Properties

Label 40.15.e.a.19.1
Level 4040
Weight 1515
Character 40.19
Self dual yes
Analytic conductor 49.73249.732
Analytic rank 00
Dimension 11
CM discriminant -40
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [40,15,Mod(19,40)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 15, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("40.19"); S:= CuspForms(chi, 15); N := Newforms(S);
 
Level: N N == 40=235 40 = 2^{3} \cdot 5
Weight: k k == 15 15
Character orbit: [χ][\chi] == 40.e (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 49.731587260849.7315872608
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 19.1
Character χ\chi == 40.19

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q128.000q2+16384.0q4+78125.0q567866.0q72.09715e6q8+4.78297e6q91.00000e7q10+1.60524e7q11+1.25277e8q13+8.68685e6q14+2.68435e8q166.12220e8q18+6.44127e8q19+1.28000e9q202.05470e9q225.95134e9q23+6.10352e9q251.60354e10q261.11192e9q283.43597e10q325.30203e9q35+7.83642e10q361.00483e11q378.24483e10q381.63840e11q40+2.27781e11q41+2.63002e11q44+3.73669e11q45+7.61771e11q469.85930e11q476.73617e11q497.81250e11q50+2.05253e12q52+1.80159e12q53+1.25409e12q55+1.42325e11q56+4.68767e12q593.24601e11q63+4.39805e12q64+9.78723e12q65+6.78660e11q701.00306e13q72+1.28618e13q74+1.05534e13q761.08941e12q77+2.09715e13q80+2.28768e13q812.91560e13q823.36643e13q885.76010e13q894.78297e13q908.50202e12q919.75067e13q92+1.26199e14q94+5.03224e13q95+8.62230e13q98+7.67780e13q99+O(q100)q-128.000 q^{2} +16384.0 q^{4} +78125.0 q^{5} -67866.0 q^{7} -2.09715e6 q^{8} +4.78297e6 q^{9} -1.00000e7 q^{10} +1.60524e7 q^{11} +1.25277e8 q^{13} +8.68685e6 q^{14} +2.68435e8 q^{16} -6.12220e8 q^{18} +6.44127e8 q^{19} +1.28000e9 q^{20} -2.05470e9 q^{22} -5.95134e9 q^{23} +6.10352e9 q^{25} -1.60354e10 q^{26} -1.11192e9 q^{28} -3.43597e10 q^{32} -5.30203e9 q^{35} +7.83642e10 q^{36} -1.00483e11 q^{37} -8.24483e10 q^{38} -1.63840e11 q^{40} +2.27781e11 q^{41} +2.63002e11 q^{44} +3.73669e11 q^{45} +7.61771e11 q^{46} -9.85930e11 q^{47} -6.73617e11 q^{49} -7.81250e11 q^{50} +2.05253e12 q^{52} +1.80159e12 q^{53} +1.25409e12 q^{55} +1.42325e11 q^{56} +4.68767e12 q^{59} -3.24601e11 q^{63} +4.39805e12 q^{64} +9.78723e12 q^{65} +6.78660e11 q^{70} -1.00306e13 q^{72} +1.28618e13 q^{74} +1.05534e13 q^{76} -1.08941e12 q^{77} +2.09715e13 q^{80} +2.28768e13 q^{81} -2.91560e13 q^{82} -3.36643e13 q^{88} -5.76010e13 q^{89} -4.78297e13 q^{90} -8.50202e12 q^{91} -9.75067e13 q^{92} +1.26199e14 q^{94} +5.03224e13 q^{95} +8.62230e13 q^{98} +7.67780e13 q^{99} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/40Z)×\left(\mathbb{Z}/40\mathbb{Z}\right)^\times.

