Properties

Label 400.2.bi.b.223.1
Level $400$
Weight $2$
Character 400.223
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(47,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 806 x^{12} - 2288 x^{11} + 5530 x^{10} - 11062 x^{9} + \cdots + 521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.1
Root \(0.500000 - 0.509304i\) of defining polynomial
Character \(\chi\) \(=\) 400.223
Dual form 400.2.bi.b.287.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.648013 - 1.27180i) q^{3} +(0.166977 - 2.22982i) q^{5} +(2.92911 + 2.92911i) q^{7} +(0.565808 - 0.778768i) q^{9} +(2.25687 + 3.10632i) q^{11} +(-0.645322 - 4.07440i) q^{13} +(-2.94409 + 1.23259i) q^{15} +(-0.260074 - 0.132514i) q^{17} +(-2.41910 - 7.44523i) q^{19} +(1.82714 - 5.62334i) q^{21} +(0.240636 - 1.51932i) q^{23} +(-4.94424 - 0.744661i) q^{25} +(-5.58648 - 0.884812i) q^{27} +(5.30751 + 1.72451i) q^{29} +(1.44900 - 0.470809i) q^{31} +(2.48812 - 4.88322i) q^{33} +(7.02051 - 6.04232i) q^{35} +(-2.98459 + 0.472712i) q^{37} +(-4.76364 + 3.46098i) q^{39} +(5.49614 + 3.99318i) q^{41} +(-7.55900 + 7.55900i) q^{43} +(-1.64204 - 1.39169i) q^{45} +(2.05781 - 1.04851i) q^{47} +10.1594i q^{49} +0.416632i q^{51} +(7.08097 - 3.60793i) q^{53} +(7.30339 - 4.51375i) q^{55} +(-7.90122 + 7.90122i) q^{57} +(10.1729 + 7.39105i) q^{59} +(5.63043 - 4.09075i) q^{61} +(3.93842 - 0.623784i) q^{63} +(-9.19296 + 0.758621i) q^{65} +(-4.04794 + 7.94452i) q^{67} +(-2.08820 + 0.678497i) q^{69} +(-6.63736 - 2.15661i) q^{71} +(-14.8333 - 2.34937i) q^{73} +(2.25687 + 6.77062i) q^{75} +(-2.48812 + 15.7094i) q^{77} +(0.815963 - 2.51127i) q^{79} +(1.60242 + 4.93175i) q^{81} +(-2.28110 - 1.16228i) q^{83} +(-0.338910 + 0.557791i) q^{85} +(-1.24610 - 7.86758i) q^{87} +(6.85369 + 9.43329i) q^{89} +(10.0442 - 13.8246i) q^{91} +(-1.53775 - 1.53775i) q^{93} +(-17.0055 + 4.15099i) q^{95} +(1.71702 + 3.36984i) q^{97} +3.69606 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 20 q^{9} + 20 q^{17} - 20 q^{21} - 20 q^{25} + 20 q^{29} + 60 q^{33} - 20 q^{37} + 28 q^{41} - 20 q^{45} + 60 q^{53} - 20 q^{57} - 12 q^{61} - 20 q^{65} - 80 q^{69} - 40 q^{73} - 60 q^{77} + 56 q^{81}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.648013 1.27180i −0.374131 0.734273i 0.624787 0.780795i \(-0.285186\pi\)
−0.998917 + 0.0465230i \(0.985186\pi\)
\(4\) 0 0
\(5\) 0.166977 2.22982i 0.0746746 0.997208i
\(6\) 0 0
\(7\) 2.92911 + 2.92911i 1.10710 + 1.10710i 0.993530 + 0.113571i \(0.0362291\pi\)
0.113571 + 0.993530i \(0.463771\pi\)
\(8\) 0 0
\(9\) 0.565808 0.778768i 0.188603 0.259589i
\(10\) 0 0
\(11\) 2.25687 + 3.10632i 0.680473 + 0.936590i 0.999939 0.0110072i \(-0.00350377\pi\)
−0.319467 + 0.947597i \(0.603504\pi\)
\(12\) 0 0
\(13\) −0.645322 4.07440i −0.178980 1.13004i −0.899603 0.436708i \(-0.856144\pi\)
0.720623 0.693327i \(-0.243856\pi\)
\(14\) 0 0
\(15\) −2.94409 + 1.23259i −0.760160 + 0.318254i
\(16\) 0 0
\(17\) −0.260074 0.132514i −0.0630771 0.0321394i 0.422167 0.906518i \(-0.361269\pi\)
−0.485245 + 0.874378i \(0.661269\pi\)
\(18\) 0 0
\(19\) −2.41910 7.44523i −0.554980 1.70805i −0.695996 0.718046i \(-0.745037\pi\)
0.141016 0.990007i \(-0.454963\pi\)
\(20\) 0 0
\(21\) 1.82714 5.62334i 0.398714 1.22711i
\(22\) 0 0
\(23\) 0.240636 1.51932i 0.0501761 0.316799i −0.949816 0.312809i \(-0.898730\pi\)
0.999992 0.00399005i \(-0.00127008\pi\)
\(24\) 0 0
\(25\) −4.94424 0.744661i −0.988847 0.148932i
\(26\) 0 0
\(27\) −5.58648 0.884812i −1.07512 0.170282i
\(28\) 0 0
\(29\) 5.30751 + 1.72451i 0.985580 + 0.320234i 0.757089 0.653312i \(-0.226621\pi\)
0.228491 + 0.973546i \(0.426621\pi\)
\(30\) 0 0
\(31\) 1.44900 0.470809i 0.260248 0.0845598i −0.175987 0.984393i \(-0.556312\pi\)
0.436235 + 0.899833i \(0.356312\pi\)
\(32\) 0 0
\(33\) 2.48812 4.88322i 0.433127 0.850059i
\(34\) 0 0
\(35\) 7.02051 6.04232i 1.18668 1.02134i
\(36\) 0 0
\(37\) −2.98459 + 0.472712i −0.490663 + 0.0777134i −0.396863 0.917878i \(-0.629901\pi\)
−0.0937997 + 0.995591i \(0.529901\pi\)
\(38\) 0 0
\(39\) −4.76364 + 3.46098i −0.762792 + 0.554201i
\(40\) 0 0
\(41\) 5.49614 + 3.99318i 0.858353 + 0.623630i 0.927436 0.373981i \(-0.122007\pi\)
−0.0690833 + 0.997611i \(0.522007\pi\)
\(42\) 0 0
\(43\) −7.55900 + 7.55900i −1.15274 + 1.15274i −0.166736 + 0.986002i \(0.553323\pi\)
−0.986002 + 0.166736i \(0.946677\pi\)
\(44\) 0 0
\(45\) −1.64204 1.39169i −0.244781 0.207461i
\(46\) 0 0
\(47\) 2.05781 1.04851i 0.300163 0.152941i −0.297423 0.954746i \(-0.596127\pi\)
0.597585 + 0.801805i \(0.296127\pi\)
\(48\) 0 0
\(49\) 10.1594i 1.45135i
\(50\) 0 0
\(51\) 0.416632i 0.0583401i
\(52\) 0 0
\(53\) 7.08097 3.60793i 0.972645 0.495588i 0.105921 0.994375i \(-0.466221\pi\)
0.866725 + 0.498787i \(0.166221\pi\)
\(54\) 0 0
\(55\) 7.30339 4.51375i 0.984789 0.608633i
\(56\) 0 0
\(57\) −7.90122 + 7.90122i −1.04654 + 1.04654i
\(58\) 0 0
\(59\) 10.1729 + 7.39105i 1.32440 + 0.962233i 0.999866 + 0.0163593i \(0.00520757\pi\)
0.324534 + 0.945874i \(0.394792\pi\)
\(60\) 0 0
\(61\) 5.63043 4.09075i 0.720903 0.523766i −0.165770 0.986164i \(-0.553011\pi\)
0.886672 + 0.462398i \(0.153011\pi\)
\(62\) 0 0
\(63\) 3.93842 0.623784i 0.496194 0.0785894i
\(64\) 0 0
\(65\) −9.19296 + 0.758621i −1.14025 + 0.0940954i
\(66\) 0 0
\(67\) −4.04794 + 7.94452i −0.494534 + 0.970578i 0.499986 + 0.866033i \(0.333338\pi\)
−0.994520 + 0.104545i \(0.966662\pi\)
\(68\) 0 0
\(69\) −2.08820 + 0.678497i −0.251389 + 0.0816814i
\(70\) 0 0
\(71\) −6.63736 2.15661i −0.787710 0.255942i −0.112581 0.993643i \(-0.535912\pi\)
