Properties

Label 40.15.e.b
Level 4040
Weight 1515
Character orbit 40.e
Self dual yes
Analytic conductor 49.73249.732
Analytic rank 00
Dimension 11
CM discriminant -40
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,15,Mod(19,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.19");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: N N == 40=235 40 = 2^{3} \cdot 5
Weight: k k == 15 15
Character orbit: [χ][\chi] == 40.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 49.731587260849.7315872608
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+128q2+16384q478125q5+67866q7+2097152q8+4782969q910000000q10+16052382q11125276586q13+8686848q14+268435456q16+612220032q18+644127118q19++76778045482158q99+O(q100) q + 128 q^{2} + 16384 q^{4} - 78125 q^{5} + 67866 q^{7} + 2097152 q^{8} + 4782969 q^{9} - 10000000 q^{10} + 16052382 q^{11} - 125276586 q^{13} + 8686848 q^{14} + 268435456 q^{16} + 612220032 q^{18} + 644127118 q^{19}+ \cdots + 76778045482158 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/40Z)×\left(\mathbb{Z}/40\mathbb{Z}\right)^\times.

nn 1717 2121 3131
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
0
128.000 0 16384.0 −78125.0 0 67866.0 2.09715e6 4.78297e6 −1.00000e7
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by Q(10)\Q(\sqrt{-10})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.15.e.b yes 1
4.b odd 2 1 160.15.e.a 1
5.b even 2 1 40.15.e.a 1
8.b even 2 1 160.15.e.b 1
8.d odd 2 1 40.15.e.a 1
20.d odd 2 1 160.15.e.b 1
40.e odd 2 1 CM 40.15.e.b yes 1
40.f even 2 1 160.15.e.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.15.e.a 1 5.b even 2 1
40.15.e.a 1 8.d odd 2 1
40.15.e.b yes 1 1.a even 1 1 trivial
40.15.e.b yes 1 40.e odd 2 1 CM
160.15.e.a 1 4.b odd 2 1
160.15.e.a 1 40.f even 2 1
160.15.e.b 1 8.b even 2 1
160.15.e.b 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S15new(40,[χ])S_{15}^{\mathrm{new}}(40, [\chi]):

T3 T_{3} Copy content Toggle raw display
T767866 T_{7} - 67866 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T128 T - 128 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+78125 T + 78125 Copy content Toggle raw display
77 T67866 T - 67866 Copy content Toggle raw display
1111 T16052382 T - 16052382 Copy content Toggle raw display
1313 T+125276586 T + 125276586 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T644127118 T - 644127118 Copy content Toggle raw display
2323 T5951338874 T - 5951338874 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T100482630246 T - 100482630246 Copy content Toggle raw display
4141 T227781371922 T - 227781371922 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T985929843946 T - 985929843946 Copy content Toggle raw display
5353 T+1801585778906 T + 1801585778906 Copy content Toggle raw display
5959 T4687670223678 T - 4687670223678 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+57601022824782 T + 57601022824782 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less