nn 1717 2121 3131
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −128.000 −1.00000
33 0 0 1.00000 00
−1.00000 π\pi
44 16384.0 1.00000
55 78125.0 1.00000
66 0 0
77 −67866.0 −0.0824074 −0.0412037 0.999151i 0.513119π-0.513119\pi
−0.0412037 + 0.999151i 0.513119π0.513119\pi
88 −2.09715e6 −1.00000
99 4.78297e6 1.00000
1010 −1.00000e7 −1.00000
1111 1.60524e7 0.823741 0.411871 0.911242i 0.364876π-0.364876\pi
0.411871 + 0.911242i 0.364876π0.364876\pi
1212 0 0
1313 1.25277e8 1.99649 0.998243 0.0592462i 0.0188697π-0.0188697\pi
0.998243 + 0.0592462i 0.0188697π0.0188697\pi
1414 8.68685e6 0.0824074
1515 0 0
1616 2.68435e8 1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 −6.12220e8 −1.00000
1919 6.44127e8 0.720604 0.360302 0.932836i 0.382674π-0.382674\pi
0.360302 + 0.932836i 0.382674π0.382674\pi
2020 1.28000e9 1.00000
2121 0 0
2222 −2.05470e9 −0.823741
2323 −5.95134e9 −1.74791 −0.873957 0.486004i 0.838454π-0.838454\pi
−0.873957 + 0.486004i 0.838454π0.838454\pi
2424 0 0
2525 6.10352e9 1.00000
2626 −1.60354e10 −1.99649
2727 0 0
2828 −1.11192e9 −0.0824074
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −3.43597e10 −1.00000
3333 0 0
3434 0 0
3535 −5.30203e9 −0.0824074
3636 7.83642e10 1.00000
3737 −1.00483e11 −1.05847 −0.529235 0.848475i 0.677521π-0.677521\pi
−0.529235 + 0.848475i 0.677521π0.677521\pi
3838 −8.24483e10 −0.720604
3939 0 0
4040 −1.63840e11 −1.00000
4141 2.27781e11 1.16958 0.584792 0.811183i 0.301176π-0.301176\pi
0.584792 + 0.811183i 0.301176π0.301176\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 2.63002e11 0.823741
4545 3.73669e11 1.00000
4646 7.61771e11 1.74791
4747 −9.85930e11 −1.94608 −0.973041 0.230633i 0.925920π-0.925920\pi
−0.973041 + 0.230633i 0.925920π0.925920\pi
4848 0 0
4949 −6.73617e11 −0.993209
5050 −7.81250e11 −1.00000
5151 0 0
5252 2.05253e12 1.99649
5353 1.80159e12 1.53364 0.766821 0.641861i 0.221838π-0.221838\pi
0.766821 + 0.641861i 0.221838π0.221838\pi
5454 0 0
5555 1.25409e12 0.823741
5656 1.42325e11 0.0824074
5757 0 0
5858 0 0
5959 4.68767e12 1.88362 0.941809 0.336148i 0.109124π-0.109124\pi
0.941809 + 0.336148i 0.109124π0.109124\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −3.24601e11 −0.0824074
6464 4.39805e12 1.00000
6565 9.78723e12 1.99649
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 6.78660e11 0.0824074
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −1.00306e13 −1.00000
7373 0 0 1.00000 00
−1.00000 π\pi
7474 1.28618e13 1.05847
7575 0 0
7676 1.05534e13 0.720604
7777 −1.08941e12 −0.0678823
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 2.09715e13 1.00000
8181 2.28768e13 1.00000
8282 −2.91560e13 −1.16958
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −3.36643e13 −0.823741
8989 −5.76010e13 −1.30227 −0.651134 0.758963i 0.725706π-0.725706\pi
−0.651134 + 0.758963i 0.725706π0.725706\pi
9090 −4.78297e13 −1.00000
9191 −8.50202e12 −0.164525
9292 −9.75067e13 −1.74791
9393 0 0
9494 1.26199e14 1.94608
9595 5.03224e13 0.720604
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 8.62230e13 0.993209
9999 7.67780e13 0.823741
100100 1.00000e14 1.00000
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 2.45853e14 1.99901 0.999504 0.0315014i 0.0100289π-0.0100289\pi
0.999504 + 0.0315014i 0.0100289π0.0100289\pi
104104 −2.62724e14 −1.99649
105105 0 0
106106 −2.30603e14 −1.53364
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 −1.60524e14 −0.823741
111111 0 0
112112 −1.82176e13 −0.0824074
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −4.64948e14 −1.74791
116116 0 0
117117 5.99194e14 1.99649
118118 −6.00022e14 −1.88362
119119 0 0
120120 0 0
121121 −1.22071e14 −0.321451
122122 0 0
123123 0 0
124124 0 0
125125 4.76837e14 1.00000
126126 4.15489e13 0.0824074