−0.675129 + 0.737700i \(0.735912\pi\)
\(72\) 0 0
\(73\) −14.8333 2.34937i −1.73611 0.274973i −0.793427 0.608665i \(-0.791705\pi\)
−0.942682 + 0.333693i \(0.891705\pi\)
\(74\) 0 0
\(75\) 2.25687 + 6.77062i 0.260601 + 0.781804i
\(76\) 0 0
\(77\) −2.48812 + 15.7094i −0.283548 + 1.79025i
\(78\) 0 0
\(79\) 0.815963 2.51127i 0.0918030 0.282540i −0.894604 0.446859i \(-0.852543\pi\)
0.986407 + 0.164319i \(0.0525425\pi\)
\(80\) 0 0
\(81\) 1.60242 + 4.93175i 0.178047 + 0.547972i
\(82\) 0 0
\(83\) −2.28110 1.16228i −0.250383 0.127577i 0.324295 0.945956i \(-0.394873\pi\)
−0.574679 + 0.818379i \(0.694873\pi\)
\(84\) 0 0
\(85\) −0.338910 + 0.557791i −0.0367599 + 0.0605010i
\(86\) 0 0
\(87\) −1.24610 7.86758i −0.133596 0.843493i
\(88\) 0 0
\(89\) 6.85369 + 9.43329i 0.726490 + 0.999927i 0.999283 + 0.0378546i \(0.0120524\pi\)
−0.272794 + 0.962073i \(0.587948\pi\)
\(90\) 0 0
\(91\) 10.0442 13.8246i 1.05291 1.44921i
\(92\) 0 0
\(93\) −1.53775 1.53775i −0.159457 0.159457i
\(94\) 0 0
\(95\) −17.0055 + 4.15099i −1.74473 + 0.425882i
\(96\) 0 0
\(97\) 1.71702 + 3.36984i 0.174337 + 0.342155i 0.961597 0.274466i \(-0.0885011\pi\)
−0.787260 + 0.616621i \(0.788501\pi\)
\(98\) 0 0
\(99\) 3.69606 0.371468
\(100\) 0 0
\(101\) 11.8096 1.17510 0.587551 0.809187i \(-0.300092\pi\)
0.587551 + 0.809187i \(0.300092\pi\)
\(102\) 0 0
\(103\) 2.75616 + 5.40928i 0.271573 + 0.532992i 0.986006 0.166712i \(-0.0533151\pi\)
−0.714433 + 0.699704i \(0.753315\pi\)
\(104\) 0 0
\(105\) −12.2340 5.01316i −1.19391 0.489235i
\(106\) 0 0
\(107\) −2.65974 2.65974i −0.257127 0.257127i 0.566758 0.823884i \(-0.308198\pi\)
−0.823884 + 0.566758i \(0.808198\pi\)
\(108\) 0 0
\(109\) −2.79215 + 3.84307i −0.267440 + 0.368099i −0.921523 0.388323i \(-0.873054\pi\)
0.654084 + 0.756422i \(0.273054\pi\)
\(110\) 0 0
\(111\) 2.53525 + 3.48947i 0.240635 + 0.331206i
\(112\) 0 0
\(113\) 1.61719 + 10.2106i 0.152133 + 0.960528i 0.939128 + 0.343569i \(0.111636\pi\)
−0.786995 + 0.616960i \(0.788364\pi\)
\(114\) 0 0
\(115\) −3.34763 0.790268i −0.312168 0.0736929i
\(116\) 0 0
\(117\) −3.53814 1.80277i −0.327101 0.166666i
\(118\) 0 0
\(119\) −0.373636 1.14993i −0.0342512 0.105414i
\(120\) 0 0
\(121\) −1.15655 + 3.55951i −0.105141 + 0.323592i
\(122\) 0 0
\(123\) 1.51694 9.57761i 0.136778 0.863584i
\(124\) 0 0
\(125\) −2.48604 + 10.9004i −0.222358 + 0.974965i
\(126\) 0 0
\(127\) 9.12441 + 1.44516i 0.809660 + 0.128238i 0.547520 0.836792i \(-0.315572\pi\)
0.262140 + 0.965030i \(0.415572\pi\)
\(128\) 0 0
\(129\) 14.5119 + 4.71519i 1.27770 + 0.415149i
\(130\) 0 0
\(131\) −20.0702 + 6.52122i −1.75355 + 0.569761i −0.996499 0.0836006i \(-0.973358\pi\)
−0.757046 + 0.653362i \(0.773358\pi\)
\(132\) 0 0
\(133\) 14.7221 28.8938i 1.27657 2.50541i
\(134\) 0 0
\(135\) −2.90579 + 12.3091i −0.250091 + 1.05940i
\(136\) 0 0
\(137\) −7.25033 + 1.14834i −0.619437 + 0.0981092i −0.458263 0.888817i \(-0.651528\pi\)
−0.161174 + 0.986926i \(0.551528\pi\)
\(138\) 0 0
\(139\) −8.32767 + 6.05041i −0.706344 + 0.513189i −0.881992 0.471264i \(-0.843798\pi\)
0.175648 + 0.984453i \(0.443798\pi\)
\(140\) 0 0
\(141\) −2.66698 1.93767i −0.224600 0.163181i
\(142\) 0 0
\(143\) 11.2000 11.2000i 0.936589 0.936589i
\(144\) 0 0
\(145\) 4.73160 11.5469i 0.392938 0.958914i
\(146\) 0 0
\(147\) 12.9207 6.58344i 1.06568 0.542993i
\(148\) 0 0
\(149\) 11.8576i 0.971416i 0.874121 + 0.485708i \(0.161438\pi\)
−0.874121 + 0.485708i \(0.838562\pi\)
\(150\) 0 0
\(151\) 13.0162i 1.05925i 0.848233 + 0.529624i \(0.177667\pi\)
−0.848233 + 0.529624i \(0.822333\pi\)
\(152\) 0 0
\(153\) −0.250349 + 0.127559i −0.0202396 + 0.0103126i
\(154\) 0 0
\(155\) −0.807871 3.30963i −0.0648898 0.265836i
\(156\) 0 0
\(157\) −2.52932 + 2.52932i −0.201861 + 0.201861i −0.800797 0.598936i \(-0.795590\pi\)
0.598936 + 0.800797i \(0.295590\pi\)
\(158\) 0 0
\(159\) −9.17712 6.66757i −0.727793 0.528772i
\(160\) 0 0
\(161\) 5.15510 3.74540i 0.406279 0.295179i
\(162\) 0 0
\(163\) 14.3738 2.27659i 1.12584 0.178316i 0.434382 0.900729i \(-0.356967\pi\)
0.691463 + 0.722412i \(0.256967\pi\)
\(164\) 0 0
\(165\) −10.4733 6.36347i −0.815342 0.495395i
\(166\) 0 0
\(167\) 3.25120 6.38084i 0.251586 0.493765i −0.730327 0.683097i \(-0.760632\pi\)
0.981913 + 0.189333i \(0.0606325\pi\)
\(168\) 0 0
\(169\) −3.82057 + 1.24138i −0.293890 + 0.0954907i
\(170\) 0 0
\(171\) −7.16686 2.32865i −0.548063 0.178077i
\(172\) 0 0
\(173\) −7.30401 1.15684i −0.555313 0.0879530i −0.127531 0.991835i \(-0.540705\pi\)
−0.427783 + 0.903882i \(0.640705\pi\)
\(174\) 0 0
\(175\) −12.3010 16.6634i −0.929871 1.25964i
\(176\) 0 0
\(177\) 2.80774 17.7274i 0.211043 1.33247i
\(178\) 0 0
\(179\) −1.32026 + 4.06333i −0.0986805 + 0.303707i −0.988195 0.153199i \(-0.951042\pi\)
0.889515 + 0.456906i \(0.151042\pi\)
\(180\) 0 0
\(181\) −5.03463 15.4950i −0.374221 1.15173i −0.944003 0.329938i \(-0.892972\pi\)
0.569782 0.821796i \(-0.307028\pi\)
\(182\) 0 0
\(183\) −8.85119 4.50991i −0.654299 0.333382i
\(184\) 0 0
\(185\) 0.555707 + 6.73404i 0.0408564 + 0.495096i
\(186\) 0 0
\(187\) −0.175322 1.10694i −0.0128208 0.0809474i
\(188\) 0 0
\(189\) −13.7717 18.9552i −1.00175 1.37878i
\(190\) 0 0
\(191\) −0.396240 + 0.545378i −0.0286709 + 0.0394622i −0.823112 0.567879i \(-0.807764\pi\)
0.794441 + 0.607341i \(0.207764\pi\)
\(192\) 0 0
\(193\) −1.94252 1.94252i −0.139826 0.139826i 0.633729 0.773555i \(-0.281523\pi\)
−0.773555 + 0.633729i \(0.781523\pi\)
\(194\) 0 0
\(195\) 6.92197 + 11.2000i 0.495692 + 0.802047i
\(196\) 0 0
\(197\) 3.35301 + 6.58064i 0.238892 + 0.468852i 0.979060 0.203570i \(-0.0652544\pi\)
