Properties

Label 399.2.x.a
Level $399$
Weight $2$
Character orbit 399.x
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(65,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 1) q^{3} + ( - 2 \zeta_{6} + 2) q^{4} + ( - \zeta_{6} - 2) q^{7} - 3 q^{9} + ( - 2 \zeta_{6} - 2) q^{12} + ( - 3 \zeta_{6} + 6) q^{13} - 4 \zeta_{6} q^{16} + (2 \zeta_{6} - 5) q^{19} + \cdots + (8 \zeta_{6} + 8) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 5 q^{7} - 6 q^{9} - 6 q^{12} + 9 q^{13} - 4 q^{16} - 8 q^{19} - 3 q^{21} - 5 q^{25} - 8 q^{28} + 18 q^{31} - 6 q^{36} - 9 q^{37} - 9 q^{39} + 13 q^{43} - 12 q^{48} + 11 q^{49} + 6 q^{57}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 1.00000 1.73205i 0 0 −2.50000 0.866025i 0 −3.00000 0
221.1 0 1.73205i 1.00000 + 1.73205i 0 0 −2.50000 + 0.866025i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
133.n odd 6 1 inner
399.x even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.x.a 2
3.b odd 2 1 CM 399.2.x.a 2
7.c even 3 1 399.2.bm.a yes 2
19.d odd 6 1 399.2.bm.a yes 2
21.h odd 6 1 399.2.bm.a yes 2
57.f even 6 1 399.2.bm.a yes 2
133.n odd 6 1 inner 399.2.x.a 2
399.x even 6 1 inner 399.2.x.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.x.a 2 1.a even 1 1 trivial
399.2.x.a 2 3.b odd 2 1 CM
399.2.x.a 2 133.n odd 6 1 inner
399.2.x.a 2 399.x even 6 1 inner
399.2.bm.a yes 2 7.c even 3 1
399.2.bm.a yes 2 19.d odd 6 1
399.2.bm.a yes 2 21.h odd 6 1
399.2.bm.a yes 2 57.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13}^{2} - 9T_{13} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 18T + 108 \) Copy content Toggle raw display
$37$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 13)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 12 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 17)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 24T + 192 \) Copy content Toggle raw display
show more
show less