127127 −2.02035e14 −0.379140 −0.189570 0.981867i 0.560709π-0.560709\pi
−0.189570 + 0.981867i 0.560709π0.560709\pi
128128 −5.62950e14 −1.00000
129129 0 0
130130 −1.25277e15 −1.99649
131131 −9.43716e14 −1.42542 −0.712709 0.701460i 0.752532π-0.752532\pi
−0.712709 + 0.701460i 0.752532π0.752532\pi
132132 0 0
133133 −4.37143e13 −0.0593830
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 1.73492e15 1.73052 0.865259 0.501324i 0.167154π-0.167154\pi
0.865259 + 0.501324i 0.167154π0.167154\pi
140140 −8.68685e13 −0.0824074
141141 0 0
142142 0 0
143143 2.01099e15 1.64459
144144 1.28392e15 1.00000
145145 0 0
146146 0 0
147147 0 0
148148 −1.64631e15 −1.05847
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 −1.35083e15 −0.720604
153153 0 0
154154 1.39445e14 0.0678823
155155 0 0
156156 0 0
157157 4.52640e15 1.92511 0.962555 0.271088i 0.0873835π-0.0873835\pi
0.962555 + 0.271088i 0.0873835π0.0873835\pi
158158 0 0
159159 0 0
160160 −2.68435e15 −1.00000
161161 4.03894e14 0.144041
162162 −2.92823e15 −1.00000
163163 0 0 1.00000 00
−1.00000 π\pi
164164 3.73197e15 1.16958
165165 0 0
166166 0 0
167167 5.50909e15 1.52077 0.760386 0.649471i 0.225010π-0.225010\pi
0.760386 + 0.649471i 0.225010π0.225010\pi
168168 0 0
169169 1.17568e16 2.98596
170170 0 0
171171 3.08084e15 0.720604
172172 0 0
173173 −3.27758e15 −0.706692 −0.353346 0.935493i 0.614956π-0.614956\pi
−0.353346 + 0.935493i 0.614956π0.614956\pi
174174 0 0
175175 −4.14221e14 −0.0824074
176176 4.30903e15 0.823741
177177 0 0
178178 7.37293e15 1.30227
179179 −1.15436e16 −1.96051 −0.980254 0.197743i 0.936639π-0.936639\pi
−0.980254 + 0.197743i 0.936639π0.936639\pi
180180 6.12220e15 1.00000
181181 0 0 1.00000 00
−1.00000 π\pi
182182 1.08826e15 0.164525
183183 0 0
184184 1.24809e16 1.74791
185185 −7.85021e15 −1.05847
186186 0 0
187187 0 0
188188 −1.61535e16 −1.94608
189189 0 0
190190 −6.44127e15 −0.720604
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 −1.10365e16 −0.993209
197197 −2.17426e16 −1.88820 −0.944099 0.329661i 0.893066π-0.893066\pi
−0.944099 + 0.329661i 0.893066π0.893066\pi
198198 −9.82759e15 −0.823741
199199 0 0 1.00000 00
−1.00000 π\pi
200200 −1.28000e16 −1.00000
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 1.77954e16 1.16958
206206 −3.14691e16 −1.99901
207207 −2.84651e16 −1.74791
208208 3.36287e16 1.99649
209209 1.03398e16 0.593591
210210 0 0
211211 −3.19672e16 −1.71683 −0.858415 0.512955i 0.828551π-0.828551\pi
−0.858415 + 0.512955i 0.828551π0.828551\pi
212212 2.95172e16 1.53364
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 2.05470e16 0.823741
221221 0 0
222222 0 0
223223 −4.11927e16 −1.50206 −0.751028 0.660270i 0.770442π-0.770442\pi
−0.751028 + 0.660270i 0.770442π0.770442\pi
224224 2.33186e15 0.0824074
225225 2.91929e16 1.00000
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 5.95134e16 1.74791
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 −7.66968e16 −1.99649
235235 −7.70258e16 −1.94608
236236 7.68028e16 1.88362
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 6.79936e16 1.43995 0.719977 0.693998i 0.244152π-0.244152\pi
0.719977 + 0.693998i 0.244152π0.244152\pi
242242 1.56251e16 0.321451
243243 0 0
244244 0 0
245245 −5.26263e16 −0.993209
246246 0 0
247247 8.06940e16 1.43868
248248 0 0
249249 0 0
250250 −6.10352e16 −1.00000
251251 −7.95684e16 −1.26772 −0.633862 0.773446i 0.718531π-0.718531\pi
−0.633862 + 0.773446i 0.718531π0.718531\pi
252252 −5.31826e15 −0.0824074
253253 −9.55332e16 −1.43983
254254 2.58604e16 0.379140
255255 0 0
256256 7.20576e16 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 6.81935e15 0.0872258
260260 1.60354e17 1.99649
261261 0 0
262262 1.20796e17 1.42542
263263 −1.47100e17 −1.69014 −0.845069 0.534657i 0.820441π-0.820441\pi