−0.740169 + 0.672421i \(0.765254\pi\)
\(198\) 0 0
\(199\) 5.25484 0.372505 0.186253 0.982502i \(-0.440366\pi\)
0.186253 + 0.982502i \(0.440366\pi\)
\(200\) 0 0
\(201\) 12.7269 0.897689
\(202\) 0 0
\(203\) 10.4950 + 20.5976i 0.736605 + 1.44567i
\(204\) 0 0
\(205\) 9.82182 11.5887i 0.685986 0.809387i
\(206\) 0 0
\(207\) −1.04704 1.04704i −0.0727744 0.0727744i
\(208\) 0 0
\(209\) 17.6677 24.3174i 1.22210 1.68207i
\(210\) 0 0
\(211\) 4.76815 + 6.56279i 0.328253 + 0.451801i 0.940964 0.338505i \(-0.109921\pi\)
−0.612712 + 0.790307i \(0.709921\pi\)
\(212\) 0 0
\(213\) 1.55833 + 9.83889i 0.106775 + 0.674149i
\(214\) 0 0
\(215\) 15.5931 + 18.1174i 1.06344 + 1.23560i
\(216\) 0 0
\(217\) 5.62334 + 2.86524i 0.381738 + 0.194505i
\(218\) 0 0
\(219\) 6.62427 + 20.3874i 0.447627 + 1.37765i
\(220\) 0 0
\(221\) −0.372084 + 1.14516i −0.0250291 + 0.0770317i
\(222\) 0 0
\(223\) −0.586047 + 3.70015i −0.0392446 + 0.247781i −0.999510 0.0313086i \(-0.990033\pi\)
0.960265 + 0.279089i \(0.0900325\pi\)
\(224\) 0 0
\(225\) −3.37741 + 3.42908i −0.225161 + 0.228605i
\(226\) 0 0
\(227\) −9.19209 1.45588i −0.610101 0.0966304i −0.156264 0.987715i \(-0.549945\pi\)
−0.453837 + 0.891085i \(0.649945\pi\)
\(228\) 0 0
\(229\) 5.57028 + 1.80989i 0.368094 + 0.119601i 0.487223 0.873278i \(-0.338010\pi\)
−0.119128 + 0.992879i \(0.538010\pi\)
\(230\) 0 0
\(231\) 21.5915 7.01551i 1.42062 0.461587i
\(232\) 0 0
\(233\) 3.76580 7.39079i 0.246706 0.484187i −0.734134 0.679005i \(-0.762412\pi\)
0.980839 + 0.194818i \(0.0624116\pi\)
\(234\) 0 0
\(235\) −1.99438 4.76364i −0.130099 0.310745i
\(236\) 0 0
\(237\) −3.72259 + 0.589600i −0.241808 + 0.0382986i
\(238\) 0 0
\(239\) 20.0914 14.5973i 1.29961 0.944219i 0.299654 0.954048i \(-0.403129\pi\)
0.999952 + 0.00982862i \(0.00312860\pi\)
\(240\) 0 0
\(241\) −5.83422 4.23881i −0.375815 0.273046i 0.383803 0.923415i \(-0.374614\pi\)
−0.759618 + 0.650369i \(0.774614\pi\)
\(242\) 0 0
\(243\) −6.76464 + 6.76464i −0.433952 + 0.433952i
\(244\) 0 0
\(245\) 22.6537 + 1.69639i 1.44729 + 0.108379i
\(246\) 0 0
\(247\) −28.7738 + 14.6610i −1.83083 + 0.932855i
\(248\) 0 0
\(249\) 3.65427i 0.231580i
\(250\) 0 0
\(251\) 29.3481i 1.85244i −0.376988 0.926218i \(-0.623040\pi\)
0.376988 0.926218i \(-0.376960\pi\)
\(252\) 0 0
\(253\) 5.26257 2.68141i 0.330855 0.168579i
\(254\) 0 0
\(255\) 0.929016 + 0.0695681i 0.0581772 + 0.00435652i
\(256\) 0 0
\(257\) 16.1302 16.1302i 1.00617 1.00617i 0.00619398 0.999981i \(-0.498028\pi\)
0.999981 0.00619398i \(-0.00197162\pi\)
\(258\) 0 0
\(259\) −10.1268 7.35757i −0.629250 0.457177i
\(260\) 0 0
\(261\) 4.34603 3.15757i 0.269012 0.195449i
\(262\) 0 0
\(263\) −21.4105 + 3.39109i −1.32023 + 0.209103i −0.776478 0.630145i \(-0.782995\pi\)
−0.543749 + 0.839248i \(0.682995\pi\)
\(264\) 0 0
\(265\) −6.86269 16.3918i −0.421572 1.00694i
\(266\) 0 0
\(267\) 7.55596 14.8294i 0.462417 0.907545i
\(268\) 0 0
\(269\) −28.4092 + 9.23070i −1.73214 + 0.562806i −0.993756 0.111577i \(-0.964410\pi\)
−0.738382 + 0.674382i \(0.764410\pi\)
\(270\) 0 0
\(271\) −16.2853 5.29141i −0.989261 0.321430i −0.230694 0.973026i \(-0.574100\pi\)
−0.758566 + 0.651596i \(0.774100\pi\)
\(272\) 0 0
\(273\) −24.0909 3.81562i −1.45804 0.230932i
\(274\) 0 0
\(275\) −8.84536 17.0390i −0.533395 1.02749i
\(276\) 0 0
\(277\) −1.85546 + 11.7149i −0.111484 + 0.703882i 0.867115 + 0.498107i \(0.165971\pi\)
−0.978599 + 0.205775i \(0.934029\pi\)
\(278\) 0 0
\(279\) 0.453206 1.39482i 0.0271327 0.0835059i
\(280\) 0 0
\(281\) 5.76571 + 17.7450i 0.343953 + 1.05858i 0.962142 + 0.272549i \(0.0878668\pi\)
−0.618189 + 0.786030i \(0.712133\pi\)
\(282\) 0 0
\(283\) −14.0251 7.14616i −0.833708 0.424795i −0.0156126 0.999878i \(-0.504970\pi\)
−0.818095 + 0.575083i \(0.804970\pi\)
\(284\) 0 0
\(285\) 16.2990 + 18.9377i 0.965469 + 1.12177i
\(286\) 0 0
\(287\) 4.40234 + 27.7953i 0.259862 + 1.64071i
\(288\) 0 0
\(289\) −9.94227 13.6844i −0.584839 0.804962i
\(290\) 0 0
\(291\) 3.17310 4.36740i 0.186010 0.256021i
\(292\) 0 0
\(293\) 23.5937 + 23.5937i 1.37836 + 1.37836i 0.847398 + 0.530959i \(0.178168\pi\)
0.530959 + 0.847398i \(0.321832\pi\)
\(294\) 0 0
\(295\) 18.1794 21.4497i 1.05845 1.24885i
\(296\) 0 0
\(297\) −9.85947 19.3503i −0.572104 1.12282i
\(298\) 0 0
\(299\) −6.34559 −0.366975
\(300\) 0 0
\(301\) −44.2824 −2.55239
\(302\) 0 0
\(303\) −7.65280 15.0195i −0.439642 0.862846i
\(304\) 0 0
\(305\) −8.18149 13.2379i −0.468471 0.758002i
\(306\) 0 0
\(307\) −0.100680 0.100680i −0.00574611 0.00574611i 0.704228 0.709974i \(-0.251293\pi\)
−0.709974 + 0.704228i \(0.751293\pi\)
\(308\) 0 0
\(309\) 5.09347 7.01057i 0.289758 0.398817i
\(310\) 0 0
\(311\) 6.25063 + 8.60326i 0.354441 + 0.487846i 0.948589 0.316509i \(-0.102511\pi\)
−0.594149 + 0.804355i \(0.702511\pi\)
\(312\) 0 0
\(313\) 3.65646 + 23.0860i 0.206676 + 1.30490i 0.844849 + 0.535005i \(0.179690\pi\)
−0.638173 + 0.769893i \(0.720310\pi\)
\(314\) 0 0
\(315\) −0.733302 8.88614i −0.0413169 0.500677i
\(316\) 0 0
\(317\) −8.59220 4.37794i −0.482586 0.245890i 0.195733 0.980657i \(-0.437291\pi\)
−0.678319 + 0.734767i \(0.737291\pi\)
\(318\) 0 0
\(319\) 6.62148 + 20.3788i 0.370732 + 1.14099i
\(320\) 0 0
\(321\) −1.65910 + 5.10619i −0.0926021 + 0.285000i
\(322\) 0 0
\(323\) −0.357453 + 2.25687i −0.0198892 + 0.125576i
\(324\) 0 0
\(325\) 0.156576 + 20.6254i 0.00868527 + 1.14409i
\(326\) 0 0
\(327\) 6.69695 + 1.06069i 0.370342 + 0.0586565i
\(328\) 0 0
\(329\) 9.09876 + 2.95637i 0.501631 + 0.162990i
\(330\) 0 0
