Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(65,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.65");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 399.x (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | − | 1.73205i | 1.00000 | − | 1.73205i | 0 | 0 | −2.50000 | − | 0.866025i | 0 | −3.00000 | 0 | |||||||||||||||||||
221.1 | 0 | 1.73205i | 1.00000 | + | 1.73205i | 0 | 0 | −2.50000 | + | 0.866025i | 0 | −3.00000 | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
133.n | odd | 6 | 1 | inner |
399.x | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.x.a | ✓ | 2 |
3.b | odd | 2 | 1 | CM | 399.2.x.a | ✓ | 2 |
7.c | even | 3 | 1 | 399.2.bm.a | yes | 2 | |
19.d | odd | 6 | 1 | 399.2.bm.a | yes | 2 | |
21.h | odd | 6 | 1 | 399.2.bm.a | yes | 2 | |
57.f | even | 6 | 1 | 399.2.bm.a | yes | 2 | |
133.n | odd | 6 | 1 | inner | 399.2.x.a | ✓ | 2 |
399.x | even | 6 | 1 | inner | 399.2.x.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.x.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
399.2.x.a | ✓ | 2 | 3.b | odd | 2 | 1 | CM |
399.2.x.a | ✓ | 2 | 133.n | odd | 6 | 1 | inner |
399.2.x.a | ✓ | 2 | 399.x | even | 6 | 1 | inner |
399.2.bm.a | yes | 2 | 7.c | even | 3 | 1 | |
399.2.bm.a | yes | 2 | 19.d | odd | 6 | 1 | |
399.2.bm.a | yes | 2 | 21.h | odd | 6 | 1 | |
399.2.bm.a | yes | 2 | 57.f | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|