−0.845069 + 0.534657i 0.820441π0.820441\pi
264264 0 0
265265 1.40749e17 1.53364
266266 5.59543e15 0.0593830
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 9.79760e16 0.823741
276276 0 0
277277 3.56086e16 0.284575 0.142287 0.989825i 0.454554π-0.454554\pi
0.142287 + 0.989825i 0.454554π0.454554\pi
278278 −2.22070e17 −1.73052
279279 0 0
280280 1.11192e16 0.0824074
281281 2.28956e17 1.65504 0.827520 0.561436i 0.189751π-0.189751\pi
0.827520 + 0.561436i 0.189751π0.189751\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 −2.57406e17 −1.64459
287287 −1.54586e16 −0.0963823
288288 −1.64342e17 −1.00000
289289 1.68378e17 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 9.64995e16 0.520537 0.260269 0.965536i 0.416189π-0.416189\pi
0.260269 + 0.965536i 0.416189π0.416189\pi
294294 0 0
295295 3.66224e17 1.88362
296296 2.10727e17 1.05847
297297 0 0
298298 0 0
299299 −7.45563e17 −3.48969
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 1.72907e17 0.720604
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 −1.78489e16 −0.0678823
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −5.79379e17 −1.92511
315315 −2.53595e16 −0.0824074
316316 0 0
317317 5.03679e17 1.56581 0.782905 0.622141i 0.213737π-0.213737\pi
0.782905 + 0.622141i 0.213737π0.213737\pi
318318 0 0
319319 0 0
320320 3.43597e17 1.00000
321321 0 0
322322 −5.16984e16 −0.144041
323323 0 0
324324 3.74813e17 1.00000
325325 7.64628e17 1.99649
326326 0 0
327327 0 0
328328 −4.77692e17 −1.16958
329329 6.69111e16 0.160371
330330 0 0
331331 −4.98299e17 −1.14471 −0.572354 0.820007i 0.693969π-0.693969\pi
−0.572354 + 0.820007i 0.693969π0.693969\pi
332332 0 0
333333 −4.80605e17 −1.05847
334334 −7.05163e17 −1.52077
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −1.50488e18 −2.98596
339339 0 0
340340 0 0
341341 0 0
342342 −3.94348e17 −0.720604
343343 9.17440e16 0.164255
344344 0 0
345345 0 0
346346 4.19530e17 0.706692
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 5.30203e16 0.0824074
351351 0 0
352352 −5.51556e17 −0.823741
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 −9.43735e17 −1.30227
357357 0 0
358358 1.47758e18 1.96051
359359 0 0 1.00000 00
−1.00000 π\pi
360360 −7.83642e17 −1.00000
361361 −3.84107e17 −0.480731
362362 0 0
363363 0 0
364364 −1.39297e17 −0.164525
365365 0 0
366366 0 0
367367 1.37119e18 1.52910 0.764550 0.644565i 0.222961π-0.222961\pi
0.764550 + 0.644565i 0.222961π0.222961\pi
368368 −1.59755e18 −1.74791
369369 1.08947e18 1.16958
370370 1.00483e18 1.05847
371371 −1.22266e17 −0.126383
372372 0 0
373373 −1.58391e18 −1.57677 −0.788386 0.615180i 0.789083π-0.789083\pi
−0.788386 + 0.615180i 0.789083π0.789083\pi
374374 0 0
375375 0 0
376376 2.06764e18 1.94608
377377 0 0
378378 0 0
379379 1.49469e18 1.33069 0.665345 0.746536i 0.268285π-0.268285\pi
0.665345 + 0.746536i 0.268285π0.268285\pi
380380 8.24483e17 0.720604
381381 0 0
382382 0 0
383383 −4.46539e17 −0.369375 −0.184688 0.982797i 0.559127π-0.559127\pi
−0.184688 + 0.982797i 0.559127π0.559127\pi
384384 0 0
385385 −8.51102e16 −0.0678823
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 1.41268e18 0.993209
393393 0 0
394394 2.78305e18 1.88820
395395 0 0
396396 1.25793e18 0.823741
397397 1.14115e16 0.00734190 0.00367095 0.999993i 0.498831π-0.498831\pi
0.00367095 + 0.999993i 0.498831π0.498831\pi
398398 0 0
399399 0 0
400400 1.63840e18 1.00000
401401 −7.07198e17 −0.424161 −0.212080 0.977252i 0.568024π-0.568024\pi
−0.212080 + 0.977252i 0.568024π0.568024\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.78725e18 1.00000
406406 0 0
407407 −1.61299e18 −0.871906
408408 0 0
409409 −8.94471e17 −0.467200 −0.233600 0.972333i 0.575051π-0.575051\pi
−0.233600 + 0.972333i 0.575051π0.575051\pi
410410 −2.27781e18 −1.16958
