Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [40,6,Mod(29,40)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(40, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("40.29");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 40.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.41535279252\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −5.53936 | − | 1.14695i | −16.0077 | 29.3690 | + | 12.7067i | 19.1184 | + | 52.5308i | 88.6724 | + | 18.3600i | 20.5525i | −148.112 | − | 104.072i | 13.2465 | −45.6540 | − | 312.915i | ||||||
29.2 | −5.53936 | + | 1.14695i | −16.0077 | 29.3690 | − | 12.7067i | 19.1184 | − | 52.5308i | 88.6724 | − | 18.3600i | − | 20.5525i | −148.112 | + | 104.072i | 13.2465 | −45.6540 | + | 312.915i | |||||
29.3 | −5.32791 | − | 1.90088i | 21.6833 | 24.7733 | + | 20.2555i | 36.8367 | − | 42.0483i | −115.527 | − | 41.2175i | 236.448i | −93.4865 | − | 155.011i | 227.167 | −276.192 | + | 154.007i | ||||||
29.4 | −5.32791 | + | 1.90088i | 21.6833 | 24.7733 | − | 20.2555i | 36.8367 | + | 42.0483i | −115.527 | + | 41.2175i | − | 236.448i | −93.4865 | + | 155.011i | 227.167 | −276.192 | − | 154.007i | |||||
29.5 | −5.08581 | − | 2.47679i | 10.5561 | 19.7310 | + | 25.1930i | −52.7686 | + | 18.4521i | −53.6865 | − | 26.1453i | − | 47.9937i | −37.9506 | − | 176.996i | −131.568 | 314.073 | + | 36.8527i | |||||
29.6 | −5.08581 | + | 2.47679i | 10.5561 | 19.7310 | − | 25.1930i | −52.7686 | − | 18.4521i | −53.6865 | + | 26.1453i | 47.9937i | −37.9506 | + | 176.996i | −131.568 | 314.073 | − | 36.8527i | ||||||
29.7 | −3.53479 | − | 4.41648i | −21.4357 | −7.01055 | + | 31.2226i | −48.3867 | − | 27.9951i | 75.7708 | + | 94.6704i | 39.9262i | 162.675 | − | 79.4034i | 216.491 | 47.3969 | + | 312.656i | ||||||
29.8 | −3.53479 | + | 4.41648i | −21.4357 | −7.01055 | − | 31.2226i | −48.3867 | + | 27.9951i | 75.7708 | − | 94.6704i | − | 39.9262i | 162.675 | + | 79.4034i | 216.491 | 47.3969 | − | 312.656i | |||||
29.9 | −3.25299 | − | 4.62796i | 1.29818 | −10.8361 | + | 30.1095i | 51.3939 | − | 21.9924i | −4.22299 | − | 6.00795i | − | 170.399i | 174.595 | − | 47.7971i | −241.315 | −268.964 | − | 166.308i | |||||
29.10 | −3.25299 | + | 4.62796i | 1.29818 | −10.8361 | − | 30.1095i | 51.3939 | + | 21.9924i | −4.22299 | + | 6.00795i | 170.399i | 174.595 | + | 47.7971i | −241.315 | −268.964 | + | 166.308i | ||||||
29.11 | −1.42014 | − | 5.47569i | 7.17847 | −27.9664 | + | 15.5525i | 1.28331 | + | 55.8870i | −10.1944 | − | 39.3071i | 146.905i | 124.877 | + | 131.049i | −191.470 | 304.197 | − | 86.3942i | ||||||
29.12 | −1.42014 | + | 5.47569i | 7.17847 | −27.9664 | − | 15.5525i | 1.28331 | − | 55.8870i | −10.1944 | + | 39.3071i | − | 146.905i | 124.877 | − | 131.049i | −191.470 | 304.197 | + | 86.3942i | |||||
