Properties

Label 399.2.x.a
Level 399399
Weight 22
Character orbit 399.x
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(65,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.x (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ6+1)q3+(2ζ6+2)q4+(ζ62)q73q9+(2ζ62)q12+(3ζ6+6)q134ζ6q16+(2ζ65)q19++(8ζ6+8)q97+O(q100) q + ( - 2 \zeta_{6} + 1) q^{3} + ( - 2 \zeta_{6} + 2) q^{4} + ( - \zeta_{6} - 2) q^{7} - 3 q^{9} + ( - 2 \zeta_{6} - 2) q^{12} + ( - 3 \zeta_{6} + 6) q^{13} - 4 \zeta_{6} q^{16} + (2 \zeta_{6} - 5) q^{19} + \cdots + (8 \zeta_{6} + 8) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q45q76q96q12+9q134q168q193q215q258q28+18q316q369q379q39+13q4312q48+11q49+6q57++24q97+O(q100) 2 q + 2 q^{4} - 5 q^{7} - 6 q^{9} - 6 q^{12} + 9 q^{13} - 4 q^{16} - 8 q^{19} - 3 q^{21} - 5 q^{25} - 8 q^{28} + 18 q^{31} - 6 q^{36} - 9 q^{37} - 9 q^{39} + 13 q^{43} - 12 q^{48} + 11 q^{49} + 6 q^{57}+ \cdots + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) 1+ζ6-1 + \zeta_{6} 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 1.00000 1.73205i 0 0 −2.50000 0.866025i 0 −3.00000 0
221.1 0 1.73205i 1.00000 + 1.73205i 0 0 −2.50000 + 0.866025i 0 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
133.n odd 6 1 inner
399.x even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.x.a 2
3.b odd 2 1 CM 399.2.x.a 2
7.c even 3 1 399.2.bm.a yes 2
19.d odd 6 1 399.2.bm.a yes 2
21.h odd 6 1 399.2.bm.a yes 2
57.f even 6 1 399.2.bm.a yes 2
133.n odd 6 1 inner 399.2.x.a 2
399.x even 6 1 inner 399.2.x.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.x.a 2 1.a even 1 1 trivial
399.2.x.a 2 3.b odd 2 1 CM
399.2.x.a 2 133.n odd 6 1 inner
399.2.x.a 2 399.x even 6 1 inner
399.2.bm.a yes 2 7.c even 3 1
399.2.bm.a yes 2 19.d odd 6 1
399.2.bm.a yes 2 21.h odd 6 1
399.2.bm.a yes 2 57.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]):

T2 T_{2} Copy content Toggle raw display
T1329T13+27 T_{13}^{2} - 9T_{13} + 27 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3 T^{2} + 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+5T+7 T^{2} + 5T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+8T+19 T^{2} + 8T + 19 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T218T+108 T^{2} - 18T + 108 Copy content Toggle raw display
3737 T2+9T+27 T^{2} + 9T + 27 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T13)2 (T - 13)^{2} Copy content Toggle raw display
6767 T2+6T+12 T^{2} + 6T + 12 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T17)2 (T - 17)^{2} Copy content Toggle raw display
7979 T2+9T+27 T^{2} + 9T + 27 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T224T+192 T^{2} - 24T + 192 Copy content Toggle raw display
show more
show less