Properties

Label 400.2.bi.b.303.2
Level $400$
Weight $2$
Character 400.303
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(47,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 806 x^{12} - 2288 x^{11} + 5530 x^{10} - 11062 x^{9} + \cdots + 521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 303.2
Root \(0.500000 + 1.94194i\) of defining polynomial
Character \(\chi\) \(=\) 400.303
Dual form 400.2.bi.b.367.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.01411 - 0.319003i) q^{3} +(-1.70582 - 1.44575i) q^{5} +(-3.13704 - 3.13704i) q^{7} +(1.10169 - 0.357960i) q^{9} +(3.22428 + 1.04763i) q^{11} +(1.73514 - 3.40540i) q^{13} +(-3.89690 - 2.36772i) q^{15} +(1.22123 - 7.71055i) q^{17} +(-0.375011 + 0.272461i) q^{19} +(-7.31906 - 5.31761i) q^{21} +(2.52419 + 4.95399i) q^{23} +(0.819639 + 4.93236i) q^{25} +(-3.34613 + 1.70494i) q^{27} +(0.719203 - 0.989898i) q^{29} +(4.50368 + 6.19878i) q^{31} +(6.82823 + 1.08149i) q^{33} +(0.815862 + 9.88660i) q^{35} +(1.21113 + 0.617102i) q^{37} +(2.40842 - 7.41234i) q^{39} +(-0.457300 - 1.40742i) q^{41} +(-5.57270 + 5.57270i) q^{43} +(-2.39680 - 0.982146i) q^{45} +(-0.197155 - 1.24479i) q^{47} +12.6821i q^{49} -15.9194i q^{51} +(0.141520 + 0.893520i) q^{53} +(-3.98543 - 6.44855i) q^{55} +(-0.668395 + 0.668395i) q^{57} +(-3.24696 - 9.99313i) q^{59} +(0.649536 - 1.99907i) q^{61} +(-4.57898 - 2.33311i) q^{63} +(-7.88316 + 3.30042i) q^{65} +(11.3499 + 1.79765i) q^{67} +(6.66432 + 9.17264i) q^{69} +(-1.00694 + 1.38593i) q^{71} +(5.49431 - 2.79949i) q^{73} +(3.22428 + 9.67283i) q^{75} +(-6.82823 - 13.4012i) q^{77} +(13.5517 + 9.84590i) q^{79} +(-9.00703 + 6.54399i) q^{81} +(1.12294 - 7.08995i) q^{83} +(-13.2307 + 11.3872i) q^{85} +(1.13277 - 2.22319i) q^{87} +(7.35916 + 2.39114i) q^{89} +(-16.1261 + 5.23968i) q^{91} +(11.0483 + 11.0483i) q^{93} +(1.03361 + 0.0774005i) q^{95} +(10.8914 - 1.72503i) q^{97} +3.92716 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 20 q^{9} + 20 q^{17} - 20 q^{21} - 20 q^{25} + 20 q^{29} + 60 q^{33} - 20 q^{37} + 28 q^{41} - 20 q^{45} + 60 q^{53} - 20 q^{57} - 12 q^{61} - 20 q^{65} - 80 q^{69} - 40 q^{73} - 60 q^{77} + 56 q^{81}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.01411 0.319003i 1.16284 0.184176i 0.454965 0.890509i \(-0.349652\pi\)
0.707880 + 0.706333i \(0.249652\pi\)
\(4\) 0 0
\(5\) −1.70582 1.44575i −0.762866 0.646557i
\(6\) 0 0
\(7\) −3.13704 3.13704i −1.18569 1.18569i −0.978247 0.207444i \(-0.933486\pi\)
−0.207444 0.978247i \(-0.566514\pi\)
\(8\) 0 0
\(9\) 1.10169 0.357960i 0.367230 0.119320i
\(10\) 0 0
\(11\) 3.22428 + 1.04763i 0.972156 + 0.315873i 0.751686 0.659521i \(-0.229241\pi\)
0.220470 + 0.975394i \(0.429241\pi\)
\(12\) 0 0
\(13\) 1.73514 3.40540i 0.481240 0.944487i −0.514945 0.857223i \(-0.672188\pi\)
0.996185 0.0872636i \(-0.0278123\pi\)
\(14\) 0 0
\(15\) −3.89690 2.36772i −1.00617 0.611343i
\(16\) 0 0
\(17\) 1.22123 7.71055i 0.296192 1.87008i −0.170062 0.985433i \(-0.554397\pi\)
0.466254 0.884651i \(-0.345603\pi\)
\(18\) 0 0
\(19\) −0.375011 + 0.272461i −0.0860333 + 0.0625069i −0.629970 0.776619i \(-0.716933\pi\)
0.543937 + 0.839126i \(0.316933\pi\)
\(20\) 0 0
\(21\) −7.31906 5.31761i −1.59715 1.16040i
\(22\) 0 0
\(23\) 2.52419 + 4.95399i 0.526329 + 1.03298i 0.989203 + 0.146555i \(0.0468185\pi\)
−0.462873 + 0.886424i \(0.653182\pi\)
\(24\) 0 0
\(25\) 0.819639 + 4.93236i 0.163928 + 0.986472i
\(26\) 0 0
\(27\) −3.34613 + 1.70494i −0.643962 + 0.328115i
\(28\) 0 0
\(29\) 0.719203 0.989898i 0.133553 0.183819i −0.737003 0.675890i \(-0.763760\pi\)
0.870556 + 0.492070i \(0.163760\pi\)
\(30\) 0 0
\(31\) 4.50368 + 6.19878i 0.808884 + 1.11333i 0.991495 + 0.130148i \(0.0415454\pi\)
−0.182610 + 0.983185i \(0.558455\pi\)
\(32\) 0 0
\(33\) 6.82823 + 1.08149i 1.18864 + 0.188262i
\(34\) 0 0
\(35\) 0.815862 + 9.88660i 0.137906 + 1.67114i
\(36\) 0 0
\(37\) 1.21113 + 0.617102i 0.199109 + 0.101451i 0.550702 0.834702i \(-0.314360\pi\)
−0.351593 + 0.936153i \(0.614360\pi\)
\(38\) 0 0
\(39\) 2.40842 7.41234i 0.385655 1.18692i
\(40\) 0 0
\(41\) −0.457300 1.40742i −0.0714182 0.219803i 0.908976 0.416848i \(-0.136865\pi\)
−0.980394 + 0.197046i \(0.936865\pi\)
\(42\) 0 0
\(43\) −5.57270 + 5.57270i −0.849829 + 0.849829i −0.990112 0.140283i \(-0.955199\pi\)
0.140283 + 0.990112i \(0.455199\pi\)
\(44\) 0 0
\(45\) −2.39680 0.982146i −0.357294 0.146410i
\(46\) 0 0
\(47\) −0.197155 1.24479i −0.0287580 0.181571i 0.969128 0.246558i \(-0.0792994\pi\)
−0.997886 + 0.0649869i \(0.979299\pi\)
\(48\) 0 0
\(49\) 12.6821i 1.81173i
\(50\) 0 0
\(51\) 15.9194i 2.22917i
\(52\) 0 0
\(53\) 0.141520 + 0.893520i 0.0194392 + 0.122734i 0.995500 0.0947650i \(-0.0302100\pi\)
−0.976060 + 0.217499i \(0.930210\pi\)
\(54\) 0 0
\(55\) −3.98543 6.44855i −0.537395 0.869523i
\(56\) 0 0
\(57\) −0.668395 + 0.668395i −0.0885311 + 0.0885311i
\(58\) 0 0
\(59\) −3.24696 9.99313i −0.422719 1.30099i −0.905162 0.425067i \(-0.860250\pi\)
0.482443 0.875927i \(-0.339750\pi\)
\(60\) 0 0
\(61\) 0.649536 1.99907i 0.0831646 0.255954i −0.900824 0.434184i \(-0.857037\pi\)
0.983989 + 0.178229i \(0.0570369\pi\)
\(62\) 0 0
\(63\) −4.57898 2.33311i −0.576898 0.293944i
\(64\) 0 0
\(65\) −7.88316 + 3.30042i −0.977786 + 0.409367i
\(66\) 0 0
\(67\) 11.3499 + 1.79765i 1.38661 + 0.219618i 0.804724 0.593649i \(-0.202313\pi\)