29.13 | −0.685452 | − | 5.61517i | 28.9041 | −31.0603 | + | 7.69787i | −40.5064 | − | 38.5257i | −19.8124 | − | 162.302i | − | 128.100i | 64.5152 | + | 169.132i | 592.448 | −188.563 | + | 253.858i | |||||
29.14 | −0.685452 | + | 5.61517i | 28.9041 | −31.0603 | − | 7.69787i | −40.5064 | + | 38.5257i | −19.8124 | + | 162.302i | 128.100i | 64.5152 | − | 169.132i | 592.448 | −188.563 | − | 253.858i | ||||||
29.15 | 0.685452 | − | 5.61517i | −28.9041 | −31.0603 | − | 7.69787i | 40.5064 | + | 38.5257i | −19.8124 | + | 162.302i | − | 128.100i | −64.5152 | + | 169.132i | 592.448 | 244.094 | − | 201.043i | |||||
29.16 | 0.685452 | + | 5.61517i | −28.9041 | −31.0603 | + | 7.69787i | 40.5064 | − | 38.5257i | −19.8124 | − | 162.302i | 128.100i | −64.5152 | − | 169.132i | 592.448 | 244.094 | + | 201.043i | ||||||
29.17 | 1.42014 | − | 5.47569i | −7.17847 | −27.9664 | − | 15.5525i | −1.28331 | − | 55.8870i | −10.1944 | + | 39.3071i | 146.905i | −124.877 | + | 131.049i | −191.470 | −307.842 | − | 72.3401i | ||||||
29.18 | 1.42014 | + | 5.47569i | −7.17847 | −27.9664 | + | 15.5525i | −1.28331 | + | 55.8870i | −10.1944 | − | 39.3071i | − | 146.905i | −124.877 | − | 131.049i | −191.470 | −307.842 | + | 72.3401i | |||||
29.19 | 3.25299 | − | 4.62796i | −1.29818 | −10.8361 | − | 30.1095i | −51.3939 | + | 21.9924i | −4.22299 | + | 6.00795i | − | 170.399i | −174.595 | − | 47.7971i | −241.315 | −65.4039 | + | 309.390i | |||||
29.20 | 3.25299 | + | 4.62796i | −1.29818 | −10.8361 | + | 30.1095i | −51.3939 | − | 21.9924i | −4.22299 | − | 6.00795i | 170.399i | −174.595 | + | 47.7971i | −241.315 | −65.4039 | − | 309.390i | ||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 40.6.f.a | ✓ | 28 |
4.b | odd | 2 | 1 | 160.6.f.a | 28 | ||
5.b | even | 2 | 1 | inner | 40.6.f.a | ✓ | 28 |
5.c | odd | 4 | 2 | 200.6.d.e | 28 | ||
8.b | even | 2 | 1 | inner | 40.6.f.a | ✓ | 28 |
8.d | odd | 2 | 1 | 160.6.f.a | 28 | ||
20.d | odd | 2 | 1 | 160.6.f.a | 28 | ||
20.e | even | 4 | 2 | 800.6.d.e | 28 | ||
40.e | odd | 2 | 1 | 160.6.f.a | 28 | ||
40.f | even | 2 | 1 | inner | 40.6.f.a | ✓ | 28 |
40.i | odd | 4 | 2 | 200.6.d.e | 28 | ||
40.k | even | 4 | 2 | 800.6.d.e | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.6.f.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
40.6.f.a | ✓ | 28 | 5.b | even | 2 | 1 | inner |
40.6.f.a | ✓ | 28 | 8.b | even | 2 | 1 | inner |
40.6.f.a | ✓ | 28 | 40.f | even | 2 | 1 | inner |
160.6.f.a | 28 | 4.b | odd | 2 | 1 | ||
160.6.f.a | 28 | 8.d | odd | 2 | 1 | ||
160.6.f.a | 28 | 20.d | odd | 2 | 1 | ||
160.6.f.a | 28 | 40.e | odd | 2 | 1 | ||
200.6.d.e | 28 | 5.c | odd | 4 | 2 | ||
200.6.d.e | 28 | 40.i | odd | 4 | 2 | ||
800.6.d.e | 28 | 20.e | even | 4 | 2 | ||
800.6.d.e | 28 | 40.k | even | 4 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(40, [\chi])\).