\(331\) −9.37813 + 3.04714i −0.515469 + 0.167486i −0.555188 0.831725i \(-0.687354\pi\)
0.0397191 + 0.999211i \(0.487354\pi\)
\(332\) 0 0
\(333\) −1.32057 + 2.59177i −0.0723668 + 0.142028i
\(334\) 0 0
\(335\) 17.0390 + 10.3527i 0.930939 + 0.565631i
\(336\) 0 0
\(337\) 32.0835 5.08152i 1.74770 0.276808i 0.800937 0.598748i \(-0.204335\pi\)
0.946760 + 0.321940i \(0.104335\pi\)
\(338\) 0 0
\(339\) 11.9378 8.67331i 0.648372 0.471070i
\(340\) 0 0
\(341\) 4.73269 + 3.43850i 0.256290 + 0.186205i
\(342\) 0 0
\(343\) −9.25432 + 9.25432i −0.499686 + 0.499686i
\(344\) 0 0
\(345\) 1.16425 + 4.76961i 0.0626809 + 0.256787i
\(346\) 0 0
\(347\) −10.8276 + 5.51691i −0.581253 + 0.296163i −0.719788 0.694194i \(-0.755761\pi\)
0.138534 + 0.990358i \(0.455761\pi\)
\(348\) 0 0
\(349\) 13.9855i 0.748629i 0.927302 + 0.374314i \(0.122122\pi\)
−0.927302 + 0.374314i \(0.877878\pi\)
\(350\) 0 0
\(351\) 23.3326i 1.24540i
\(352\) 0 0
\(353\) −10.8959 + 5.55174i −0.579930 + 0.295489i −0.719242 0.694759i \(-0.755511\pi\)
0.139312 + 0.990249i \(0.455511\pi\)
\(354\) 0 0
\(355\) −5.91715 + 14.4400i −0.314050 + 0.766398i
\(356\) 0 0
\(357\) −1.22036 + 1.22036i −0.0645884 + 0.0645884i
\(358\) 0 0
\(359\) −16.3725 11.8953i −0.864105 0.627809i 0.0648934 0.997892i \(-0.479329\pi\)
−0.928999 + 0.370083i \(0.879329\pi\)
\(360\) 0 0
\(361\) −34.2081 + 24.8536i −1.80043 + 1.30809i
\(362\) 0 0
\(363\) 5.27644 0.835705i 0.276941 0.0438632i
\(364\) 0 0
\(365\) −7.71551 + 32.6834i −0.403848 + 1.71073i
\(366\) 0 0
\(367\) 4.25004 8.34118i 0.221850 0.435406i −0.753076 0.657934i \(-0.771431\pi\)
0.974926 + 0.222528i \(0.0714307\pi\)
\(368\) 0 0
\(369\) 6.21952 2.02085i 0.323776 0.105201i
\(370\) 0 0
\(371\) 31.3090 + 10.1729i 1.62548 + 0.528151i
\(372\) 0 0
\(373\) −32.0548 5.07698i −1.65974 0.262876i −0.745040 0.667020i \(-0.767570\pi\)
−0.914696 + 0.404143i \(0.867570\pi\)
\(374\) 0 0
\(375\) 15.4741 3.90189i 0.799081 0.201493i
\(376\) 0 0
\(377\) 3.60131 22.7378i 0.185477 1.17106i
\(378\) 0 0
\(379\) 3.21609 9.89812i 0.165200 0.508432i −0.833851 0.551989i \(-0.813869\pi\)
0.999051 + 0.0435569i \(0.0138690\pi\)
\(380\) 0 0
\(381\) −4.07478 12.5409i −0.208757 0.642489i
\(382\) 0 0
\(383\) 26.0530 + 13.2746i 1.33124 + 0.678303i 0.967423 0.253166i \(-0.0814719\pi\)
0.363821 + 0.931469i \(0.381472\pi\)
\(384\) 0 0
\(385\) 34.6138 + 8.17120i 1.76408 + 0.416443i
\(386\) 0 0
\(387\) 1.60977 + 10.1637i 0.0818290 + 0.516648i
\(388\) 0 0
\(389\) −15.6435 21.5314i −0.793155 1.09168i −0.993708 0.112002i \(-0.964274\pi\)
0.200553 0.979683i \(-0.435726\pi\)
\(390\) 0 0
\(391\) −0.263914 + 0.363246i −0.0133467 + 0.0183702i
\(392\) 0 0
\(393\) 21.2994 + 21.2994i 1.07441 + 1.07441i
\(394\) 0 0
\(395\) −5.46345 2.23878i −0.274896 0.112645i
\(396\) 0 0
\(397\) 10.2475 + 20.1119i 0.514308 + 1.00939i 0.991441 + 0.130556i \(0.0416761\pi\)
−0.477133 + 0.878831i \(0.658324\pi\)
\(398\) 0 0
\(399\) −46.2871 −2.31725
\(400\) 0 0
\(401\) −6.67802 −0.333484 −0.166742 0.986001i \(-0.553325\pi\)
−0.166742 + 0.986001i \(0.553325\pi\)
\(402\) 0 0
\(403\) −2.85334 5.59999i −0.142135 0.278955i
\(404\) 0 0
\(405\) 11.2645 2.74963i 0.559738 0.136630i
\(406\) 0 0
\(407\) −8.20423 8.20423i −0.406669 0.406669i
\(408\) 0 0
\(409\) −2.62566 + 3.61391i −0.129831 + 0.178696i −0.868983 0.494841i \(-0.835226\pi\)
0.739153 + 0.673538i \(0.235226\pi\)
\(410\) 0 0
\(411\) 6.15876 + 8.47681i 0.303789 + 0.418130i
\(412\) 0 0
\(413\) 8.14838 + 51.4469i 0.400956 + 2.53154i
\(414\) 0 0
\(415\) −2.97257 + 4.89238i −0.145918 + 0.240158i
\(416\) 0 0
\(417\) 13.0913 + 6.67037i 0.641085 + 0.326649i
\(418\) 0 0
\(419\) −10.9171 33.5994i −0.533335 1.64144i −0.747219 0.664577i \(-0.768612\pi\)
0.213885 0.976859i \(-0.431388\pi\)
\(420\) 0 0
\(421\) −2.30880 + 7.10575i −0.112524 + 0.346313i −0.991423 0.130696i \(-0.958279\pi\)
0.878899 + 0.477009i \(0.158279\pi\)
\(422\) 0 0
\(423\) 0.347782 2.19581i 0.0169098 0.106764i
\(424\) 0 0
\(425\) 1.18719 + 0.848848i 0.0575870 + 0.0411752i
\(426\) 0 0
\(427\) 28.4744 + 4.50991i 1.37797 + 0.218250i
\(428\) 0 0
\(429\) −21.5018 6.98637i −1.03812 0.337305i
\(430\) 0 0
\(431\) 1.66992 0.542590i 0.0804372 0.0261356i −0.268522 0.963274i \(-0.586535\pi\)
0.348959 + 0.937138i \(0.386535\pi\)
\(432\) 0 0
\(433\) 1.36660 2.68210i 0.0656745 0.128894i −0.855835 0.517248i \(-0.826956\pi\)
0.921510 + 0.388355i \(0.126956\pi\)
\(434\) 0 0
\(435\) −17.7514 + 1.46488i −0.851115 + 0.0702357i
\(436\) 0 0
\(437\) −11.8938 + 1.88379i −0.568957 + 0.0901139i
\(438\) 0 0
\(439\) 20.5365 14.9207i 0.980156 0.712125i 0.0224121 0.999749i \(-0.492865\pi\)
0.957743 + 0.287624i \(0.0928654\pi\)
\(440\) 0 0
\(441\) 7.91184 + 5.74829i 0.376754 + 0.273728i
\(442\) 0 0
\(443\) 6.77536 6.77536i 0.321907 0.321907i −0.527591 0.849498i \(-0.676905\pi\)
0.849498 + 0.527591i \(0.176905\pi\)
\(444\) 0 0
\(445\) 22.1790 13.7074i 1.05139 0.649792i
\(446\) 0 0
\(447\) 15.0805 7.68391i 0.713284 0.363437i
\(448\) 0 0
\(449\) 20.3687i 0.961260i −0.876924 0.480630i \(-0.840408\pi\)
0.876924 0.480630i \(-0.159592\pi\)
\(450\) 0 0
\(451\) 26.0849i 1.22829i
\(452\) 0 0
\(453\) 16.5540 8.43470i 0.777776 0.396297i
\(454\) 0 0
\(455\) −29.1493 24.7051i −1.36654 1.15819i
\(456\) 0 0
\(457\) 5.54512 5.54512i 0.259390 0.259390i −0.565416 0.824806i \(-0.691284\pi\)
0.824806 + 0.565416i \(0.191284\pi\)
\(458\) 0 0
\(459\) 1.33565 + 0.970403i 0.0623426 + 0.0452946i
\(460\) 0 0
\(461\) −10.0726 + 7.31820i −0.469130 + 0.340843i −0.797102 0.603845i \(-0.793635\pi\)
0.327972 + 0.944687i \(0.393635\pi\)