411411 0 0
412412 4.02805e18 1.99901
413413 −3.18133e17 −0.155224
414414 3.64353e18 1.74791
415415 0 0
416416 −4.30447e18 −1.99649
417417 0 0
418418 −1.32349e18 −0.593591
419419 4.43581e18 1.95648 0.978239 0.207482i 0.0665270π-0.0665270\pi
0.978239 + 0.207482i 0.0665270π0.0665270\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 4.09180e18 1.71683
423423 −4.71567e18 −1.94608
424424 −3.77820e18 −1.53364
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −3.83342e18 −1.25955
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 −2.63002e18 −0.823741
441441 −3.22189e18 −0.993209
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 −4.50008e18 −1.30227
446446 5.27267e18 1.50206
447447 0 0
448448 −2.98478e17 −0.0824074
449449 −6.56311e18 −1.78396 −0.891981 0.452074i 0.850684π-0.850684\pi
−0.891981 + 0.452074i 0.850684π0.850684\pi
450450 −3.73669e18 −1.00000
451451 3.65643e18 0.963434
452452 0 0
453453 0 0
454454 0 0
455455 −6.64220e17 −0.164525
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 −7.61771e18 −1.74791
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −1.85442e18 −0.406575 −0.203287 0.979119i 0.565163π-0.565163\pi
−0.203287 + 0.979119i 0.565163π0.565163\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 9.81719e18 1.99649
469469 0 0
470470 9.85930e18 1.94608
471471 0 0
472472 −9.83076e18 −1.88362
473473 0 0
474474 0 0
475475 3.93144e18 0.720604
476476 0 0
477477 8.61693e18 1.53364
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 −1.25881e19 −2.11322
482482 −8.70317e18 −1.43995
483483 0 0
484484 −2.00001e18 −0.321451
485485 0 0
486486 0 0
487487 −5.60133e17 −0.0862161 −0.0431081 0.999070i 0.513726π-0.513726\pi
−0.0431081 + 0.999070i 0.513726π0.513726\pi
488488 0 0
489489 0 0
490490 6.73617e18 0.993209
491491 −1.11016e19 −1.61366 −0.806832 0.590780i 0.798820π-0.798820\pi
−0.806832 + 0.590780i 0.798820π0.798820\pi
492492 0 0
493493 0 0
494494 −1.03288e19 −1.43868
495495 5.99828e18 0.823741
496496 0 0
497497 0 0
498498 0 0
499499 4.77469e18 0.619785 0.309893 0.950772i 0.399707π-0.399707\pi
0.309893 + 0.950772i 0.399707π0.399707\pi
500500 7.81250e18 1.00000
501501 0 0
502502 1.01848e19 1.26772
503503 1.61818e19 1.98633 0.993166 0.116712i 0.0372355π-0.0372355\pi
0.993166 + 0.116712i 0.0372355π0.0372355\pi
504504 6.80738e17 0.0824074
505505 0 0
506506 1.22282e19 1.43983
507507 0 0
508508 −3.31013e18 −0.379140
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −9.22337e18 −1.00000
513513 0 0
514514 0 0
515515 1.92072e19 1.99901
516516 0 0
517517 −1.58265e19 −1.60307
518518 −8.72877e17 −0.0872258
519519 0 0
520520 −2.05253e19 −1.99649
521521 −7.51842e18 −0.721544 −0.360772 0.932654i 0.617487π-0.617487\pi
−0.360772 + 0.932654i 0.617487π0.617487\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 −1.54618e19 −1.42542
525525 0 0
526526 1.88288e19 1.69014
527527 0 0
528528 0 0
529529 2.38256e19 2.05520
530530 −1.80159e19 −1.53364
531531 2.24210e19 1.88362
532532 −7.16216e17 −0.0593830
533533 2.85357e19 2.33506
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.08132e19 −0.818147
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 −1.25409e19 −0.823741
551551 0 0
552552 0 0
553553 0 0
554554 −4.55790e18 −0.284575
555555 0 0
556556 2.84250e19 1.73052
557557 2.08524e19 1.25363 0.626816 0.779167i 0.284358π-0.284358\pi
0.626816 + 0.779167i 0.284358π0.284358\pi
558558 0 0
559559 0 0
560560 −1.42325e18 −0.0824074
561561 0 0
562562 −2.93064e19 −1.65504
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 −1.55256e18 −0.0824074
568568 0 0
569569 −3.15378e19 −1.63322 −0.816610 0.577189i 0.804149π-0.804149\pi
−0.816610 + 0.577189i 0.804149π0.804149\pi
570570 0 0
571571 −2.53139e19 −1.27911 −0.639553 0.768747i 0.720880π-0.720880\pi
