Properties

Label 40.4.a.c
Level $40$
Weight $4$
Character orbit 40.a
Self dual yes
Analytic conductor $2.360$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,4,Mod(1,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 40.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.36007640023\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 10 q^{3} - 5 q^{5} - 18 q^{7} + 73 q^{9} - 16 q^{11} - 6 q^{13} - 50 q^{15} - 6 q^{17} - 124 q^{19} - 180 q^{21} + 42 q^{23} + 25 q^{25} + 460 q^{27} + 142 q^{29} - 188 q^{31} - 160 q^{33} + 90 q^{35}+ \cdots - 1168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 10.0000 0 −5.00000 0 −18.0000 0 73.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.4.a.c 1
3.b odd 2 1 360.4.a.i 1
4.b odd 2 1 80.4.a.a 1
5.b even 2 1 200.4.a.a 1
5.c odd 4 2 200.4.c.a 2
7.b odd 2 1 1960.4.a.a 1
8.b even 2 1 320.4.a.a 1
8.d odd 2 1 320.4.a.n 1
12.b even 2 1 720.4.a.ba 1
15.d odd 2 1 1800.4.a.bd 1
15.e even 4 2 1800.4.f.n 2
16.e even 4 2 1280.4.d.o 2
16.f odd 4 2 1280.4.d.b 2
20.d odd 2 1 400.4.a.u 1
20.e even 4 2 400.4.c.a 2
40.e odd 2 1 1600.4.a.a 1
40.f even 2 1 1600.4.a.ca 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.a.c 1 1.a even 1 1 trivial
80.4.a.a 1 4.b odd 2 1
200.4.a.a 1 5.b even 2 1
200.4.c.a 2 5.c odd 4 2
320.4.a.a 1 8.b even 2 1
320.4.a.n 1 8.d odd 2 1
360.4.a.i 1 3.b odd 2 1
400.4.a.u 1 20.d odd 2 1
400.4.c.a 2 20.e even 4 2
720.4.a.ba 1 12.b even 2 1
1280.4.d.b 2 16.f odd 4 2
1280.4.d.o 2 16.e even 4 2
1600.4.a.a 1 40.e odd 2 1
1600.4.a.ca 1 40.f even 2 1
1800.4.a.bd 1 15.d odd 2 1
1800.4.f.n 2 15.e even 4 2
1960.4.a.a 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 10 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(40))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 10 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 18 \) Copy content Toggle raw display
$11$ \( T + 16 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T + 124 \) Copy content Toggle raw display
$23$ \( T - 42 \) Copy content Toggle raw display
$29$ \( T - 142 \) Copy content Toggle raw display
$31$ \( T + 188 \) Copy content Toggle raw display
$37$ \( T - 202 \) Copy content Toggle raw display
$41$ \( T - 54 \) Copy content Toggle raw display
$43$ \( T - 66 \) Copy content Toggle raw display
$47$ \( T - 38 \) Copy content Toggle raw display
$53$ \( T - 738 \) Copy content Toggle raw display
$59$ \( T - 564 \) Copy content Toggle raw display
$61$ \( T + 262 \) Copy content Toggle raw display
$67$ \( T + 554 \) Copy content Toggle raw display
$71$ \( T - 140 \) Copy content Toggle raw display
$73$ \( T - 882 \) Copy content Toggle raw display
$79$ \( T + 1160 \) Copy content Toggle raw display
$83$ \( T - 642 \) Copy content Toggle raw display
$89$ \( T + 854 \) Copy content Toggle raw display
$97$ \( T + 478 \) Copy content Toggle raw display
show more
show less