\(462\) 0 0
\(463\) 14.8396 2.35037i 0.689656 0.109231i 0.198237 0.980154i \(-0.436478\pi\)
0.491419 + 0.870923i \(0.336478\pi\)
\(464\) 0 0
\(465\) −3.68567 + 3.17213i −0.170919 + 0.147104i
\(466\) 0 0
\(467\) −12.4383 + 24.4115i −0.575576 + 1.12963i 0.401325 + 0.915936i \(0.368550\pi\)
−0.976900 + 0.213695i \(0.931450\pi\)
\(468\) 0 0
\(469\) −35.1273 + 11.4135i −1.62203 + 0.527029i
\(470\) 0 0
\(471\) 4.85581 + 1.57775i 0.223744 + 0.0726988i
\(472\) 0 0
\(473\) −40.5404 6.42097i −1.86405 0.295236i
\(474\) 0 0
\(475\) 6.41644 + 38.6124i 0.294407 + 1.77166i
\(476\) 0 0
\(477\) 1.19673 7.55583i 0.0547943 0.345958i
\(478\) 0 0
\(479\) −7.53740 + 23.1977i −0.344393 + 1.05993i 0.617515 + 0.786559i \(0.288139\pi\)
−0.961908 + 0.273373i \(0.911861\pi\)
\(480\) 0 0
\(481\) 3.85204 + 11.8554i 0.175638 + 0.540558i
\(482\) 0 0
\(483\) −8.10396 4.12918i −0.368743 0.187884i
\(484\) 0 0
\(485\) 7.80085 3.26596i 0.354218 0.148300i
\(486\) 0 0
\(487\) −2.80650 17.7196i −0.127175 0.802950i −0.965999 0.258547i \(-0.916756\pi\)
0.838824 0.544403i \(-0.183244\pi\)
\(488\) 0 0
\(489\) −12.2098 16.8053i −0.552146 0.759963i
\(490\) 0 0
\(491\) −16.3602 + 22.5178i −0.738324 + 1.01622i 0.260390 + 0.965504i \(0.416149\pi\)
−0.998713 + 0.0507117i \(0.983851\pi\)
\(492\) 0 0
\(493\) −1.15182 1.15182i −0.0518754 0.0518754i
\(494\) 0 0
\(495\) 0.617159 8.24156i 0.0277392 0.370431i
\(496\) 0 0
\(497\) −13.1246 25.7585i −0.588720 1.15543i
\(498\) 0 0
\(499\) 27.2018 1.21772 0.608860 0.793278i \(-0.291627\pi\)
0.608860 + 0.793278i \(0.291627\pi\)
\(500\) 0 0
\(501\) −10.2220 −0.456684
\(502\) 0 0
\(503\) −14.0273 27.5300i −0.625444 1.22750i −0.958633 0.284643i \(-0.908125\pi\)
0.333189 0.942860i \(-0.391875\pi\)
\(504\) 0 0
\(505\) 1.97194 26.3334i 0.0877503 1.17182i
\(506\) 0 0
\(507\) 4.05456 + 4.05456i 0.180069 + 0.180069i
\(508\) 0 0
\(509\) 19.5761 26.9441i 0.867693 1.19428i −0.111987 0.993710i \(-0.535721\pi\)
0.979680 0.200568i \(-0.0642786\pi\)
\(510\) 0 0
\(511\) −36.5669 50.3301i −1.61763 2.22647i
\(512\) 0 0
\(513\) 6.92664 + 43.7331i 0.305819 + 1.93086i
\(514\) 0 0
\(515\) 12.5220 5.24254i 0.551783 0.231014i
\(516\) 0 0
\(517\) 7.90122 + 4.02587i 0.347495 + 0.177058i
\(518\) 0 0
\(519\) 3.26182 + 10.0389i 0.143178 + 0.440657i
\(520\) 0 0
\(521\) 5.65254 17.3967i 0.247642 0.762164i −0.747548 0.664207i \(-0.768769\pi\)
0.995191 0.0979570i \(-0.0312308\pi\)
\(522\) 0 0
\(523\) 2.44996 15.4684i 0.107129 0.676387i −0.874419 0.485172i \(-0.838757\pi\)
0.981548 0.191215i \(-0.0612428\pi\)
\(524\) 0 0
\(525\) −13.2213 + 26.4426i −0.577024 + 1.15405i
\(526\) 0 0
\(527\) −0.439236 0.0695681i −0.0191334 0.00303043i
\(528\) 0 0
\(529\) 19.6239 + 6.37619i 0.853212 + 0.277225i
\(530\) 0 0
\(531\) 11.5118 3.74042i 0.499571 0.162321i
\(532\) 0 0
\(533\) 12.7230 24.9704i 0.551096 1.08159i
\(534\) 0 0
\(535\) −6.37487 + 5.48663i −0.275610 + 0.237208i
\(536\) 0 0
\(537\) 6.02327 0.953993i 0.259923 0.0411678i
\(538\) 0 0
\(539\) −31.5584 + 22.9285i −1.35932 + 0.987602i
\(540\) 0 0
\(541\) −27.1227 19.7058i −1.16610 0.847220i −0.175561 0.984468i \(-0.556174\pi\)
−0.990537 + 0.137249i \(0.956174\pi\)
\(542\) 0 0
\(543\) −16.4440 + 16.4440i −0.705679 + 0.705679i
\(544\) 0 0
\(545\) 8.10314 + 6.86772i 0.347100 + 0.294181i
\(546\) 0 0
\(547\) 14.4364 7.35569i 0.617254 0.314507i −0.117259 0.993101i \(-0.537411\pi\)
0.734513 + 0.678595i \(0.237411\pi\)
\(548\) 0 0
\(549\) 6.69938i 0.285922i
\(550\) 0 0
\(551\) 43.6874i 1.86115i
\(552\) 0 0
\(553\) 9.74586 4.96576i 0.414436 0.211166i
\(554\) 0 0
\(555\) 8.20423 5.07049i 0.348250 0.215230i
\(556\) 0 0
\(557\) 23.4966 23.4966i 0.995583 0.995583i −0.00440744 0.999990i \(-0.501403\pi\)
0.999990 + 0.00440744i \(0.00140294\pi\)
\(558\) 0 0
\(559\) 35.6764 + 25.9204i 1.50895 + 1.09632i
\(560\) 0 0
\(561\) −1.29419 + 0.940285i −0.0546408 + 0.0396988i
\(562\) 0 0
\(563\) −18.2001 + 2.88261i −0.767043 + 0.121488i −0.527681 0.849443i \(-0.676938\pi\)
−0.239362 + 0.970930i \(0.576938\pi\)
\(564\) 0 0
\(565\) 23.0378 1.90112i 0.969207 0.0799809i
\(566\) 0 0
\(567\) −9.75198 + 19.1393i −0.409545 + 0.803777i
\(568\) 0 0
\(569\) 1.24601 0.404854i 0.0522355 0.0169724i −0.282783 0.959184i \(-0.591258\pi\)
0.335018 + 0.942212i \(0.391258\pi\)
\(570\) 0 0
\(571\) −4.68049 1.52078i −0.195872 0.0636428i 0.209438 0.977822i \(-0.432837\pi\)
−0.405310 + 0.914179i \(0.632837\pi\)
\(572\) 0 0
\(573\) 0.950379 + 0.150525i 0.0397027 + 0.00628828i
\(574\) 0 0
\(575\) −2.32114 + 7.33267i −0.0967981 + 0.305793i
\(576\) 0 0
\(577\) 3.10016 19.5737i 0.129062 0.814862i −0.835207 0.549936i \(-0.814652\pi\)
0.964269 0.264927i \(-0.0853478\pi\)
\(578\) 0 0
\(579\) −1.21171 + 3.72927i −0.0503571 + 0.154983i
\(580\) 0 0
\(581\) −3.27716 10.0861i −0.135959 0.418440i
\(582\) 0 0
\(583\) 27.1882 + 13.8531i 1.12602 + 0.573736i
\(584\) 0 0
\(585\) −4.61066 + 7.58842i −0.190627 + 0.313742i
\(586\) 0 0
\(587\) −4.17496 26.3597i −0.172319 1.08798i −0.910540 0.413421i \(-0.864334\pi\)
0.738221 0.674559i \(-0.235666\pi\)
\(588\) 0 0
\(589\) −7.01057 9.64922i −0.288865 0.397589i
\(590\) 0 0
\(591\) 6.19645 8.52869i 0.254888 0.350823i
\(592\) 0 0
\(593\) 7.10899 + 7.10899i 0.291931 + 0.291931i 0.837843 0.545911i \(-0.183817\pi\)
−0.545911 + 0.837843i \(0.683817\pi\)
\(594\) 0 0
\(595\) −2.62654 + 0.641130i −0.107678 + 0.0262838i
\(596\) 0 0
\(597\) −3.40520 6.68309i −0.139366 0.273521i
\(598\) 0 0
\(599\) 39.7238 1.62307 0.811536 0.584302i \(-0.198632\pi\)
0.811536 + 0.584302i \(0.198632\pi\)