−0.639553 + 0.768747i 0.720880π0.720880\pi
572572 3.29480e19 1.64459
573573 0 0
574574 1.97870e18 0.0963823
575575 −3.63241e19 −1.74791
576576 2.10357e19 1.00000
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −2.15524e19 −1.00000
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 2.89197e19 1.26332
584584 0 0
585585 4.68120e19 1.99649
586586 −1.23519e19 −0.520537
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 −4.68767e19 −1.88362
591591 0 0
592592 −2.69731e19 −1.05847
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 9.54321e19 3.48969
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 1.47841e19 0.522003 0.261002 0.965338i 0.415947π-0.415947\pi
0.261002 + 0.965338i 0.415947π0.415947\pi
602602 0 0
603603 0 0
604604 0 0
605605 −9.53679e18 −0.321451
606606 0 0
607607 4.21288e19 1.38758 0.693790 0.720178i 0.255940π-0.255940\pi
0.693790 + 0.720178i 0.255940π0.255940\pi
608608 −2.21320e19 −0.720604
609609 0 0
610610 0 0
611611 −1.23514e20 −3.88533
612612 0 0
613613 −2.08455e18 −0.0640897 −0.0320448 0.999486i 0.510202π-0.510202\pi
−0.0320448 + 0.999486i 0.510202π0.510202\pi
614614 0 0
615615 0 0
616616 2.28466e18 0.0678823
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 4.82069e19 1.38444 0.692221 0.721686i 0.256632π-0.256632\pi
0.692221 + 0.721686i 0.256632π0.256632\pi
620620 0 0
621621 0 0
622622 0 0
623623 3.90915e18 0.107316
624624 0 0
625625 3.72529e19 1.00000
626626 0 0
627627 0 0
628628 7.41605e19 1.92511
629629 0 0
630630 3.24601e18 0.0824074
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −6.44710e19 −1.56581
635635 −1.57839e19 −0.379140
636636 0 0
637637 −8.43885e19 −1.98293
638638 0 0
639639 0 0
640640 −4.39805e19 −1.00000
641641 −7.56679e19 −1.70179 −0.850895 0.525337i 0.823939π-0.823939\pi
−0.850895 + 0.525337i 0.823939π0.823939\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 6.61739e18 0.144041
645645 0 0
646646 0 0
647647 −9.27967e19 −1.95525 −0.977625 0.210354i 0.932539π-0.932539\pi
−0.977625 + 0.210354i 0.932539π0.932539\pi
648648 −4.79761e19 −1.00000
649649 7.52483e19 1.55161
650650 −9.78723e19 −1.99649
651651 0 0
652652 0 0
653653 −3.41655e19 −0.674831 −0.337416 0.941356i 0.609553π-0.609553\pi
−0.337416 + 0.941356i 0.609553π0.609553\pi
654654 0 0
655655 −7.37278e19 −1.42542
656656 6.11446e19 1.16958
657657 0 0
658658 −8.56462e18 −0.160371
659659 −4.39969e19 −0.815125 −0.407563 0.913177i 0.633621π-0.633621\pi
−0.407563 + 0.913177i 0.633621π0.633621\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 6.37823e19 1.14471
663663 0 0
664664 0 0
665665 −3.41518e18 −0.0593830
666666 6.15175e19 1.05847
667667 0 0
668668 9.02609e19 1.52077
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 1.92624e20 2.98596
677677 −8.03858e18 −0.123327 −0.0616636 0.998097i 0.519641π-0.519641\pi
−0.0616636 + 0.998097i 0.519641π0.519641\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 5.04765e19 0.720604
685685 0 0
686686 −1.17432e19 −0.164255
687687 0 0
688688 0 0
689689 2.25697e20 3.06190
690690 0 0
691691 −1.39170e20 −1.85012 −0.925058 0.379825i 0.875984π-0.875984\pi
−0.925058 + 0.379825i 0.875984π0.875984\pi
692692 −5.36998e19 −0.706692
693693 −5.21062e18 −0.0678823
694694 0 0
695695 1.35541e20 1.73052
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −6.78660e18 −0.0824074
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 −6.47236e19 −0.762738
704704 7.05991e19 0.823741
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 1.20798e20 1.30227
713713 0 0
714714 0 0
715715 1.57108e20 1.64459
716716 −1.89130e20 −1.96051
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 1.00306e20 1.00000
721721 −1.66850e19 −0.164733
722722 4.91657e19 0.480731
