Properties

Label 399.2.l.a
Level $399$
Weight $2$
Character orbit 399.l
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(121,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + \zeta_{6} q^{3} + 2 q^{4} + 2 \zeta_{6} q^{6} + ( - \zeta_{6} + 3) q^{7} + (\zeta_{6} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + \zeta_{6} q^{3} + 2 q^{4} + 2 \zeta_{6} q^{6} + ( - \zeta_{6} + 3) q^{7} + (\zeta_{6} - 1) q^{9} + ( - 2 \zeta_{6} + 2) q^{11} + 2 \zeta_{6} q^{12} + 3 \zeta_{6} q^{13} + ( - 2 \zeta_{6} + 6) q^{14} - 4 q^{16} - 2 \zeta_{6} q^{17} + (2 \zeta_{6} - 2) q^{18} + (5 \zeta_{6} - 3) q^{19} + (2 \zeta_{6} + 1) q^{21} + ( - 4 \zeta_{6} + 4) q^{22} - 5 q^{25} + 6 \zeta_{6} q^{26} - q^{27} + ( - 2 \zeta_{6} + 6) q^{28} - 6 \zeta_{6} q^{29} - 8 q^{32} + 2 q^{33} - 4 \zeta_{6} q^{34} + (2 \zeta_{6} - 2) q^{36} - 7 \zeta_{6} q^{37} + (10 \zeta_{6} - 6) q^{38} + (3 \zeta_{6} - 3) q^{39} + ( - 4 \zeta_{6} + 4) q^{41} + (4 \zeta_{6} + 2) q^{42} + ( - \zeta_{6} + 1) q^{43} + ( - 4 \zeta_{6} + 4) q^{44} + (4 \zeta_{6} - 4) q^{47} - 4 \zeta_{6} q^{48} + ( - 5 \zeta_{6} + 8) q^{49} - 10 q^{50} + ( - 2 \zeta_{6} + 2) q^{51} + 6 \zeta_{6} q^{52} + 6 q^{53} - 2 q^{54} + (2 \zeta_{6} - 5) q^{57} - 12 \zeta_{6} q^{58} - 8 \zeta_{6} q^{59} + (7 \zeta_{6} - 7) q^{61} + (3 \zeta_{6} - 2) q^{63} - 8 q^{64} + 4 q^{66} - 4 q^{67} - 4 \zeta_{6} q^{68} + ( - 2 \zeta_{6} + 2) q^{71} + 11 \zeta_{6} q^{73} - 14 \zeta_{6} q^{74} - 5 \zeta_{6} q^{75} + (10 \zeta_{6} - 6) q^{76} + ( - 6 \zeta_{6} + 4) q^{77} + (6 \zeta_{6} - 6) q^{78} - 3 q^{79} - \zeta_{6} q^{81} + ( - 8 \zeta_{6} + 8) q^{82} + 12 q^{83} + (4 \zeta_{6} + 2) q^{84} + ( - 2 \zeta_{6} + 2) q^{86} + ( - 6 \zeta_{6} + 6) q^{87} + (16 \zeta_{6} - 16) q^{89} + (6 \zeta_{6} + 3) q^{91} + (8 \zeta_{6} - 8) q^{94} - 8 \zeta_{6} q^{96} + ( - 2 \zeta_{6} + 2) q^{97} + ( - 10 \zeta_{6} + 16) q^{98} + 2 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + q^{3} + 4 q^{4} + 2 q^{6} + 5 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} + q^{3} + 4 q^{4} + 2 q^{6} + 5 q^{7} - q^{9} + 2 q^{11} + 2 q^{12} + 3 q^{13} + 10 q^{14} - 8 q^{16} - 2 q^{17} - 2 q^{18} - q^{19} + 4 q^{21} + 4 q^{22} - 10 q^{25} + 6 q^{26} - 2 q^{27} + 10 q^{28} - 6 q^{29} - 16 q^{32} + 4 q^{33} - 4 q^{34} - 2 q^{36} - 7 q^{37} - 2 q^{38} - 3 q^{39} + 4 q^{41} + 8 q^{42} + q^{43} + 4 q^{44} - 4 q^{47} - 4 q^{48} + 11 q^{49} - 20 q^{50} + 2 q^{51} + 6 q^{52} + 12 q^{53} - 4 q^{54} - 8 q^{57} - 12 q^{58} - 8 q^{59} - 7 q^{61} - q^{63} - 16 q^{64} + 8 q^{66} - 8 q^{67} - 4 q^{68} + 2 q^{71} + 11 q^{73} - 14 q^{74} - 5 q^{75} - 2 q^{76} + 2 q^{77} - 6 q^{78} - 6 q^{79} - q^{81} + 8 q^{82} + 24 q^{83} + 8 q^{84} + 2 q^{86} + 6 q^{87} - 16 q^{89} + 12 q^{91} - 8 q^{94} - 8 q^{96} + 2 q^{97} + 22 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 0.500000 0.866025i 2.00000 0 1.00000 1.73205i 2.50000 + 0.866025i 0 −0.500000 0.866025i 0
277.1 2.00000 0.500000 + 0.866025i 2.00000 0 1.00000 + 1.73205i 2.50000 0.866025i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.l.a yes 2
7.c even 3 1 399.2.i.a 2
19.c even 3 1 399.2.i.a 2
133.h even 3 1 inner 399.2.l.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.i.a 2 7.c even 3 1
399.2.i.a 2 19.c even 3 1
399.2.l.a yes 2 1.a even 1 1 trivial
399.2.l.a yes 2 133.h even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$79$ \( (T + 3)^{2} \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less