0.581890 + 0.813267i \(0.302313\pi\)
\(68\) 0 0
\(69\) 6.66432 + 9.17264i 0.802289 + 1.10426i
\(70\) 0 0
\(71\) −1.00694 + 1.38593i −0.119502 + 0.164480i −0.864577 0.502500i \(-0.832414\pi\)
0.745075 + 0.666980i \(0.232414\pi\)
\(72\) 0 0
\(73\) 5.49431 2.79949i 0.643061 0.327656i −0.101870 0.994798i \(-0.532483\pi\)
0.744931 + 0.667142i \(0.232483\pi\)
\(74\) 0 0
\(75\) 3.22428 + 9.67283i 0.372307 + 1.11692i
\(76\) 0 0
\(77\) −6.82823 13.4012i −0.778149 1.52720i
\(78\) 0 0
\(79\) 13.5517 + 9.84590i 1.52469 + 1.10775i 0.959102 + 0.283061i \(0.0913501\pi\)
0.565586 + 0.824689i \(0.308650\pi\)
\(80\) 0 0
\(81\) −9.00703 + 6.54399i −1.00078 + 0.727110i
\(82\) 0 0
\(83\) 1.12294 7.08995i 0.123258 0.778223i −0.846182 0.532895i \(-0.821104\pi\)
0.969440 0.245328i \(-0.0788958\pi\)
\(84\) 0 0
\(85\) −13.2307 + 11.3872i −1.43507 + 1.23512i
\(86\) 0 0
\(87\) 1.13277 2.22319i 0.121446 0.238351i
\(88\) 0 0
\(89\) 7.35916 + 2.39114i 0.780069 + 0.253460i 0.671870 0.740669i \(-0.265491\pi\)
0.108199 + 0.994129i \(0.465491\pi\)
\(90\) 0 0
\(91\) −16.1261 + 5.23968i −1.69047 + 0.549267i
\(92\) 0 0
\(93\) 11.0483 + 11.0483i 1.14566 + 1.14566i
\(94\) 0 0
\(95\) 1.03361 + 0.0774005i 0.106046 + 0.00794112i
\(96\) 0 0
\(97\) 10.8914 1.72503i 1.10586 0.175151i 0.423305 0.905987i \(-0.360870\pi\)
0.682553 + 0.730837i \(0.260870\pi\)
\(98\) 0 0
\(99\) 3.92716 0.394695
\(100\) 0 0
\(101\) −14.0912 −1.40213 −0.701064 0.713098i \(-0.747291\pi\)
−0.701064 + 0.713098i \(0.747291\pi\)
\(102\) 0 0
\(103\) 5.29439 0.838549i 0.521672 0.0826247i 0.109955 0.993937i \(-0.464929\pi\)
0.411717 + 0.911312i \(0.364929\pi\)
\(104\) 0 0
\(105\) 4.79709 + 19.6524i 0.468148 + 1.91788i
\(106\) 0 0
\(107\) −2.89920 2.89920i −0.280276 0.280276i 0.552943 0.833219i \(-0.313505\pi\)
−0.833219 + 0.552943i \(0.813505\pi\)
\(108\) 0 0
\(109\) −1.50151 + 0.487870i −0.143818 + 0.0467294i −0.380042 0.924969i \(-0.624090\pi\)
0.236223 + 0.971699i \(0.424090\pi\)
\(110\) 0 0
\(111\) 2.63620 + 0.856554i 0.250217 + 0.0813005i
\(112\) 0 0
\(113\) 0.368226 0.722684i 0.0346398 0.0679844i −0.873038 0.487652i \(-0.837853\pi\)
0.907678 + 0.419668i \(0.137853\pi\)
\(114\) 0 0
\(115\) 2.85641 12.0999i 0.266362 1.12833i
\(116\) 0 0
\(117\) 0.692583 4.37280i 0.0640293 0.404265i
\(118\) 0 0
\(119\) −28.0194 + 20.3573i −2.56853 + 1.86615i
\(120\) 0 0
\(121\) 0.399243 + 0.290067i 0.0362948 + 0.0263698i
\(122\) 0 0
\(123\) −1.37002 2.68882i −0.123531 0.242443i
\(124\) 0 0
\(125\) 5.73279 9.59871i 0.512756 0.858534i
\(126\) 0 0
\(127\) −4.49175 + 2.28866i −0.398578 + 0.203086i −0.641778 0.766890i \(-0.721803\pi\)
0.243200 + 0.969976i \(0.421803\pi\)
\(128\) 0 0
\(129\) −9.44630 + 13.0017i −0.831700 + 1.14474i
\(130\) 0 0
\(131\) −0.911267 1.25425i −0.0796178 0.109584i 0.767351 0.641228i \(-0.221575\pi\)
−0.846968 + 0.531643i \(0.821575\pi\)
\(132\) 0 0
\(133\) 2.03115 + 0.321702i 0.176123 + 0.0278951i
\(134\) 0 0
\(135\) 8.17279 + 1.92933i 0.703402 + 0.166051i
\(136\) 0 0
\(137\) 11.2034 + 5.70842i 0.957172 + 0.487704i 0.861527 0.507712i \(-0.169509\pi\)
0.0956453 + 0.995415i \(0.469509\pi\)
\(138\) 0 0
\(139\) −1.60657 + 4.94453i −0.136268 + 0.419389i −0.995785 0.0917174i \(-0.970764\pi\)
0.859517 + 0.511107i \(0.170764\pi\)
\(140\) 0 0
\(141\) −0.794181 2.44424i −0.0668821 0.205842i
\(142\) 0 0
\(143\) 9.16216 9.16216i 0.766178 0.766178i
\(144\) 0 0
\(145\) −2.65797 + 0.648803i −0.220733 + 0.0538801i
\(146\) 0 0
\(147\) 4.04562 + 25.5430i 0.333677 + 2.10675i
\(148\) 0 0
\(149\) 8.06154i 0.660427i −0.943906 0.330213i \(-0.892879\pi\)
0.943906 0.330213i \(-0.107121\pi\)
\(150\) 0 0
\(151\) 15.8238i 1.28772i 0.765143 + 0.643860i \(0.222668\pi\)
−0.765143 + 0.643860i \(0.777332\pi\)
\(152\) 0 0
\(153\) −1.41466 8.93179i −0.114368 0.722092i
\(154\) 0 0
\(155\) 1.27940 17.0852i 0.102764 1.37231i
\(156\) 0 0
\(157\) −7.45048 + 7.45048i −0.594613 + 0.594613i −0.938874 0.344261i \(-0.888130\pi\)
0.344261 + 0.938874i \(0.388130\pi\)
\(158\) 0 0
\(159\) 0.570071 + 1.75450i 0.0452096 + 0.139141i
\(160\) 0 0
\(161\) 7.62241 23.4594i 0.600730 1.84886i
\(162\) 0 0
\(163\) −6.06500 3.09027i −0.475048 0.242049i 0.200038 0.979788i \(-0.435893\pi\)
−0.675086 + 0.737739i \(0.735893\pi\)
\(164\) 0 0
\(165\) −10.0842 11.7167i −0.785052 0.912144i
\(166\) 0 0
\(167\) −5.25160 0.831772i −0.406381 0.0643645i −0.0501023 0.998744i \(-0.515955\pi\)
−0.356279 + 0.934380i \(0.615955\pi\)
\(168\) 0 0
\(169\) −0.944813 1.30042i −0.0726779 0.100033i
\(170\) 0 0
\(171\) −0.315615 + 0.434406i −0.0241357 + 0.0332199i
\(172\) 0 0
\(173\) 17.9448 9.14333i 1.36432 0.695154i 0.390101 0.920772i \(-0.372440\pi\)
0.974216 + 0.225618i \(0.0724400\pi\)
\(174\) 0 0
\(175\) 12.9018 18.0443i 0.975284 1.36402i
\(176\) 0 0
\(177\) −9.72757 19.0914i −0.731169 1.43500i
\(178\) 0 0
\(179\) 8.37543 + 6.08510i 0.626009 + 0.454822i 0.855015 0.518603i \(-0.173548\pi\)
−0.229006 + 0.973425i \(0.573548\pi\)
\(180\) 0 0
\(181\) −11.8861 + 8.63577i −0.883489 + 0.641892i −0.934172 0.356823i \(-0.883860\pi\)
0.0506835 + 0.998715i \(0.483860\pi\)
\(182\) 0 0
\(183\) 0.670526 4.23354i 0.0495667 0.312952i
\(184\) 0 0
\(185\) −1.17380 2.80365i −0.0862993 0.206128i
\(186\) 0 0
\(187\) 12.0154 23.5816i 0.878653 1.72445i