\(600\) 0 0
\(601\) 7.44239 0.303582 0.151791 0.988413i \(-0.451496\pi\)
0.151791 + 0.988413i \(0.451496\pi\)
\(602\) 0 0
\(603\) 3.89659 + 7.64748i 0.158681 + 0.311430i
\(604\) 0 0
\(605\) 7.74396 + 3.17327i 0.314837 + 0.129012i
\(606\) 0 0
\(607\) −22.8498 22.8498i −0.927445 0.927445i 0.0700955 0.997540i \(-0.477670\pi\)
−0.997540 + 0.0700955i \(0.977670\pi\)
\(608\) 0 0
\(609\) 19.3951 26.6950i 0.785928 1.08174i
\(610\) 0 0
\(611\) −5.59999 7.70772i −0.226551 0.311821i
\(612\) 0 0
\(613\) −4.46309 28.1788i −0.180262 1.13813i −0.897406 0.441207i \(-0.854551\pi\)
0.717143 0.696926i \(-0.245449\pi\)
\(614\) 0 0
\(615\) −21.1031 4.98177i −0.850959 0.200884i
\(616\) 0 0
\(617\) −7.60111 3.87296i −0.306009 0.155920i 0.294242 0.955731i \(-0.404933\pi\)
−0.600251 + 0.799811i \(0.704933\pi\)
\(618\) 0 0
\(619\) −6.83480 21.0353i −0.274714 0.845482i −0.989295 0.145929i \(-0.953383\pi\)
0.714581 0.699552i \(-0.246617\pi\)
\(620\) 0 0
\(621\) −2.68862 + 8.27471i −0.107891 + 0.332053i
\(622\) 0 0
\(623\) −7.55596 + 47.7064i −0.302723 + 1.91132i
\(624\) 0 0
\(625\) 23.8910 + 7.36356i 0.955638 + 0.294542i
\(626\) 0 0
\(627\) −42.3757 6.71166i −1.69232 0.268038i
\(628\) 0 0
\(629\) 0.838853 + 0.272560i 0.0334473 + 0.0108677i
\(630\) 0 0
\(631\) −14.3275 + 4.65528i −0.570368 + 0.185324i −0.579981 0.814630i \(-0.696940\pi\)
0.00961299 + 0.999954i \(0.496940\pi\)
\(632\) 0 0
\(633\) 5.25672 10.3169i 0.208936 0.410060i
\(634\) 0 0
\(635\) 4.74603 20.1045i 0.188341 0.797823i
\(636\) 0 0
\(637\) 41.3936 6.55610i 1.64007 0.259762i
\(638\) 0 0
\(639\) −5.43497 + 3.94874i −0.215004 + 0.156210i
\(640\) 0 0
\(641\) −26.9426 19.5749i −1.06417 0.773163i −0.0893123 0.996004i \(-0.528467\pi\)
−0.974855 + 0.222841i \(0.928467\pi\)
\(642\) 0 0
\(643\) 26.5370 26.5370i 1.04652 1.04652i 0.0476541 0.998864i \(-0.484825\pi\)
0.998864 0.0476541i \(-0.0151745\pi\)
\(644\) 0 0
\(645\) 12.9372 31.5716i 0.509402 1.24313i
\(646\) 0 0
\(647\) 14.8905 7.58707i 0.585404 0.298278i −0.136092 0.990696i \(-0.543454\pi\)
0.721497 + 0.692418i \(0.243454\pi\)
\(648\) 0 0
\(649\) 48.2810i 1.89519i
\(650\) 0 0
\(651\) 9.00847i 0.353070i
\(652\) 0 0
\(653\) −8.39806 + 4.27902i −0.328641 + 0.167451i −0.610524 0.791998i \(-0.709041\pi\)
0.281883 + 0.959449i \(0.409041\pi\)
\(654\) 0 0
\(655\) 11.1899 + 45.8420i 0.437225 + 1.79120i
\(656\) 0 0
\(657\) −10.2224 + 10.2224i −0.398815 + 0.398815i
\(658\) 0 0
\(659\) 21.3774 + 15.5316i 0.832745 + 0.605025i 0.920335 0.391132i \(-0.127916\pi\)
−0.0875893 + 0.996157i \(0.527916\pi\)
\(660\) 0 0
\(661\) 17.7042 12.8628i 0.688612 0.500306i −0.187591 0.982247i \(-0.560068\pi\)
0.876204 + 0.481941i \(0.160068\pi\)
\(662\) 0 0
\(663\) 1.69752 0.268861i 0.0659264 0.0104417i
\(664\) 0 0
\(665\) −61.9698 37.6523i −2.40308 1.46009i
\(666\) 0 0
\(667\) 3.89726 7.64880i 0.150903 0.296163i
\(668\) 0 0
\(669\) 5.08561 1.65242i 0.196621 0.0638861i
\(670\) 0 0
\(671\) 25.4143 + 8.25761i 0.981109 + 0.318782i
\(672\) 0 0
\(673\) −7.36687 1.16680i −0.283972 0.0449768i 0.0128235 0.999918i \(-0.495918\pi\)
−0.296796 + 0.954941i \(0.595918\pi\)
\(674\) 0 0
\(675\) 26.9620 + 8.53475i 1.03777 + 0.328503i
\(676\) 0 0
\(677\) −2.11287 + 13.3401i −0.0812042 + 0.512703i 0.913239 + 0.407425i \(0.133573\pi\)
−0.994443 + 0.105278i \(0.966427\pi\)
\(678\) 0 0
\(679\) −4.84130 + 14.9000i −0.185792 + 0.571809i
\(680\) 0 0
\(681\) 4.10501 + 12.6339i 0.157304 + 0.484132i
\(682\) 0 0
\(683\) 28.3996 + 14.4703i 1.08668 + 0.553692i 0.903151 0.429323i \(-0.141248\pi\)
0.183530 + 0.983014i \(0.441248\pi\)
\(684\) 0 0
\(685\) 1.34995 + 16.3587i 0.0515791 + 0.625034i
\(686\) 0 0
\(687\) −1.30780 8.25710i −0.0498955 0.315028i
\(688\) 0 0
\(689\) −19.2697 26.5224i −0.734116 1.01042i
\(690\) 0 0
\(691\) −15.1560 + 20.8605i −0.576563 + 0.793571i −0.993313 0.115450i \(-0.963169\pi\)
0.416750 + 0.909021i \(0.363169\pi\)
\(692\) 0 0
\(693\) 10.8262 + 10.8262i 0.411253 + 0.411253i
\(694\) 0 0
\(695\) 12.1008 + 19.5795i 0.459010 + 0.742694i
\(696\) 0 0
\(697\) −0.900248 1.76684i −0.0340993 0.0669237i
\(698\) 0 0
\(699\) −11.8399 −0.447825
\(700\) 0 0
\(701\) 20.3302 0.767860 0.383930 0.923362i \(-0.374570\pi\)
0.383930 + 0.923362i \(0.374570\pi\)
\(702\) 0 0
\(703\) 10.7395 + 21.0774i 0.405047 + 0.794949i
\(704\) 0 0
\(705\) −4.76600 + 5.62334i −0.179498 + 0.211787i
\(706\) 0 0
\(707\) 34.5918 + 34.5918i 1.30096 + 1.30096i
\(708\) 0 0
\(709\) −7.51229 + 10.3398i −0.282130 + 0.388319i −0.926438 0.376447i \(-0.877146\pi\)
0.644308 + 0.764766i \(0.277146\pi\)
\(710\) 0 0
\(711\) −1.49402 2.05635i −0.0560302 0.0771190i
\(712\) 0 0
\(713\) −0.366626 2.31479i −0.0137302 0.0866894i
\(714\) 0 0
\(715\) −23.1038 26.8441i −0.864035 1.00391i
\(716\) 0 0
\(717\) −31.5843 16.0930i −1.17954 0.601004i
\(718\) 0 0
\(719\) 3.29703 + 10.1472i 0.122959 + 0.378427i 0.993524 0.113626i \(-0.0362465\pi\)
−0.870565 + 0.492053i \(0.836247\pi\)
\(720\) 0 0
\(721\) −7.77127 + 23.9175i −0.289417 + 0.890735i
\(722\) 0 0
\(723\) −1.61025 + 10.1667i −0.0598860 + 0.378105i
\(724\) 0 0
\(725\) −24.9574 12.4787i −0.926895 0.463447i
\(726\) 0 0
\(727\) −27.4276 4.34410i −1.01723 0.161114i −0.374518 0.927220i \(-0.622192\pi\)
−0.642714 + 0.766106i \(0.722192\pi\)
\(728\) 0 0
\(729\) 27.7821 + 9.02694i 1.02897 + 0.334331i
\(730\) 0 0
\(731\) 2.96757 0.964222i 0.109760 0.0356630i
\(732\) 0 0
\(733\) 14.4667 28.3925i 0.534339 1.04870i −0.453212 0.891403i \(-0.649722\pi\)
0.987551 0.157297i \(-0.0502779\pi\)
\(734\) 0 0