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −8.52592e19 −0.794329 −0.397164 0.917748i 0.630006π-0.630006\pi
−0.397164 + 0.917748i 0.630006π0.630006\pi
728728 1.78300e19 0.164525
729729 1.09419e20 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 2.20448e20 1.93900 0.969499 0.245094i 0.0788188π-0.0788188\pi
0.969499 + 0.245094i 0.0788188π0.0788188\pi
734734 −1.75513e20 −1.52910
735735 0 0
736736 2.04486e20 1.74791
737737 0 0
738738 −1.39452e20 −1.16958
739739 −1.47880e19 −0.122856 −0.0614281 0.998112i 0.519565π-0.519565\pi
−0.0614281 + 0.998112i 0.519565π0.519565\pi
740740 −1.28618e20 −1.05847
741741 0 0
742742 1.56501e19 0.126383
743743 −1.47711e20 −1.18165 −0.590827 0.806798i 0.701198π-0.701198\pi
−0.590827 + 0.806798i 0.701198π0.701198\pi
744744 0 0
745745 0 0
746746 2.02741e20 1.57677
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 −2.64659e20 −1.94608
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.65157e20 1.15938 0.579690 0.814837i 0.303174π-0.303174\pi
0.579690 + 0.814837i 0.303174π0.303174\pi
758758 −1.91320e20 −1.33069
759759 0 0
760760 −1.05534e20 −0.720604
761761 −2.53391e20 −1.71434 −0.857172 0.515030i 0.827781π-0.827781\pi
−0.857172 + 0.515030i 0.827781π0.827781\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 5.71570e19 0.369375
767767 5.87255e20 3.76062
768768 0 0
769769 −3.17054e20 −1.99365 −0.996823 0.0796425i 0.974622π-0.974622\pi
−0.996823 + 0.0796425i 0.974622π0.974622\pi
770770 1.08941e19 0.0678823
771771 0 0
772772 0 0
773773 −2.91108e20 −1.76522 −0.882609 0.470109i 0.844215π-0.844215\pi
−0.882609 + 0.470109i 0.844215π0.844215\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 1.46720e20 0.842806
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.80823e20 −0.993209
785785 3.53625e20 1.92511
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 −3.56231e20 −1.88820
789789 0 0
790790 0 0
791791 0 0
792792 −1.61015e20 −0.823741
793793 0 0
794794 −1.46067e18 −0.00734190
795795 0 0
796796 0 0
797797 −4.65475e19 −0.227871 −0.113935 0.993488i 0.536346π-0.536346\pi
−0.113935 + 0.993488i 0.536346π0.536346\pi
798798 0 0
799799 0 0
800800 −2.09715e20 −1.00000
801801 −2.75504e20 −1.30227
802802 9.05213e19 0.424161
803803 0 0
804804 0 0
805805 3.15542e19 0.144041
806806 0 0
807807 0 0
808808 0 0
809809 −4.24141e20 −1.87012 −0.935062 0.354485i 0.884656π-0.884656\pi
−0.935062 + 0.354485i 0.884656π0.884656\pi
810810 −2.28768e20 −1.00000
811811 −4.06829e20 −1.76306 −0.881528 0.472132i 0.843485π-0.843485\pi
−0.881528 + 0.472132i 0.843485π0.843485\pi
812812 0 0
813813 0 0
814814 2.06462e20 0.871906
815815 0 0
816816 0 0
817817 0 0
818818 1.14492e20 0.467200
819819 −4.06649e19 −0.164525
820820 2.91560e20 1.16958
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 1.14449e20 0.447521 0.223760 0.974644i 0.428167π-0.428167\pi
0.223760 + 0.974644i 0.428167π0.428167\pi
824824 −5.15590e20 −1.99901
825825 0 0
826826 4.07211e19 0.155224
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −4.66372e20 −1.74791
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 5.50972e20 1.99649
833833 0 0
834834 0 0
835835 4.30397e20 1.52077
836836 1.69407e20 0.593591
837837 0 0
838838 −5.67784e20 −1.95648
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 2.97558e20 1.00000
842842 0 0
843843 0 0
844844 −5.23751e20 −1.71683
845845 9.18504e20 2.98596
846846 6.03606e20 1.94608
847847 8.28446e18 0.0264899
848848 4.83610e20 1.53364
849849 0 0
850850 0 0
851851 5.98006e20 1.85012
852852 0 0
853853 1.38829e20 0.422511 0.211255 0.977431i 0.432245π-0.432245\pi
0.211255 + 0.977431i 0.432245π0.432245\pi
854854 0 0
855855 2.40691e20 0.720604
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 6.71279e20 1.94514 0.972571 0.232608i 0.0747259π-0.0747259\pi