\(188\) 0 0
\(189\) 15.8454 + 5.14848i 1.15258 + 0.374497i
\(190\) 0 0
\(191\) 9.35722 3.04034i 0.677064 0.219992i 0.0497547 0.998761i \(-0.484156\pi\)
0.627310 + 0.778770i \(0.284156\pi\)
\(192\) 0 0
\(193\) −10.2775 10.2775i −0.739792 0.739792i 0.232746 0.972538i \(-0.425229\pi\)
−0.972538 + 0.232746i \(0.925229\pi\)
\(194\) 0 0
\(195\) −14.8247 + 9.16216i −1.06162 + 0.656116i
\(196\) 0 0
\(197\) −14.0391 + 2.22358i −1.00025 + 0.158424i −0.635021 0.772495i \(-0.719008\pi\)
−0.365227 + 0.930919i \(0.619008\pi\)
\(198\) 0 0
\(199\) −15.1694 −1.07533 −0.537666 0.843158i \(-0.680694\pi\)
−0.537666 + 0.843158i \(0.680694\pi\)
\(200\) 0 0
\(201\) 23.4334 1.65287
\(202\) 0 0
\(203\) −5.36152 + 0.849182i −0.376305 + 0.0596009i
\(204\) 0 0
\(205\) −1.25471 + 3.06195i −0.0876325 + 0.213856i
\(206\) 0 0
\(207\) 4.55420 + 4.55420i 0.316539 + 0.316539i
\(208\) 0 0
\(209\) −1.49458 + 0.485617i −0.103382 + 0.0335909i
\(210\) 0 0
\(211\) −6.62163 2.15150i −0.455852 0.148115i 0.0720858 0.997398i \(-0.477034\pi\)
−0.527937 + 0.849283i \(0.677034\pi\)
\(212\) 0 0
\(213\) −1.58597 + 3.11263i −0.108669 + 0.213274i
\(214\) 0 0
\(215\) 17.5627 1.44931i 1.19777 0.0988423i
\(216\) 0 0
\(217\) 5.31761 33.5741i 0.360983 2.27916i
\(218\) 0 0
\(219\) 10.1731 7.39117i 0.687433 0.499449i
\(220\) 0 0
\(221\) −24.1385 17.5376i −1.62373 1.17971i
\(222\) 0 0
\(223\) −5.44537 10.6871i −0.364649 0.715664i 0.633671 0.773603i \(-0.281547\pi\)
−0.998320 + 0.0579386i \(0.981547\pi\)
\(224\) 0 0
\(225\) 2.66858 + 5.14053i 0.177905 + 0.342702i
\(226\) 0 0
\(227\) −6.46387 + 3.29351i −0.429022 + 0.218598i −0.655148 0.755500i \(-0.727394\pi\)
0.226126 + 0.974098i \(0.427394\pi\)
\(228\) 0 0
\(229\) 9.02359 12.4199i 0.596296 0.820731i −0.399067 0.916922i \(-0.630666\pi\)
0.995363 + 0.0961910i \(0.0306659\pi\)
\(230\) 0 0
\(231\) −18.0278 24.8131i −1.18614 1.63258i
\(232\) 0 0
\(233\) −2.99885 0.474971i −0.196461 0.0311164i 0.0574284 0.998350i \(-0.481710\pi\)
−0.253889 + 0.967233i \(0.581710\pi\)
\(234\) 0 0
\(235\) −1.46333 + 2.40842i −0.0954573 + 0.157108i
\(236\) 0 0
\(237\) 30.4355 + 15.5076i 1.97700 + 1.00733i
\(238\) 0 0
\(239\) 6.57625 20.2396i 0.425382 1.30919i −0.477245 0.878770i \(-0.658365\pi\)
0.902628 0.430422i \(-0.141635\pi\)
\(240\) 0 0
\(241\) 7.98714 + 24.5819i 0.514497 + 1.58346i 0.784196 + 0.620513i \(0.213076\pi\)
−0.269699 + 0.962945i \(0.586924\pi\)
\(242\) 0 0
\(243\) −8.08705 + 8.08705i −0.518785 + 0.518785i
\(244\) 0 0
\(245\) 18.3351 21.6333i 1.17138 1.38210i
\(246\) 0 0
\(247\) 0.277144 + 1.74982i 0.0176342 + 0.111338i
\(248\) 0 0
\(249\) 14.6381i 0.927653i
\(250\) 0 0
\(251\) 14.8326i 0.936228i 0.883668 + 0.468114i \(0.155066\pi\)
−0.883668 + 0.468114i \(0.844934\pi\)
\(252\) 0 0
\(253\) 2.94872 + 18.6175i 0.185384 + 1.17047i
\(254\) 0 0
\(255\) −23.0155 + 27.1557i −1.44128 + 1.70056i
\(256\) 0 0
\(257\) −12.6464 + 12.6464i −0.788861 + 0.788861i −0.981307 0.192447i \(-0.938358\pi\)
0.192447 + 0.981307i \(0.438358\pi\)
\(258\) 0 0
\(259\) −1.86349 5.73524i −0.115792 0.356371i
\(260\) 0 0
\(261\) 0.437994 1.34801i 0.0271111 0.0834395i
\(262\) 0 0
\(263\) 24.4275 + 12.4464i 1.50626 + 0.767479i 0.995724 0.0923755i \(-0.0294460\pi\)
0.510539 + 0.859855i \(0.329446\pi\)
\(264\) 0 0
\(265\) 1.05040 1.72879i 0.0645253 0.106198i
\(266\) 0 0
\(267\) 15.5849 + 2.46841i 0.953780 + 0.151064i
\(268\) 0 0
\(269\) −3.38943 4.66515i −0.206657 0.284439i 0.693090 0.720851i \(-0.256249\pi\)
−0.899747 + 0.436412i \(0.856249\pi\)
\(270\) 0 0
\(271\) 5.76191 7.93059i 0.350011 0.481749i −0.597321 0.802002i \(-0.703768\pi\)
0.947332 + 0.320253i \(0.103768\pi\)
\(272\) 0 0
\(273\) −30.8081 + 15.6975i −1.86459 + 0.950057i
\(274\) 0 0
\(275\) −2.52455 + 16.7620i −0.152236 + 1.01079i
\(276\) 0 0
\(277\) 4.24456 + 8.33042i 0.255031 + 0.500526i 0.982653 0.185451i \(-0.0593747\pi\)
−0.727623 + 0.685978i \(0.759375\pi\)
\(278\) 0 0
\(279\) 7.18057 + 5.21699i 0.429889 + 0.312333i
\(280\) 0 0
\(281\) 3.63235 2.63906i 0.216688 0.157433i −0.474147 0.880446i \(-0.657243\pi\)
0.690834 + 0.723013i \(0.257243\pi\)
\(282\) 0 0
\(283\) −3.98074 + 25.1334i −0.236631 + 1.49403i 0.527827 + 0.849352i \(0.323007\pi\)
−0.764457 + 0.644675i \(0.776993\pi\)
\(284\) 0 0
\(285\) 2.10649 0.173832i 0.124778 0.0102969i
\(286\) 0 0
\(287\) −2.98058 + 5.84972i −0.175938 + 0.345298i
\(288\) 0 0
\(289\) −41.7933 13.5795i −2.45843 0.798792i
\(290\) 0 0
\(291\) 21.3862 6.94880i 1.25368 0.407346i
\(292\) 0 0
\(293\) −8.29104 8.29104i −0.484368 0.484368i 0.422156 0.906523i \(-0.361274\pi\)
−0.906523 + 0.422156i \(0.861274\pi\)
\(294\) 0 0
\(295\) −8.90879 + 21.7408i −0.518690 + 1.26580i
\(296\) 0 0
\(297\) −12.5750 + 1.99168i −0.729674 + 0.115569i
\(298\) 0 0
\(299\) 21.2501 1.22893
\(300\) 0 0
\(301\) 34.9636 2.01527
\(302\) 0 0
\(303\) −28.3812 + 4.49514i −1.63046 + 0.258239i
\(304\) 0 0
\(305\) −3.99814 + 2.47098i −0.228933 + 0.141488i
\(306\) 0 0
\(307\) −15.0113 15.0113i −0.856740 0.856740i 0.134212 0.990953i \(-0.457150\pi\)
−0.990953 + 0.134212i \(0.957150\pi\)
\(308\) 0 0
\(309\) 10.3960 3.37785i 0.591406 0.192159i
\(310\) 0 0
\(311\) −17.8463 5.79862i −1.01197 0.328810i −0.244332 0.969692i \(-0.578569\pi\)
−0.767639 + 0.640882i \(0.778569\pi\)
\(312\) 0 0