\(735\) −12.5224 29.9102i −0.461897 1.10326i
\(736\) 0 0
\(737\) −33.8139 + 5.35560i −1.24555 + 0.197276i
\(738\) 0 0
\(739\) −37.2176 + 27.0402i −1.36907 + 0.994688i −0.371262 + 0.928528i \(0.621075\pi\)
−0.997809 + 0.0661598i \(0.978925\pi\)
\(740\) 0 0
\(741\) 37.2915 + 27.0939i 1.36994 + 0.995319i
\(742\) 0 0
\(743\) 18.2973 18.2973i 0.671262 0.671262i −0.286745 0.958007i \(-0.592573\pi\)
0.958007 + 0.286745i \(0.0925733\pi\)
\(744\) 0 0
\(745\) 26.4405 + 1.97996i 0.968704 + 0.0725401i
\(746\) 0 0
\(747\) −2.19581 + 1.11882i −0.0803406 + 0.0409356i
\(748\) 0 0
\(749\) 15.5814i 0.569330i
\(750\) 0 0
\(751\) 3.66430i 0.133712i −0.997763 0.0668561i \(-0.978703\pi\)
0.997763 0.0668561i \(-0.0212968\pi\)
\(752\) 0 0
\(753\) −37.3248 + 19.0180i −1.36019 + 0.693053i
\(754\) 0 0
\(755\) 29.0240 + 2.17342i 1.05629 + 0.0790989i
\(756\) 0 0
\(757\) −16.0349 + 16.0349i −0.582797 + 0.582797i −0.935671 0.352874i \(-0.885204\pi\)
0.352874 + 0.935671i \(0.385204\pi\)
\(758\) 0 0
\(759\) −6.82042 4.95533i −0.247566 0.179867i
\(760\) 0 0
\(761\) 2.89867 2.10600i 0.105077 0.0763426i −0.534006 0.845481i \(-0.679314\pi\)
0.639083 + 0.769138i \(0.279314\pi\)
\(762\) 0 0
\(763\) −19.4353 + 3.07825i −0.703606 + 0.111440i
\(764\) 0 0
\(765\) 0.242632 + 0.579535i 0.00877240 + 0.0209531i
\(766\) 0 0
\(767\) 23.5493 46.2181i 0.850317 1.66884i
\(768\) 0 0
\(769\) −32.4148 + 10.5322i −1.16891 + 0.379802i −0.828236 0.560380i \(-0.810655\pi\)
−0.340674 + 0.940182i \(0.610655\pi\)
\(770\) 0 0
\(771\) −30.9669 10.0618i −1.11525 0.362366i
\(772\) 0 0
\(773\) 7.62309 + 1.20738i 0.274183 + 0.0434264i 0.292012 0.956415i \(-0.405675\pi\)
−0.0178285 + 0.999841i \(0.505675\pi\)
\(774\) 0 0
\(775\) −7.51480 + 1.24878i −0.269940 + 0.0448574i
\(776\) 0 0
\(777\) −2.79502 + 17.6471i −0.100271 + 0.633085i
\(778\) 0 0
\(779\) 16.4344 50.5800i 0.588824 1.81222i
\(780\) 0 0
\(781\) −8.28056 25.4849i −0.296302 0.911923i
\(782\) 0 0
\(783\) −28.1244 14.3301i −1.00508 0.512116i
\(784\) 0 0
\(785\) 5.21759 + 6.06227i 0.186224 + 0.216372i
\(786\) 0 0
\(787\) −3.28182 20.7206i −0.116984 0.738611i −0.974539 0.224218i \(-0.928017\pi\)
0.857555 0.514393i \(-0.171983\pi\)
\(788\) 0 0
\(789\) 18.1870 + 25.0323i 0.647476 + 0.891174i
\(790\) 0 0
\(791\) −25.1709 + 34.6448i −0.894976 + 1.23183i
\(792\) 0 0
\(793\) −20.3008 20.3008i −0.720902 0.720902i
\(794\) 0 0
\(795\) −16.3999 + 19.3500i −0.581644 + 0.686275i
\(796\) 0 0
\(797\) 8.94048 + 17.5467i 0.316688 + 0.621535i 0.993399 0.114714i \(-0.0365951\pi\)
−0.676711 + 0.736249i \(0.736595\pi\)
\(798\) 0 0
\(799\) −0.674124 −0.0238488
\(800\) 0 0
\(801\) 11.2242 0.396588
\(802\) 0 0
\(803\) −26.1790 51.3792i −0.923838 1.81313i
\(804\) 0 0
\(805\) −7.49080 12.1204i −0.264016 0.427187i
\(806\) 0 0
\(807\) 30.1491 + 30.1491i 1.06130 + 1.06130i
\(808\) 0 0
\(809\) −10.5652 + 14.5418i −0.371454 + 0.511263i −0.953295 0.302040i \(-0.902333\pi\)
0.581841 + 0.813302i \(0.302333\pi\)
\(810\) 0 0
\(811\) 3.88707 + 5.35010i 0.136494 + 0.187867i 0.871792 0.489876i \(-0.162958\pi\)
−0.735298 + 0.677743i \(0.762958\pi\)
\(812\) 0 0
\(813\) 3.82348 + 24.1405i 0.134095 + 0.846644i
\(814\) 0 0
\(815\) −2.67629 32.4313i −0.0937464 1.13602i
\(816\) 0 0
\(817\) 74.5645 + 37.9925i 2.60868 + 1.32919i
\(818\) 0 0
\(819\) −5.08309 15.6442i −0.177618 0.546651i
\(820\) 0 0
\(821\) −0.360464 + 1.10939i −0.0125803 + 0.0387181i −0.957150 0.289594i \(-0.906480\pi\)
0.944569 + 0.328312i \(0.106480\pi\)
\(822\) 0 0
\(823\) 5.62489 35.5142i 0.196071 1.23795i −0.671640 0.740878i \(-0.734410\pi\)
0.867711 0.497068i \(-0.165590\pi\)
\(824\) 0 0
\(825\) −15.9382 + 22.2910i −0.554898 + 0.776073i
\(826\) 0 0
\(827\) 17.3046 + 2.74077i 0.601739 + 0.0953060i 0.449869 0.893095i \(-0.351471\pi\)
0.151870 + 0.988401i \(0.451471\pi\)
\(828\) 0 0
\(829\) 15.2346 + 4.95002i 0.529120 + 0.171921i 0.561380 0.827558i \(-0.310271\pi\)
−0.0322604 + 0.999479i \(0.510271\pi\)
\(830\) 0 0
\(831\) 16.1014 5.23166i 0.558551 0.181484i
\(832\) 0 0
\(833\) 1.34627 2.64220i 0.0466454 0.0915467i
\(834\) 0 0
\(835\) −13.6853 8.31507i −0.473599 0.287755i
\(836\) 0 0
\(837\) −8.51140 + 1.34807i −0.294197 + 0.0465962i
\(838\) 0 0
\(839\) −31.4048 + 22.8169i −1.08421 + 0.787727i −0.978413 0.206661i \(-0.933740\pi\)
−0.105800 + 0.994387i \(0.533740\pi\)
\(840\) 0 0
\(841\) 1.73420 + 1.25997i 0.0598001 + 0.0434473i
\(842\) 0 0
\(843\) 18.8318 18.8318i 0.648602 0.648602i
\(844\) 0 0
\(845\) 2.13011 + 8.72649i 0.0732779 + 0.300200i
\(846\) 0 0
\(847\) −13.8139 + 7.03853i −0.474651 + 0.241847i
\(848\) 0 0
\(849\) 22.4679i 0.771098i
\(850\) 0 0
\(851\) 4.64828i 0.159341i
\(852\) 0 0
\(853\) 19.3009 9.83431i 0.660851 0.336720i −0.0911931 0.995833i \(-0.529068\pi\)
0.752044 + 0.659113i \(0.229068\pi\)
\(854\) 0 0
\(855\) −6.38919 + 15.5920i −0.218506 + 0.533235i
\(856\) 0 0
\(857\) −30.7036 + 30.7036i −1.04881 + 1.04881i −0.0500684 + 0.998746i \(0.515944\pi\)
−0.998746 + 0.0500684i \(0.984056\pi\)
\(858\) 0 0
\(859\) −0.0460861 0.0334835i −0.00157244 0.00114244i 0.586999 0.809588i \(-0.300309\pi\)
−0.588571 + 0.808445i \(0.700309\pi\)
\(860\) 0 0
\(861\) 32.4972 23.6106i 1.10750 0.804648i
\(862\) 0 0
\(863\) −9.17549 + 1.45326i −0.312337 + 0.0494694i −0.310635 0.950529i \(-0.600542\pi\)
−0.00170208 + 0.999999i \(0.500542\pi\)
\(864\) 0 0
\(865\) −3.79916 + 16.0935i −0.129175 + 0.547195i
\(866\) 0 0
\(867\) −10.9610 + 21.5122i −0.372256 + 0.730593i
\(868\) 0 0
\(869\) 9.64234 3.13299i 0.327094 0.106279i
\(870\) 0 0
\(871\) 34.9814 + 11.3661i 1.18530 + 0.385127i
