Properties

Label 399.2.l.a
Level 399399
Weight 22
Character orbit 399.l
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(121,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.l (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2q2+ζ6q3+2q4+2ζ6q6+(ζ6+3)q7+(ζ61)q9+(2ζ6+2)q11+2ζ6q12+3ζ6q13+(2ζ6+6)q14++2ζ6q99+O(q100) q + 2 q^{2} + \zeta_{6} q^{3} + 2 q^{4} + 2 \zeta_{6} q^{6} + ( - \zeta_{6} + 3) q^{7} + (\zeta_{6} - 1) q^{9} + ( - 2 \zeta_{6} + 2) q^{11} + 2 \zeta_{6} q^{12} + 3 \zeta_{6} q^{13} + ( - 2 \zeta_{6} + 6) q^{14}+ \cdots + 2 \zeta_{6} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+q3+4q4+2q6+5q7q9+2q11+2q12+3q13+10q148q162q172q18q19+4q21+4q2210q25+6q262q27++2q99+O(q100) 2 q + 4 q^{2} + q^{3} + 4 q^{4} + 2 q^{6} + 5 q^{7} - q^{9} + 2 q^{11} + 2 q^{12} + 3 q^{13} + 10 q^{14} - 8 q^{16} - 2 q^{17} - 2 q^{18} - q^{19} + 4 q^{21} + 4 q^{22} - 10 q^{25} + 6 q^{26} - 2 q^{27}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) ζ6-\zeta_{6} 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
121.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 0.500000 0.866025i 2.00000 0 1.00000 1.73205i 2.50000 + 0.866025i 0 −0.500000 0.866025i 0
277.1 2.00000 0.500000 + 0.866025i 2.00000 0 1.00000 + 1.73205i 2.50000 0.866025i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.l.a yes 2
7.c even 3 1 399.2.i.a 2
19.c even 3 1 399.2.i.a 2
133.h even 3 1 inner 399.2.l.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.i.a 2 7.c even 3 1
399.2.i.a 2 19.c even 3 1
399.2.l.a yes 2 1.a even 1 1 trivial
399.2.l.a yes 2 133.h even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22 T_{2} - 2 acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2)2 (T - 2)^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T25T+7 T^{2} - 5T + 7 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1717 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1919 T2+T+19 T^{2} + T + 19 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
4141 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
6161 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
6767 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
7171 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7373 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
7979 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
9797 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
show more
show less