\(313\) 6.73195 13.2122i 0.380513 0.746798i −0.618734 0.785600i \(-0.712354\pi\)
0.999247 + 0.0388023i \(0.0123543\pi\)
\(314\) 0 0
\(315\) 4.43784 + 10.5999i 0.250044 + 0.597237i
\(316\) 0 0
\(317\) −2.47741 + 15.6418i −0.139145 + 0.878529i 0.815060 + 0.579377i \(0.196704\pi\)
−0.954205 + 0.299152i \(0.903296\pi\)
\(318\) 0 0
\(319\) 3.35596 2.43825i 0.187898 0.136516i
\(320\) 0 0
\(321\) −6.76414 4.91444i −0.377538 0.274297i
\(322\) 0 0
\(323\) 1.64285 + 3.22428i 0.0914107 + 0.179404i
\(324\) 0 0
\(325\) 18.2188 + 5.76712i 1.01060 + 0.319902i
\(326\) 0 0
\(327\) −2.86857 + 1.46161i −0.158632 + 0.0808271i
\(328\) 0 0
\(329\) −3.28646 + 4.52343i −0.181189 + 0.249385i
\(330\) 0 0
\(331\) 11.1337 + 15.3242i 0.611964 + 0.842296i 0.996737 0.0807153i \(-0.0257205\pi\)
−0.384774 + 0.923011i \(0.625720\pi\)
\(332\) 0 0
\(333\) 1.55519 + 0.246317i 0.0852237 + 0.0134981i
\(334\) 0 0
\(335\) −16.7620 19.4756i −0.915805 1.06406i
\(336\) 0 0
\(337\) 24.3115 + 12.3873i 1.32433 + 0.674780i 0.965934 0.258790i \(-0.0833237\pi\)
0.358396 + 0.933570i \(0.383324\pi\)
\(338\) 0 0
\(339\) 0.511107 1.57303i 0.0277595 0.0854351i
\(340\) 0 0
\(341\) 8.02707 + 24.7048i 0.434690 + 1.33784i
\(342\) 0 0
\(343\) 17.8249 17.8249i 0.962456 0.962456i
\(344\) 0 0
\(345\) 1.89319 25.2818i 0.101926 1.36113i
\(346\) 0 0
\(347\) −3.77107 23.8096i −0.202441 1.27816i −0.854282 0.519809i \(-0.826003\pi\)
0.651841 0.758356i \(-0.273997\pi\)
\(348\) 0 0
\(349\) 17.6117i 0.942731i 0.881938 + 0.471366i \(0.156239\pi\)
−0.881938 + 0.471366i \(0.843761\pi\)
\(350\) 0 0
\(351\) 14.3532i 0.766116i
\(352\) 0 0
\(353\) −1.73275 10.9402i −0.0922250 0.582286i −0.989915 0.141659i \(-0.954756\pi\)
0.897690 0.440627i \(-0.145244\pi\)
\(354\) 0 0
\(355\) 3.72136 0.908373i 0.197509 0.0482114i
\(356\) 0 0
\(357\) −49.9400 + 49.9400i −2.64310 + 2.64310i
\(358\) 0 0
\(359\) −8.01444 24.6659i −0.422986 1.30182i −0.904910 0.425603i \(-0.860062\pi\)
0.481924 0.876213i \(-0.339938\pi\)
\(360\) 0 0
\(361\) −5.80493 + 17.8657i −0.305522 + 0.940301i
\(362\) 0 0
\(363\) 0.896651 + 0.456866i 0.0470620 + 0.0239793i
\(364\) 0 0
\(365\) −13.4197 3.16795i −0.702417 0.165818i
\(366\) 0 0
\(367\) −17.9407 2.84153i −0.936497 0.148327i −0.330511 0.943802i \(-0.607221\pi\)
−0.605986 + 0.795476i \(0.707221\pi\)
\(368\) 0 0
\(369\) −1.00760 1.38685i −0.0524538 0.0721964i
\(370\) 0 0
\(371\) 2.35906 3.24696i 0.122476 0.168574i
\(372\) 0 0
\(373\) −2.07223 + 1.05585i −0.107296 + 0.0546701i −0.506815 0.862055i \(-0.669177\pi\)
0.399519 + 0.916725i \(0.369177\pi\)
\(374\) 0 0
\(375\) 8.48442 21.1616i 0.438134 1.09278i
\(376\) 0 0
\(377\) −2.12308 4.16678i −0.109344 0.214600i
\(378\) 0 0
\(379\) −22.5526 16.3854i −1.15845 0.841664i −0.168870 0.985638i \(-0.554012\pi\)
−0.989581 + 0.143975i \(0.954012\pi\)
\(380\) 0 0
\(381\) −8.31677 + 6.04249i −0.426081 + 0.309566i
\(382\) 0 0
\(383\) −5.09982 + 32.1990i −0.260589 + 1.64529i 0.416314 + 0.909221i \(0.363322\pi\)
−0.676903 + 0.736072i \(0.736678\pi\)
\(384\) 0 0
\(385\) −7.72694 + 32.7318i −0.393801 + 1.66817i
\(386\) 0 0
\(387\) −4.14458 + 8.13419i −0.210681 + 0.413484i
\(388\) 0 0
\(389\) 7.24292 + 2.35337i 0.367231 + 0.119321i 0.486819 0.873503i \(-0.338157\pi\)
−0.119588 + 0.992824i \(0.538157\pi\)
\(390\) 0 0
\(391\) 41.2807 13.4129i 2.08765 0.678319i
\(392\) 0 0
\(393\) −2.23550 2.23550i −0.112766 0.112766i
\(394\) 0 0
\(395\) −8.88212 36.3877i −0.446908 1.83086i
\(396\) 0 0
\(397\) 30.3958 4.81421i 1.52552 0.241619i 0.663377 0.748285i \(-0.269122\pi\)
0.862142 + 0.506667i \(0.169122\pi\)
\(398\) 0 0
\(399\) 4.19357 0.209941
\(400\) 0 0
\(401\) 20.2946 1.01346 0.506732 0.862104i \(-0.330853\pi\)
0.506732 + 0.862104i \(0.330853\pi\)
\(402\) 0 0
\(403\) 28.9238 4.58108i 1.44080 0.228200i
\(404\) 0 0
\(405\) 24.8253 + 1.85901i 1.23358 + 0.0923750i
\(406\) 0 0
\(407\) 3.25852 + 3.25852i 0.161519 + 0.161519i
\(408\) 0 0
\(409\) −16.9278 + 5.50016i −0.837024 + 0.271966i −0.696001 0.718041i \(-0.745039\pi\)
−0.141023 + 0.990006i \(0.545039\pi\)
\(410\) 0 0
\(411\) 24.3859 + 7.92345i 1.20287 + 0.390835i
\(412\) 0 0
\(413\) −21.1630 + 41.5347i −1.04136 + 2.04379i
\(414\) 0 0
\(415\) −12.1658 + 10.4707i −0.597195 + 0.513986i
\(416\) 0 0
\(417\) −1.65849 + 10.4713i −0.0812167 + 0.512782i
\(418\) 0 0
\(419\) −13.9634 + 10.1450i −0.682159 + 0.495617i −0.874073 0.485794i \(-0.838530\pi\)
0.191914 + 0.981412i \(0.438530\pi\)
\(420\) 0 0
\(421\) 22.6049 + 16.4235i 1.10170 + 0.800430i 0.981336 0.192300i \(-0.0615946\pi\)
0.120362 + 0.992730i \(0.461595\pi\)
\(422\) 0 0
\(423\) −0.662787 1.30079i −0.0322258 0.0632467i
\(424\) 0 0
\(425\) 39.0322 0.296310i 1.89334 0.0143732i
\(426\) 0 0
\(427\) −8.30878 + 4.23354i −0.402090 + 0.204875i
\(428\) 0 0
\(429\) 15.5308 21.3763i 0.749834 1.03206i
\(430\) 0 0
\(431\) 7.16187 + 9.85746i 0.344975 + 0.474817i 0.945886 0.324498i \(-0.105196\pi\)
−0.600911 + 0.799316i \(0.705196\pi\)
\(432\) 0 0
\(433\) −34.4645 5.45864i −1.65626 0.262326i −0.742877 0.669428i \(-0.766539\pi\)
−0.913383 + 0.407102i \(0.866539\pi\)
\(434\) 0 0
\(435\) −5.14647 + 2.15466i −0.246754 + 0.103308i
\(436\) 0 0
\(437\) −2.29637 1.17006i −0.109850 0.0559714i
\(438\) 0 0
\(439\) −1.07430 + 3.30636i −0.0512736 + 0.157804i −0.973415 0.229050i \(-0.926438\pi\)
0.922141 + 0.386854i \(0.126438\pi\)
