Properties

Label 4.41.b.a
Level 44
Weight 4141
Character orbit 4.b
Self dual yes
Analytic conductor 40.53740.537
Analytic rank 00
Dimension 11
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4,41,Mod(3,4)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 41, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4.3");
 
S:= CuspForms(chi, 41);
 
N := Newforms(S);
 
Level: N N == 4=22 4 = 2^{2}
Weight: k k == 41 41
Character orbit: [χ][\chi] == 4.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 40.536914078640.5369140786
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1048576q2+1099511627776q4+182008936336226q5+11 ⁣ ⁣76q8+12 ⁣ ⁣01q9+19 ⁣ ⁣76q1015 ⁣ ⁣98q13+12 ⁣ ⁣76q1675 ⁣ ⁣98q17++66 ⁣ ⁣76q98+O(q100) q + 1048576 q^{2} + 1099511627776 q^{4} + 182008936336226 q^{5} + 11\!\cdots\!76 q^{8} + 12\!\cdots\!01 q^{9} + 19\!\cdots\!76 q^{10} - 15\!\cdots\!98 q^{13} + 12\!\cdots\!76 q^{16} - 75\!\cdots\!98 q^{17}+ \cdots + 66\!\cdots\!76 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4Z)×\left(\mathbb{Z}/4\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3.1
0
1.04858e6 0 1.09951e12 1.82009e14 0 0 1.15292e18 1.21577e19 1.90850e20
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4.41.b.a 1
4.b odd 2 1 CM 4.41.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.41.b.a 1 1.a even 1 1 trivial
4.41.b.a 1 4.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S41new(4,[χ])S_{41}^{\mathrm{new}}(4, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T1048576 T - 1048576 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T182008936336226 T - 182008936336226 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+15 ⁣ ⁣98 T + 15\!\cdots\!98 Copy content Toggle raw display
1717 T+75 ⁣ ⁣98 T + 75\!\cdots\!98 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T+31 ⁣ ⁣98 T + 31\!\cdots\!98 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T43 ⁣ ⁣02 T - 43\!\cdots\!02 Copy content Toggle raw display
4141 T+10 ⁣ ⁣98 T + 10\!\cdots\!98 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T83 ⁣ ⁣02 T - 83\!\cdots\!02 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+90 ⁣ ⁣98 T + 90\!\cdots\!98 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+78 ⁣ ⁣98 T + 78\!\cdots\!98 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+18 ⁣ ⁣98 T + 18\!\cdots\!98 Copy content Toggle raw display
9797 T+56 ⁣ ⁣98 T + 56\!\cdots\!98 Copy content Toggle raw display
show more
show less