 1.34605i −1.00000 −2.46230 −0.500000 + 0.866025i 3.22243 5.58142i
64.3 −0.597305 1.03456i −0.500000 0.866025i 0.286453 0.496151i 0.0760004 + 0.131637i −0.597305 + 1.03456i −1.00000 −3.07362 −0.500000 + 0.866025i 0.0907909 0.157254i
64.4 0.0695651 + 0.120490i −0.500000 0.866025i 0.990321 1.71529i −1.78910 3.09882i 0.0695651 0.120490i −1.00000 0.553828 −0.500000 + 0.866025i 0.248918 0.431139i
64.5 0.794855 + 1.37673i −0.500000 0.866025i −0.263589 + 0.456549i −0.818550 1.41777i 0.794855 1.37673i −1.00000 2.34136 −0.500000 + 0.866025i 1.30126 2.25384i
64.6 1.35642 + 2.34939i −0.500000 0.866025i −2.67974 + 4.64145i 1.49802 + 2.59465i 1.35642 2.34939i −1.00000 −9.11374 −0.500000 + 0.866025i −4.06389 + 7.03887i
106.1 −1.34639 + 2.33202i −0.500000 + 0.866025i −2.62554 4.54758i −1.03963 + 1.80069i −1.34639 2.33202i −1.00000 8.75448 −0.500000 0.866025i −2.79950 4.84888i
106.2 −0.777141 + 1.34605i −0.500000 + 0.866025i −0.207897 0.360089i 2.07326 3.59099i −0.777141 1.34605i −1.00000 −2.46230 −0.500000 0.866025i 3.22243 + 5.58142i
106.3 −0.597305 + 1.03456i −0.500000 + 0.866025i 0.286453 + 0.496151i 0.0760004 0.131637i −0.597305 1.03456i −1.00000 −3.07362 −0.500000 0.866025i 0.0907909 + 0.157254i
106.4 0.0695651 0.120490i −0.500000 + 0.866025i 0.990321 + 1.71529i −1.78910 + 3.09882i 0.0695651 + 0.120490i −1.00000 0.553828 −0.500000 0.866025i 0.248918 + 0.431139i
106.5 0.794855 1.37673i −0.500000 + 0.866025i −0.263589 0.456549i −0.818550 + 1.41777i 0.794855 + 1.37673i −1.00000 2.34136 −0.500000 0.866025i 1.30126 + 2.25384i
106.6 1.35642 2.34939i −0.500000 + 0.866025i −2.67974 4.64145i 1.49802 2.59465i 1.35642 + 2.34939i −1.00000 −9.11374 −0.500000 0.866025i −4.06389 7.03887i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.k.c 12
3.b odd 2 1 1197.2.k.i 12
19.c even 3 1 inner 399.2.k.c 12
19.c even 3 1 7581.2.a.bc 6
19.d odd 6 1 7581.2.a.ba 6
57.h odd 6 1 1197.2.k.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.k.c 12 1.a even 1 1 trivial
399.2.k.c 12 19.c even 3 1 inner
1197.2.k.i 12 3.b odd 2 1
1197.2.k.i 12 57.h odd 6 1
7581.2.a.ba 6 19.d odd 6 1
7581.2.a.bc 6 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T212+T211+11T210+10T29+90T28+79T27+275T26++9 T_{2}^{12} + T_{2}^{11} + 11 T_{2}^{10} + 10 T_{2}^{9} + 90 T_{2}^{8} + 79 T_{2}^{7} + 275 T_{2}^{6} + \cdots + 9 acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+T11++9 T^{12} + T^{11} + \cdots + 9 Copy content Toggle raw display
33 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
55 T12+23T10++529 T^{12} + 23 T^{10} + \cdots + 529 Copy content Toggle raw display
77 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
1111 (T64T528T4+99)2 (T^{6} - 4 T^{5} - 28 T^{4} + \cdots - 99)^{2} Copy content Toggle raw display
1313 T12+2T11++3297856 T^{12} + 2 T^{11} + \cdots + 3297856 Copy content Toggle raw display
1717 T123T11++1252161 T^{12} - 3 T^{11} + \cdots + 1252161 Copy content Toggle raw display
1919 T123T11++47045881 T^{12} - 3 T^{11} + \cdots + 47045881 Copy content Toggle raw display
2323 T125T11++144 T^{12} - 5 T^{11} + \cdots + 144 Copy content Toggle raw display
2929 T1211T11++7529536 T^{12} - 11 T^{11} + \cdots + 7529536 Copy content Toggle raw display
3131 (T6+5T5+2592)2 (T^{6} + 5 T^{5} + \cdots - 2592)^{2} Copy content Toggle raw display
3737 (T6+5T5++1179)2 (T^{6} + 5 T^{5} + \cdots + 1179)^{2} Copy content Toggle raw display
4141 T125T11++4888521 T^{12} - 5 T^{11} + \cdots + 4888521 Copy content Toggle raw display
4343 T12++1055990016 T^{12} + \cdots + 1055990016 Copy content Toggle raw display
4747 T12+37T11++36869184 T^{12} + 37 T^{11} + \cdots + 36869184 Copy content Toggle raw display
5353 T129T11++52186176 T^{12} - 9 T^{11} + \cdots + 52186176 Copy content Toggle raw display
5959 T12++983951424 T^{12} + \cdots + 983951424 Copy content Toggle raw display
6161 T1219T11++37503376 T^{12} - 19 T^{11} + \cdots + 37503376 Copy content Toggle raw display
6767 T12++47248847424 T^{12} + \cdots + 47248847424 Copy content Toggle raw display
7171 T12++11490982416 T^{12} + \cdots + 11490982416 Copy content Toggle raw display
7373 T1224T11++104976 T^{12} - 24 T^{11} + \cdots + 104976 Copy content Toggle raw display
7979 T12++30685229584 T^{12} + \cdots + 30685229584 Copy content Toggle raw display
8383 (T635T5+54252)2 (T^{6} - 35 T^{5} + \cdots - 54252)^{2} Copy content Toggle raw display
8989 T12+4T11++93083904 T^{12} + 4 T^{11} + \cdots + 93083904 Copy content Toggle raw display
9797 T12++1660725504 T^{12} + \cdots + 1660725504 Copy content Toggle raw display
show more
show less