\(440\) 0 0
\(441\) 4.53968 + 13.9717i 0.216175 + 0.665319i
\(442\) 0 0
\(443\) 2.50489 2.50489i 0.119011 0.119011i −0.645093 0.764104i \(-0.723181\pi\)
0.764104 + 0.645093i \(0.223181\pi\)
\(444\) 0 0
\(445\) −9.09642 14.7183i −0.431212 0.697715i
\(446\) 0 0
\(447\) −2.57165 16.2368i −0.121635 0.767974i
\(448\) 0 0
\(449\) 20.1589i 0.951358i −0.879619 0.475679i \(-0.842202\pi\)
0.879619 0.475679i \(-0.157798\pi\)
\(450\) 0 0
\(451\) 5.01701i 0.236242i
\(452\) 0 0
\(453\) 5.04783 + 31.8708i 0.237168 + 1.49742i
\(454\) 0 0
\(455\) 35.0834 + 14.3763i 1.64473 + 0.673969i
\(456\) 0 0
\(457\) −12.1697 + 12.1697i −0.569275 + 0.569275i −0.931925 0.362650i \(-0.881872\pi\)
0.362650 + 0.931925i \(0.381872\pi\)
\(458\) 0 0
\(459\) 9.05961 + 27.8826i 0.422866 + 1.30145i
\(460\) 0 0
\(461\) 5.73768 17.6588i 0.267231 0.822451i −0.723941 0.689862i \(-0.757671\pi\)
0.991171 0.132589i \(-0.0423290\pi\)
\(462\) 0 0
\(463\) 11.7335 + 5.97851i 0.545301 + 0.277845i 0.704863 0.709343i \(-0.251008\pi\)
−0.159562 + 0.987188i \(0.551008\pi\)
\(464\) 0 0
\(465\) −2.87337 34.8195i −0.133249 1.61471i
\(466\) 0 0
\(467\) −25.2095 3.99280i −1.16656 0.184765i −0.457036 0.889448i \(-0.651089\pi\)
−0.709522 + 0.704684i \(0.751089\pi\)
\(468\) 0 0
\(469\) −29.9659 41.2445i −1.38370 1.90450i
\(470\) 0 0
\(471\) −12.6293 + 17.3828i −0.581929 + 0.800956i
\(472\) 0 0
\(473\) −23.8061 + 12.1298i −1.09460 + 0.557729i
\(474\) 0 0
\(475\) −1.65125 1.62637i −0.0757645 0.0746229i
\(476\) 0 0
\(477\) 0.475756 + 0.933723i 0.0217833 + 0.0427522i
\(478\) 0 0
\(479\) 10.4934 + 7.62388i 0.479455 + 0.348344i 0.801114 0.598511i \(-0.204241\pi\)
−0.321660 + 0.946855i \(0.604241\pi\)
\(480\) 0 0
\(481\) 4.20295 3.05362i 0.191638 0.139233i
\(482\) 0 0
\(483\) 7.86873 49.6812i 0.358040 2.26057i
\(484\) 0 0
\(485\) −21.0728 12.8036i −0.956866 0.581384i
\(486\) 0 0
\(487\) −12.8000 + 25.1215i −0.580025 + 1.13836i 0.395498 + 0.918467i \(0.370572\pi\)
−0.975523 + 0.219897i \(0.929428\pi\)
\(488\) 0 0
\(489\) −13.2014 4.28938i −0.596986 0.193973i
\(490\) 0 0
\(491\) −29.4078 + 9.55517i −1.32716 + 0.431219i −0.884946 0.465693i \(-0.845805\pi\)
−0.442209 + 0.896912i \(0.645805\pi\)
\(492\) 0 0
\(493\) −6.75435 6.75435i −0.304201 0.304201i
\(494\) 0 0
\(495\) −6.69903 5.67768i −0.301099 0.255193i
\(496\) 0 0
\(497\) 7.50654 1.18892i 0.336714 0.0533303i
\(498\) 0 0
\(499\) −29.4300 −1.31747 −0.658733 0.752377i \(-0.728907\pi\)
−0.658733 + 0.752377i \(0.728907\pi\)
\(500\) 0 0
\(501\) −10.8426 −0.484413
\(502\) 0 0
\(503\) −17.2261 + 2.72834i −0.768073 + 0.121651i −0.528162 0.849144i \(-0.677118\pi\)
−0.239912 + 0.970795i \(0.577118\pi\)
\(504\) 0 0
\(505\) 24.0371 + 20.3723i 1.06963 + 0.906556i
\(506\) 0 0
\(507\) −2.31779 2.31779i −0.102937 0.102937i
\(508\) 0 0
\(509\) 19.0616 6.19349i 0.844891 0.274522i 0.145586 0.989346i \(-0.453493\pi\)
0.699304 + 0.714824i \(0.253493\pi\)
\(510\) 0 0
\(511\) −26.0180 8.45377i −1.15097 0.373973i
\(512\) 0 0
\(513\) 0.790303 1.55106i 0.0348927 0.0684809i
\(514\) 0 0
\(515\) −10.2436 6.22393i −0.451387 0.274259i
\(516\) 0 0
\(517\) 0.668395 4.22008i 0.0293960 0.185599i
\(518\) 0 0
\(519\) 33.2260 24.1401i 1.45846 1.05963i
\(520\) 0 0
\(521\) 17.0280 + 12.3716i 0.746011 + 0.542009i 0.894588 0.446892i \(-0.147469\pi\)
−0.148577 + 0.988901i \(0.547469\pi\)
\(522\) 0 0
\(523\) 5.05993 + 9.93068i 0.221255 + 0.434238i 0.974776 0.223186i \(-0.0716459\pi\)
−0.753520 + 0.657425i \(0.771646\pi\)
\(524\) 0 0
\(525\) 20.2294 40.4588i 0.882883 1.76577i
\(526\) 0 0
\(527\) 53.2961 27.1557i 2.32161 1.18292i
\(528\) 0 0
\(529\) −4.65148 + 6.40221i −0.202238 + 0.278357i
\(530\) 0 0
\(531\) −7.15429 9.84703i −0.310470 0.427325i
\(532\) 0 0
\(533\) −5.58631 0.884785i −0.241970 0.0383243i
\(534\) 0 0
\(535\) 0.754004 + 9.13701i 0.0325984 + 0.395027i
\(536\) 0 0
\(537\) 18.8102 + 9.58425i 0.811718 + 0.413591i
\(538\) 0 0
\(539\) −13.2861 + 40.8905i −0.572275 + 1.76128i
\(540\) 0 0
\(541\) 1.88970 + 5.81589i 0.0812444 + 0.250045i 0.983425 0.181313i \(-0.0580347\pi\)
−0.902181 + 0.431358i \(0.858035\pi\)
\(542\) 0 0
\(543\) −21.1851 + 21.1851i −0.909138 + 0.909138i
\(544\) 0 0
\(545\) 3.26664 + 1.33858i 0.139927 + 0.0573386i
\(546\) 0 0
\(547\) 1.65747 + 10.4648i 0.0708682 + 0.447444i 0.997451 + 0.0713535i \(0.0227319\pi\)
−0.926583 + 0.376091i \(0.877268\pi\)
\(548\) 0 0
\(549\) 2.43486i 0.103917i
\(550\) 0 0
\(551\) 0.567177i 0.0241626i
\(552\) 0 0
\(553\) −11.6253 73.3994i −0.494359 3.12126i
\(554\) 0 0
\(555\) −3.25852 5.27240i −0.138317 0.223801i
\(556\) 0 0
\(557\) −23.5420 + 23.5420i −0.997506 + 0.997506i −0.999997 0.00249078i \(-0.999207\pi\)
0.00249078 + 0.999997i \(0.499207\pi\)
\(558\) 0 0
\(559\) 9.30786 + 28.6466i 0.393680 + 1.21162i
\(560\) 0 0
\(561\) 16.6777 51.3287i 0.704133 2.16710i
\(562\) 0 0
\(563\) −16.5402 8.42768i −0.697088 0.355184i 0.0692697 0.997598i \(-0.477933\pi\)
−0.766358 + 0.642414i \(0.777933\pi\)
\(564\) 0 0
\(565\) −1.67294 + 0.700407i −0.0703813 + 0.0294664i
\(566\) 0 0
\(567\) 48.7842 + 7.72666i 2.04874 + 0.324489i
\(568\) 0 0
\(569\) 17.9240 + 24.6702i 0.751412 + 1.03423i 0.997880 + 0.0650792i \(0.0207300\pi\)
−0.246468 + 0.969151i \(0.579270\pi\)
\(570\) 0 0
\(571\) 0.613924 0.844994i 0.0256919 0.0353619i −0.795978 0.605326i \(-0.793043\pi\)
