Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [40,15,Mod(19,40)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(40, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 15, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("40.19");
S:= CuspForms(chi, 15);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 40.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
40.e | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 40.15.e.b | yes | 1 |
4.b | odd | 2 | 1 | 160.15.e.a | 1 | ||
5.b | even | 2 | 1 | 40.15.e.a | ✓ | 1 | |
8.b | even | 2 | 1 | 160.15.e.b | 1 | ||
8.d | odd | 2 | 1 | 40.15.e.a | ✓ | 1 | |
20.d | odd | 2 | 1 | 160.15.e.b | 1 | ||
40.e | odd | 2 | 1 | CM | 40.15.e.b | yes | 1 |
40.f | even | 2 | 1 | 160.15.e.a | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.15.e.a | ✓ | 1 | 5.b | even | 2 | 1 | |
40.15.e.a | ✓ | 1 | 8.d | odd | 2 | 1 | |
40.15.e.b | yes | 1 | 1.a | even | 1 | 1 | trivial |
40.15.e.b | yes | 1 | 40.e | odd | 2 | 1 | CM |
160.15.e.a | 1 | 4.b | odd | 2 | 1 | ||
160.15.e.a | 1 | 40.f | even | 2 | 1 | ||
160.15.e.b | 1 | 8.b | even | 2 | 1 | ||
160.15.e.b | 1 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|