\(872\) 0 0
\(873\) 3.59582 + 0.569523i 0.121700 + 0.0192754i
\(874\) 0 0
\(875\) −39.2105 + 24.6467i −1.32556 + 0.833212i
\(876\) 0 0
\(877\) −7.07858 + 44.6924i −0.239027 + 1.50916i 0.517779 + 0.855515i \(0.326759\pi\)
−0.756805 + 0.653640i \(0.773241\pi\)
\(878\) 0 0
\(879\) 14.7174 45.2954i 0.496404 1.52777i
\(880\) 0 0
\(881\) 5.21481 + 16.0495i 0.175691 + 0.540723i 0.999664 0.0259066i \(-0.00824725\pi\)
−0.823973 + 0.566629i \(0.808247\pi\)
\(882\) 0 0
\(883\) −11.4537 5.83596i −0.385448 0.196396i 0.250519 0.968112i \(-0.419399\pi\)
−0.635967 + 0.771716i \(0.719399\pi\)
\(884\) 0 0
\(885\) −39.0601 9.22085i −1.31299 0.309955i
\(886\) 0 0
\(887\) 7.92120 + 50.0125i 0.265968 + 1.67926i 0.653132 + 0.757244i \(0.273455\pi\)
−0.387164 + 0.922011i \(0.626545\pi\)
\(888\) 0 0
\(889\) 22.4934 + 30.9595i 0.754404 + 1.03835i
\(890\) 0 0
\(891\) −11.7031 + 16.1080i −0.392069 + 0.539637i
\(892\) 0 0
\(893\) −12.7844 12.7844i −0.427815 0.427815i
\(894\) 0 0
\(895\) 8.84006 + 3.62242i 0.295490 + 0.121084i
\(896\) 0 0
\(897\) 4.11203 + 8.07031i 0.137297 + 0.269460i
\(898\) 0 0
\(899\) 8.50250 0.283574
\(900\) 0 0
\(901\) −2.31967 −0.0772795
\(902\) 0 0
\(903\) 28.6956 + 56.3182i 0.954928 + 1.87415i
\(904\) 0 0
\(905\) −35.3918 + 8.63902i −1.17646 + 0.287171i
\(906\) 0 0
\(907\) 18.8330 + 18.8330i 0.625339 + 0.625339i 0.946892 0.321553i \(-0.104205\pi\)
−0.321553 + 0.946892i \(0.604205\pi\)
\(908\) 0 0
\(909\) 6.68199 9.19697i 0.221628 0.305044i
\(910\) 0 0
\(911\) 6.27133 + 8.63174i 0.207778 + 0.285982i 0.900169 0.435540i \(-0.143443\pi\)
−0.692391 + 0.721523i \(0.743443\pi\)
\(912\) 0 0
\(913\) −1.53775 9.70894i −0.0508920 0.321319i
\(914\) 0 0
\(915\) −11.5343 + 18.9836i −0.381311 + 0.627577i
\(916\) 0 0
\(917\) −77.8894 39.6866i −2.57214 1.31057i
\(918\) 0 0
\(919\) −13.7726 42.3878i −0.454318 1.39825i −0.871934 0.489623i \(-0.837135\pi\)
0.417617 0.908623i \(-0.362865\pi\)
\(920\) 0 0
\(921\) −0.0628025 + 0.193286i −0.00206941 + 0.00636900i
\(922\) 0 0
\(923\) −4.50366 + 28.4350i −0.148240 + 0.935949i
\(924\) 0 0
\(925\) 15.1085 0.114695i 0.496765 0.00377116i
\(926\) 0 0
\(927\) 5.77203 + 0.914200i 0.189578 + 0.0300263i
\(928\) 0 0
\(929\) 3.04696 + 0.990017i 0.0999675 + 0.0324814i 0.358574 0.933501i \(-0.383263\pi\)
−0.258606 + 0.965983i \(0.583263\pi\)
\(930\) 0 0
\(931\) 75.6393 24.5767i 2.47898 0.805468i
\(932\) 0 0
\(933\) 6.89111 13.5246i 0.225605 0.442774i
\(934\) 0 0
\(935\) −2.49755 + 0.206103i −0.0816787 + 0.00674029i
\(936\) 0 0
\(937\) −45.1439 + 7.15010i −1.47479 + 0.233583i −0.841468 0.540307i \(-0.818308\pi\)
−0.633320 + 0.773890i \(0.718308\pi\)
\(938\) 0 0
\(939\) 26.9913 19.6103i 0.880827 0.639958i
\(940\) 0 0
\(941\) −1.31101 0.952505i −0.0427377 0.0310508i 0.566211 0.824260i \(-0.308409\pi\)
−0.608949 + 0.793209i \(0.708409\pi\)
\(942\) 0 0
\(943\) 7.38947 7.38947i 0.240634 0.240634i
\(944\) 0 0
\(945\) −44.5663 + 27.5435i −1.44974 + 0.895989i
\(946\) 0 0
\(947\) 6.11091 3.11366i 0.198578 0.101180i −0.351874 0.936047i \(-0.614455\pi\)
0.550452 + 0.834867i \(0.314455\pi\)
\(948\) 0 0
\(949\) 61.9530i 2.01108i
\(950\) 0 0
\(951\) 13.7645i 0.446345i
\(952\) 0 0
\(953\) 45.7444 23.3080i 1.48181 0.755019i 0.488725 0.872438i \(-0.337462\pi\)
0.993082 + 0.117419i \(0.0374621\pi\)
\(954\) 0 0
\(955\) 1.14993 + 0.974612i 0.0372110 + 0.0315377i
\(956\) 0 0
\(957\) 21.6269 21.6269i 0.699099 0.699099i
\(958\) 0 0
\(959\) −24.6007 17.8734i −0.794397 0.577163i
\(960\) 0 0
\(961\) −23.2016 + 16.8569i −0.748438 + 0.543772i
\(962\) 0 0
\(963\) −3.57622 + 0.566418i −0.115242 + 0.0182526i
\(964\) 0 0
\(965\) −4.65584 + 4.00712i −0.149877 + 0.128994i
\(966\) 0 0
\(967\) −19.2666 + 37.8129i −0.619573 + 1.21598i 0.341551 + 0.939863i \(0.389048\pi\)
−0.961124 + 0.276117i \(0.910952\pi\)
\(968\) 0 0
\(969\) 3.10192 1.00787i 0.0996480 0.0323776i
\(970\) 0 0
\(971\) 28.6325 + 9.30326i 0.918861 + 0.298556i 0.729999 0.683448i \(-0.239520\pi\)
0.188861 + 0.982004i \(0.439520\pi\)
\(972\) 0 0
\(973\) −42.1150 6.67037i −1.35015 0.213842i
\(974\) 0 0
\(975\) 26.1298 13.5646i 0.836823 0.434416i
\(976\) 0 0
\(977\) 3.59037 22.6687i 0.114866 0.725235i −0.861282 0.508128i \(-0.830338\pi\)
0.976148 0.217107i \(-0.0696622\pi\)
\(978\) 0 0
\(979\) −13.8349 + 42.5795i −0.442166 + 1.36085i
\(980\) 0 0
\(981\) 1.41304 + 4.34888i 0.0451148 + 0.138849i
\(982\) 0 0
\(983\) −45.8856 23.3799i −1.46352 0.745702i −0.472745 0.881199i \(-0.656737\pi\)
−0.990778 + 0.135497i \(0.956737\pi\)
\(984\) 0 0
\(985\) 15.2336 6.37780i 0.485382 0.203213i
\(986\) 0 0
\(987\) −2.13622 13.4875i −0.0679966 0.429313i
\(988\) 0 0
\(989\) 9.66555 + 13.3035i 0.307347 + 0.423026i
\(990\) 0 0
\(991\) 7.43042 10.2271i 0.236035 0.324874i −0.674524 0.738253i \(-0.735651\pi\)
0.910559 + 0.413378i \(0.135651\pi\)
\(992\) 0 0
\(993\) 9.95250 + 9.95250i 0.315833 + 0.315833i
\(994\) 0 0
\(995\) 0.877439 11.7174i 0.0278167 0.371465i
\(996\) 0 0
\(997\) 10.5746 + 20.7537i 0.334900 + 0.657277i 0.995634 0.0933423i \(-0.0297551\pi\)
−0.660735 + 0.750620i \(0.729755\pi\)
\(998\) 0 0
\(999\) 17.0916 0.540754
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.b.223.1 16
4.3 odd 2 inner 400.2.bi.b.223.2 yes 16
25.12 odd 20 inner 400.2.bi.b.287.2 yes 16
100.87 even 20 inner 400.2.bi.b.287.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.b.223.1 16 1.1 even 1 trivial
400.2.bi.b.223.2 yes 16 4.3 odd 2 inner
400.2.bi.b.287.1 yes 16 100.87 even 20 inner
400.2.bi.b.287.2 yes 16 25.12 odd 20 inner