0.821670 + 0.569964i \(0.193043\pi\)
\(572\) 0 0
\(573\) 17.8765 9.10855i 0.746803 0.380515i
\(574\) 0 0
\(575\) −22.3660 + 16.5107i −0.932725 + 0.688543i
\(576\) 0 0
\(577\) −14.6237 28.7007i −0.608794 1.19483i −0.965449 0.260590i \(-0.916083\pi\)
0.356655 0.934236i \(-0.383917\pi\)
\(578\) 0 0
\(579\) −23.9786 17.4214i −0.996515 0.724010i
\(580\) 0 0
\(581\) −25.7642 + 18.7188i −1.06888 + 0.776585i
\(582\) 0 0
\(583\) −0.479781 + 3.02922i −0.0198705 + 0.125457i
\(584\) 0 0
\(585\) −7.50337 + 6.45790i −0.310226 + 0.267001i
\(586\) 0 0
\(587\) −12.5595 + 24.6494i −0.518386 + 1.01739i 0.472327 + 0.881423i \(0.343414\pi\)
−0.990713 + 0.135967i \(0.956586\pi\)
\(588\) 0 0
\(589\) −3.37785 1.09753i −0.139182 0.0452230i
\(590\) 0 0
\(591\) −27.5670 + 8.95706i −1.13395 + 0.368444i
\(592\) 0 0
\(593\) 25.4162 + 25.4162i 1.04372 + 1.04372i 0.999000 + 0.0447166i \(0.0142385\pi\)
0.0447166 + 0.999000i \(0.485762\pi\)
\(594\) 0 0
\(595\) 77.2275 + 5.78308i 3.16602 + 0.237083i
\(596\) 0 0
\(597\) −30.5528 + 4.83909i −1.25044 + 0.198051i
\(598\) 0 0
\(599\) 17.7420 0.724918 0.362459 0.932000i \(-0.381937\pi\)
0.362459 + 0.932000i \(0.381937\pi\)
\(600\) 0 0
\(601\) 32.5333 1.32706 0.663531 0.748148i \(-0.269057\pi\)
0.663531 + 0.748148i \(0.269057\pi\)
\(602\) 0 0
\(603\) 13.1476 2.08237i 0.535411 0.0848008i
\(604\) 0 0
\(605\) −0.261673 1.07201i −0.0106385 0.0435833i
\(606\) 0 0
\(607\) 18.9437 + 18.9437i 0.768903 + 0.768903i 0.977913 0.209011i \(-0.0670244\pi\)
−0.209011 + 0.977913i \(0.567024\pi\)
\(608\) 0 0
\(609\) −10.5278 + 3.42069i −0.426607 + 0.138613i
\(610\) 0 0
\(611\) −4.58108 1.48848i −0.185331 0.0602176i
\(612\) 0 0
\(613\) 19.1250 37.5349i 0.772452 1.51602i −0.0820818 0.996626i \(-0.526157\pi\)
0.854534 0.519396i \(-0.173843\pi\)
\(614\) 0 0
\(615\) −1.55034 + 6.56735i −0.0625157 + 0.264821i
\(616\) 0 0
\(617\) 2.30094 14.5276i 0.0926325 0.584859i −0.897089 0.441850i \(-0.854322\pi\)
0.989721 0.143009i \(-0.0456777\pi\)
\(618\) 0 0
\(619\) 28.6010 20.7799i 1.14957 0.835213i 0.161148 0.986930i \(-0.448480\pi\)
0.988424 + 0.151717i \(0.0484802\pi\)
\(620\) 0 0
\(621\) −16.8925 12.2731i −0.677872 0.492503i
\(622\) 0 0
\(623\) −15.5849 30.5871i −0.624396 1.22545i
\(624\) 0 0
\(625\) −23.6564 + 8.08551i −0.946255 + 0.323420i
\(626\) 0 0
\(627\) −2.85532 + 1.45486i −0.114031 + 0.0581015i
\(628\) 0 0
\(629\) 6.23727 8.58486i 0.248696 0.342301i
\(630\) 0 0
\(631\) −15.8748 21.8497i −0.631965 0.869825i 0.366190 0.930540i \(-0.380662\pi\)
−0.998155 + 0.0607152i \(0.980662\pi\)
\(632\) 0 0
\(633\) −14.0230 2.22102i −0.557364 0.0882777i
\(634\) 0 0
\(635\) 10.9709 + 2.58989i 0.435368 + 0.102777i
\(636\) 0 0
\(637\) 43.1875 + 22.0051i 1.71115 + 0.871875i
\(638\) 0 0
\(639\) −0.613225 + 1.88731i −0.0242588 + 0.0746609i
\(640\) 0 0
\(641\) 4.77172 + 14.6859i 0.188472 + 0.580057i 0.999991 0.00426935i \(-0.00135898\pi\)
−0.811519 + 0.584326i \(0.801359\pi\)
\(642\) 0 0
\(643\) 6.76567 6.76567i 0.266812 0.266812i −0.561002 0.827814i \(-0.689584\pi\)
0.827814 + 0.561002i \(0.189584\pi\)
\(644\) 0 0
\(645\) 34.9109 8.52163i 1.37461 0.335539i
\(646\) 0 0
\(647\) −0.544922 3.44050i −0.0214231 0.135260i 0.974659 0.223697i \(-0.0718127\pi\)
−0.996082 + 0.0884372i \(0.971813\pi\)
\(648\) 0 0
\(649\) 35.6222i 1.39829i
\(650\) 0 0
\(651\) 69.3181i 2.71679i
\(652\) 0 0
\(653\) 2.45959 + 15.5293i 0.0962513 + 0.607707i 0.987914 + 0.155006i \(0.0495396\pi\)
−0.891662 + 0.452701i \(0.850460\pi\)
\(654\) 0 0
\(655\) −0.258872 + 3.45699i −0.0101150 + 0.135076i
\(656\) 0 0
\(657\) 5.05092 5.05092i 0.197055 0.197055i
\(658\) 0 0
\(659\) 1.70198 + 5.23816i 0.0662997 + 0.204050i 0.978718 0.205209i \(-0.0657874\pi\)
−0.912418 + 0.409259i \(0.865787\pi\)
\(660\) 0 0
\(661\) 7.59689 23.3808i 0.295485 0.909409i −0.687573 0.726115i \(-0.741324\pi\)
0.983058 0.183294i \(-0.0586760\pi\)
\(662\) 0 0
\(663\) −54.2120 27.6224i −2.10542 1.07277i
\(664\) 0 0
\(665\) −2.99967 3.48529i −0.116322 0.135154i
\(666\) 0 0
\(667\) 6.71935 + 1.06424i 0.260174 + 0.0412076i
\(668\) 0 0
\(669\) −14.3768 19.7879i −0.555838 0.765046i
\(670\) 0 0
\(671\) 4.18857 5.76507i 0.161698 0.222558i
\(672\) 0 0
\(673\) −2.82484 + 1.43933i −0.108890 + 0.0554821i −0.507587 0.861601i \(-0.669462\pi\)
0.398697 + 0.917083i \(0.369462\pi\)
\(674\) 0 0
\(675\) −11.1520 15.1069i −0.429240 0.581464i
\(676\) 0 0
\(677\) −0.808560 1.58689i −0.0310755 0.0609890i 0.874947 0.484219i \(-0.160896\pi\)
−0.906022 + 0.423230i \(0.860896\pi\)
\(678\) 0 0
\(679\) −39.5784 28.7554i −1.51888 1.10353i
\(680\) 0 0
\(681\) −11.9683 + 8.69546i −0.458625 + 0.333211i
\(682\) 0 0
\(683\) 5.36210 33.8550i 0.205175 1.29542i −0.643065 0.765812i \(-0.722337\pi\)
0.848240 0.529612i \(-0.177663\pi\)
\(684\) 0 0
\(685\) −10.8581 25.9348i −0.414865 0.990919i
\(686\) 0 0
\(687\) 14.2125 27.8936i 0.542240 1.06421i
\(688\) 0 0
\(689\) 3.28834 + 1.06845i 0.125276 + 0.0407046i
\(690\) 0 0
\(691\) −40.0444 + 13.0112i −1.52336 + 0.494970i −0.946728 0.322033i \(-0.895634\pi\)
−0.576633 + 0.817003i \(0.695634\pi\)
\(692\) 0 0
\(693\) −12.3197 12.3197i −0.467986 0.467986i
\(694\) 0 0
\(695\) 9.88906 6.11177i 0.375113 0.231833i
\(696\) 0 0
\(697\) −11.4105 + 1.80724i −0.432203 + 0.0684542i
\(698\) 0 0