0.972571 + 0.232608i 0.0747259π0.0747259\pi
860860 0 0
861861 0 0
862862 0 0
863863 −3.15393e20 −0.884661 −0.442330 0.896852i 0.645848π-0.645848\pi
−0.442330 + 0.896852i 0.645848π0.645848\pi
864864 0 0
865865 −2.56061e20 −0.706692
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 4.90678e20 1.25955
875875 −3.23610e19 −0.0824074
876876 0 0
877877 −7.18319e20 −1.80020 −0.900099 0.435685i 0.856506π-0.856506\pi
−0.900099 + 0.435685i 0.856506π0.856506\pi
878878 0 0
879879 0 0
880880 3.36643e20 0.823741
881881 −8.16331e20 −1.98169 −0.990843 0.135016i 0.956892π-0.956892\pi
−0.990843 + 0.135016i 0.956892π0.956892\pi
882882 4.12402e20 0.993209
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 −4.28303e20 −0.991484 −0.495742 0.868470i 0.665104π-0.665104\pi
−0.495742 + 0.868470i 0.665104π0.665104\pi
888888 0 0
889889 1.37113e19 0.0312439
890890 5.76010e20 1.30227
891891 3.67227e20 0.823741
892892 −6.74901e20 −1.50206
893893 −6.35064e20 −1.40235
894894 0 0
895895 −9.01841e20 −1.96051
896896 3.82052e19 0.0824074
897897 0 0
898898 8.40078e20 1.78396
899899 0 0
900900 4.78297e20 1.00000
901901 0 0
902902 −4.68024e20 −0.963434
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 8.50202e19 0.164525
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 6.40462e19 0.117465
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 9.75067e20 1.74791
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −6.13297e20 −1.05847
926926 2.37365e20 0.406575
927927 1.17591e21 1.99901
928928 0 0
929929 4.97319e20 0.832770 0.416385 0.909188i 0.363297π-0.363297\pi
0.416385 + 0.909188i 0.363297π0.363297\pi
930930 0 0
931931 −4.33895e20 −0.715710
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 −1.25660e21 −1.99649
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 −1.26199e21 −1.94608
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 −1.35560e21 −2.04433
944944 1.25834e21 1.88362
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 −5.03224e20 −0.720604
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 −1.10297e21 −1.53364
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 7.56944e20 1.00000
962962 1.61128e21 2.11322
963963 0 0
964964 1.11401e21 1.43995
965965 0 0
966966 0 0
967967 −7.15287e20 −0.904680 −0.452340 0.891845i 0.649411π-0.649411\pi
−0.452340 + 0.891845i 0.649411π0.649411\pi
968968 2.56001e20 0.321451
969969 0 0
970970 0 0
971971 2.39362e20 0.294117 0.147059 0.989128i 0.453019π-0.453019\pi
0.147059 + 0.989128i 0.453019π0.453019\pi
972972 0 0
973973 −1.17742e20 −0.142607
974974 7.16970e19 0.0862161
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 −9.24634e20 −1.07273
980980 −8.62230e20 −0.993209
981981 0 0
982982 1.42100e21 1.61366
983983 1.67670e21 1.89052 0.945261 0.326316i 0.105807π-0.105807\pi
0.945261 + 0.326316i 0.105807π0.105807\pi
984984 0 0
985985 −1.69864e21 −1.88820
986986 0 0
987987 0 0
988988 1.32209e21 1.43868
989989 0 0
990990 −7.67780e20 −0.823741
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.95441e21 −1.99594 −0.997972 0.0636503i 0.979726π-0.979726\pi
−0.997972 + 0.0636503i 0.979726π0.979726\pi
998998 −6.11160e20 −0.619785
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.15.e.a.19.1 1
4.3 odd 2 160.15.e.b.79.1 1
5.4 even 2 40.15.e.b.19.1 yes 1
8.3 odd 2 40.15.e.b.19.1 yes 1
8.5 even 2 160.15.e.a.79.1 1
20.19 odd 2 160.15.e.a.79.1 1
40.19 odd 2 CM 40.15.e.a.19.1 1
40.29 even 2 160.15.e.b.79.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.15.e.a.19.1 1 1.1 even 1 trivial
40.15.e.a.19.1 1 40.19 odd 2 CM
40.15.e.b.19.1 yes 1 5.4 even 2
40.15.e.b.19.1 yes 1 8.3 odd 2
160.15.e.a.79.1 1 8.5 even 2
160.15.e.a.79.1 1 20.19 odd 2
160.15.e.b.79.1 1 4.3 odd 2
160.15.e.b.79.1 1 40.29 even 2