\(699\) −6.19151 −0.234185
\(700\) 0 0
\(701\) −0.177945 −0.00672090 −0.00336045 0.999994i \(-0.501070\pi\)
−0.00336045 + 0.999994i \(0.501070\pi\)
\(702\) 0 0
\(703\) −0.622323 + 0.0985662i −0.0234713 + 0.00371750i
\(704\) 0 0
\(705\) −2.17902 + 5.31761i −0.0820665 + 0.200273i
\(706\) 0 0
\(707\) 44.2047 + 44.2047i 1.66249 + 1.66249i
\(708\) 0 0
\(709\) −31.1456 + 10.1198i −1.16970 + 0.380057i −0.828529 0.559945i \(-0.810822\pi\)
−0.341167 + 0.940003i \(0.610822\pi\)
\(710\) 0 0
\(711\) 18.4542 + 5.99614i 0.692088 + 0.224873i
\(712\) 0 0
\(713\) −19.3406 + 37.9581i −0.724311 + 1.42154i
\(714\) 0 0
\(715\) −28.8751 + 2.38283i −1.07987 + 0.0891129i
\(716\) 0 0
\(717\) 6.78877 42.8626i 0.253531 1.60073i
\(718\) 0 0
\(719\) 6.46726 4.69874i 0.241188 0.175233i −0.460624 0.887595i \(-0.652374\pi\)
0.701812 + 0.712362i \(0.252374\pi\)
\(720\) 0 0
\(721\) −19.2393 13.9782i −0.716509 0.520574i
\(722\) 0 0
\(723\) 23.9286 + 46.9626i 0.889915 + 1.74656i
\(724\) 0 0
\(725\) 5.47202 + 2.73601i 0.203226 + 0.101613i
\(726\) 0 0
\(727\) −23.4758 + 11.9615i −0.870670 + 0.443629i −0.831448 0.555602i \(-0.812488\pi\)
−0.0392218 + 0.999231i \(0.512488\pi\)
\(728\) 0 0
\(729\) 5.92358 8.15311i 0.219392 0.301967i
\(730\) 0 0
\(731\) 36.1631 + 49.7742i 1.33754 + 1.84096i
\(732\) 0 0
\(733\) 0.729982 + 0.115618i 0.0269625 + 0.00427044i 0.169901 0.985461i \(-0.445655\pi\)
−0.142939 + 0.989732i \(0.545655\pi\)
\(734\) 0 0
\(735\) 30.0277 49.4208i 1.10759 1.82291i
\(736\) 0 0
\(737\) 34.7120 + 17.6867i 1.27863 + 0.651497i
\(738\) 0 0
\(739\) −3.59062 + 11.0508i −0.132083 + 0.406510i −0.995125 0.0986224i \(-0.968556\pi\)
0.863042 + 0.505133i \(0.168556\pi\)
\(740\) 0 0
\(741\) 1.11639 + 3.43590i 0.0410117 + 0.126221i
\(742\) 0 0
\(743\) −17.6779 + 17.6779i −0.648540 + 0.648540i −0.952640 0.304100i \(-0.901644\pi\)
0.304100 + 0.952640i \(0.401644\pi\)
\(744\) 0 0
\(745\) −11.6549 + 13.7515i −0.427004 + 0.503817i
\(746\) 0 0
\(747\) −1.30079 8.21289i −0.0475935 0.300494i
\(748\) 0 0
\(749\) 18.1898i 0.664641i
\(750\) 0 0
\(751\) 8.62520i 0.314738i −0.987540 0.157369i \(-0.949699\pi\)
0.987540 0.157369i \(-0.0503012\pi\)
\(752\) 0 0
\(753\) 4.73166 + 29.8745i 0.172431 + 1.08869i
\(754\) 0 0
\(755\) 22.8772 26.9925i 0.832585 0.982358i
\(756\) 0 0
\(757\) 20.2477 20.2477i 0.735915 0.735915i −0.235870 0.971785i \(-0.575794\pi\)
0.971785 + 0.235870i \(0.0757938\pi\)
\(758\) 0 0
\(759\) 11.8781 + 36.5569i 0.431146 + 1.32693i
\(760\) 0 0
\(761\) −10.9950 + 33.8391i −0.398568 + 1.22667i 0.527580 + 0.849506i \(0.323100\pi\)
−0.926148 + 0.377161i \(0.876900\pi\)
\(762\) 0 0
\(763\) 6.24077 + 3.17983i 0.225931 + 0.115118i
\(764\) 0 0
\(765\) −10.4999 + 17.2812i −0.379626 + 0.624805i
\(766\) 0 0
\(767\) −39.6645 6.28224i −1.43220 0.226838i
\(768\) 0 0
\(769\) 5.38162 + 7.40717i 0.194066 + 0.267109i 0.894950 0.446166i \(-0.147211\pi\)
−0.700884 + 0.713275i \(0.747211\pi\)
\(770\) 0 0
\(771\) −21.4369 + 29.5054i −0.772033 + 1.06261i
\(772\) 0 0
\(773\) −4.35369 + 2.21832i −0.156591 + 0.0797873i −0.530530 0.847666i \(-0.678007\pi\)
0.373939 + 0.927453i \(0.378007\pi\)
\(774\) 0 0
\(775\) −26.8832 + 27.2945i −0.965674 + 0.980448i
\(776\) 0 0
\(777\) −5.58283 10.9569i −0.200283 0.393077i
\(778\) 0 0
\(779\) 0.554960 + 0.403202i 0.0198835 + 0.0144462i
\(780\) 0 0
\(781\) −4.69860 + 3.41373i −0.168129 + 0.122153i
\(782\) 0 0
\(783\) −0.718831 + 4.53852i −0.0256889 + 0.162193i
\(784\) 0 0
\(785\) 23.4807 1.93767i 0.838061 0.0691585i
\(786\) 0 0
\(787\) −2.38805 + 4.68681i −0.0851248 + 0.167067i −0.929645 0.368458i \(-0.879886\pi\)
0.844520 + 0.535524i \(0.179886\pi\)
\(788\) 0 0
\(789\) 53.1700 + 17.2760i 1.89290 + 0.615041i
\(790\) 0 0
\(791\) −3.42223 + 1.11195i −0.121681 + 0.0395364i
\(792\) 0 0
\(793\) −5.68058 5.68058i −0.201723 0.201723i
\(794\) 0 0
\(795\) 1.56412 3.81704i 0.0554736 0.135376i
\(796\) 0 0
\(797\) −29.1549 + 4.61769i −1.03272 + 0.163567i −0.649714 0.760179i \(-0.725111\pi\)
−0.383007 + 0.923746i \(0.625111\pi\)
\(798\) 0 0
\(799\) −9.83876 −0.348070
\(800\) 0 0
\(801\) 8.96344 0.316707
\(802\) 0 0
\(803\) 20.6480 3.27032i 0.728653 0.115407i
\(804\) 0 0
\(805\) −46.9187 + 28.9974i −1.65367 + 1.02202i
\(806\) 0 0
\(807\) −8.31486 8.31486i −0.292697 0.292697i
\(808\) 0 0
\(809\) 29.7303 9.65994i 1.04526 0.339626i 0.264453 0.964398i \(-0.414808\pi\)
0.780807 + 0.624773i \(0.214808\pi\)
\(810\) 0 0
\(811\) 41.3581 + 13.4380i 1.45228 + 0.471874i 0.925702 0.378254i \(-0.123476\pi\)
0.526576 + 0.850128i \(0.323476\pi\)
\(812\) 0 0
\(813\) 9.07522 17.8111i 0.318282 0.624663i
\(814\) 0 0
\(815\) 5.87805 + 14.0399i 0.205899 + 0.491796i
\(816\) 0 0
\(817\) 0.571477 3.60817i 0.0199935 0.126234i
\(818\) 0 0
\(819\) −15.8903 + 11.5450i −0.555253 + 0.403415i
\(820\) 0 0
\(821\) −40.1380 29.1620i −1.40083 1.01776i −0.994578 0.103997i \(-0.966837\pi\)
−0.406249 0.913763i \(-0.633163\pi\)
\(822\) 0 0
\(823\) −6.19436 12.1571i −0.215922 0.423771i 0.757485 0.652852i \(-0.226428\pi\)
−0.973407 + 0.229082i \(0.926428\pi\)
\(824\) 0 0
\(825\) 0.262404 + 34.5657i 0.00913572 + 1.20342i
\(826\) 0 0
\(827\) 23.8274 12.1406i 0.828558 0.422171i 0.0123460 0.999924i \(-0.496070\pi\)
0.816212 + 0.577752i \(0.196070\pi\)
\(828\) 0 0
\(829\) −26.5793 + 36.5832i −0.923136 + 1.27059i 0.0393407 + 0.999226i \(0.487474\pi\)
−0.962477 + 0.271363i \(0.912526\pi\)
\(830\) 0 0
\(831\) 11.2064 + 15.4243i 0.388746 + 0.535064i
\(832\) 0 0
\(833\) 97.7858 + 15.4878i 3.38808 + 0.536619i
\(834\) 0 0
\(835\) 7.75576 + 9.01134i 0.268399 + 0.311850i
\(836\) 0 0
\(837\) −25.6384 13.0634i −0.886192 0.451538i
\(838\) 0 0
\(839\) −11.1825 + 34.4161i −0.386062 + 1.18818i 0.549645 + 0.835398i \(0.314763\pi\)
−0.935707 + 0.352778i \(0.885237\pi\)
\(840\) 0 0
\(841\) 8.49885 + 26.1568i 0.293064 + 0.901957i
\(842\) 0 0
\(843\) 6.47407 6.47407i 0.222979 0.222979i
\(844\) 0 0
\(845\) −0.268402 + 3.58425i −0.00923330 + 0.123302i
\(846\) 0 0
\(847\) −0.342490 2.16240i −0.0117681 0.0743008i
\(848\) 0 0
\(849\) 51.8912i 1.78090i
\(850\) 0 0
\(851\) 7.55761i 0.259072i
\(852\) 0 0
\(853\) 1.36501 + 8.61833i 0.0467371 + 0.295086i 0.999975 0.00713613i \(-0.00227152\pi\)
−0.953237 + 0.302222i \(0.902272\pi\)
\(854\) 0 0
\(855\) 1.16642 0.284720i 0.0398908 0.00973722i
\(856\) 0 0
\(857\) −33.2545 + 33.2545i −1.13595 + 1.13595i −0.146781 + 0.989169i \(0.546891\pi\)
−0.989169 + 0.146781i \(0.953109\pi\)
\(858\) 0 0
\(859\) 5.11046 + 15.7284i 0.174367 + 0.536645i 0.999604 0.0281409i \(-0.00895872\pi\)
−0.825237 + 0.564786i \(0.808959\pi\)
\(860\) 0 0
\(861\) −4.13713 + 12.7328i −0.140993 + 0.433931i
\(862\) 0 0
\(863\) 33.5995 + 17.1198i 1.14374 + 0.582764i 0.920013 0.391888i \(-0.128178\pi\)
0.223726 + 0.974652i \(0.428178\pi\)
\(864\) 0 0
\(865\) −43.8295 10.3467i −1.49025 0.351800i
\(866\) 0 0
\(867\) −88.5080 14.0183i −3.00589 0.476086i
\(868\) 0 0
\(869\) 33.3796 + 45.9431i 1.13233 + 1.55851i
\(870\) 0 0
\(871\) 25.8154 35.5318i 0.874721 1.20395i
\(872\) 0 0
\(873\) 11.3815 5.79915i 0.385205 0.196272i
\(874\) 0 0
\(875\) −48.0956 + 12.1276i −1.62593 + 0.409986i
\(876\) 0 0
\(877\) −9.78063 19.1956i −0.330269 0.648188i 0.664839 0.746987i \(-0.268500\pi\)
−0.995107 + 0.0987983i \(0.968500\pi\)
\(878\) 0 0
\(879\) −19.3439 14.0542i −0.652454 0.474035i
\(880\) 0 0
\(881\) 8.59034 6.24125i 0.289416 0.210273i −0.433598 0.901106i \(-0.642756\pi\)
0.723014 + 0.690833i \(0.242756\pi\)
\(882\) 0 0
\(883\) −2.52020 + 15.9119i −0.0848116 + 0.535479i 0.908301 + 0.418317i \(0.137380\pi\)
−0.993113 + 0.117162i \(0.962620\pi\)
\(884\) 0 0
\(885\) −11.0079 + 46.6301i −0.370026 + 1.56745i
\(886\) 0 0
\(887\) −3.23809 + 6.35512i −0.108725 + 0.213384i −0.938958 0.344032i \(-0.888207\pi\)
0.830233 + 0.557416i \(0.188207\pi\)
\(888\) 0 0
\(889\) 21.2704 + 6.91118i 0.713388 + 0.231794i
\(890\) 0 0
\(891\) −35.8968 + 11.6636i −1.20259 + 0.390745i
\(892\) 0 0
\(893\) 0.413091 + 0.413091i 0.0138236 + 0.0138236i
\(894\) 0 0
\(895\) −5.48945 22.4888i −0.183492 0.751718i
\(896\) 0 0
\(897\) 42.8000 6.77885i 1.42905 0.226339i
\(898\) 0 0
\(899\) 9.37522 0.312681
\(900\) 0 0
\(901\) 7.06236 0.235281
\(902\) 0 0
\(903\) 70.4204 11.1535i 2.34344 0.371165i
\(904\) 0 0
\(905\) 32.7607 + 2.45324i 1.08900 + 0.0815485i
\(906\) 0 0
\(907\) −19.7382 19.7382i −0.655396 0.655396i 0.298891 0.954287i \(-0.403383\pi\)
−0.954287 + 0.298891i \(0.903383\pi\)
\(908\) 0 0
\(909\) −15.5241 + 5.04410i −0.514903 + 0.167302i
\(910\) 0 0
\(911\) 7.60272 + 2.47027i 0.251889 + 0.0818438i 0.432240 0.901759i \(-0.357723\pi\)
−0.180351 + 0.983602i \(0.557723\pi\)
\(912\) 0 0
\(913\) 11.0483 21.6835i 0.365646 0.717620i
\(914\) 0 0
\(915\) −7.26442 + 6.25224i −0.240154 + 0.206693i
\(916\) 0 0
\(917\) −1.07596 + 6.79332i −0.0355312 + 0.224335i
\(918\) 0 0
\(919\) 45.7747 33.2573i 1.50997 1.09706i 0.543778 0.839229i \(-0.316993\pi\)
0.966191 0.257827i \(-0.0830066\pi\)
\(920\) 0 0
\(921\) −35.0230 25.4457i −1.15405 0.838464i
\(922\) 0 0
\(923\) 2.97247 + 5.83381i 0.0978402 + 0.192022i
\(924\) 0 0
\(925\) −2.05108 + 6.47953i −0.0674391 + 0.213046i
\(926\) 0 0
\(927\) 5.53260 2.81900i 0.181715 0.0925882i
\(928\) 0 0
\(929\) −35.5268 + 48.8984i −1.16560 + 1.60431i −0.477635 + 0.878558i \(0.658506\pi\)
−0.687961 + 0.725748i \(0.741494\pi\)
\(930\) 0 0
\(931\) −3.45537 4.75591i −0.113245 0.155869i
\(932\) 0 0
\(933\) −37.7941 5.98600i −1.23732 0.195973i
\(934\) 0 0
\(935\) −54.5890 + 22.8547i −1.78525 + 0.747427i
\(936\) 0 0
\(937\) −16.3594 8.33555i −0.534440 0.272311i 0.165873 0.986147i \(-0.446956\pi\)
−0.700312 + 0.713837i \(0.746956\pi\)
\(938\) 0 0
\(939\) 9.34413 28.7583i 0.304934 0.938491i
\(940\) 0 0
\(941\) −17.3832 53.5000i −0.566676 1.74405i −0.662918 0.748692i \(-0.730682\pi\)
0.0962423 0.995358i \(-0.469318\pi\)
\(942\) 0 0
\(943\) 5.81806 5.81806i 0.189462 0.189462i
\(944\) 0 0
\(945\) −19.5860 31.6908i −0.637132 1.03090i
\(946\) 0 0
\(947\) −8.31394 52.4921i −0.270167 1.70576i −0.633200 0.773989i \(-0.718259\pi\)
0.363033 0.931776i \(-0.381741\pi\)
\(948\) 0 0
\(949\) 23.5678i 0.765043i
\(950\) 0 0
\(951\) 32.2945i 1.04722i
\(952\) 0 0
\(953\) 0.0979909 + 0.618690i 0.00317424 + 0.0200413i 0.989225 0.146406i \(-0.0467705\pi\)
−0.986050 + 0.166447i \(0.946771\pi\)
\(954\) 0 0
\(955\) −20.3573 8.34188i −0.658746 0.269937i
\(956\) 0 0
\(957\) 5.98145 5.98145i 0.193353 0.193353i
\(958\) 0 0
\(959\) −17.2380 53.0532i −0.556645 1.71318i
\(960\) 0 0
\(961\) −8.56224 + 26.3519i −0.276201 + 0.850060i
\(962\) 0 0
\(963\) −4.23181 2.15622i −0.136368 0.0694831i
\(964\) 0 0
\(965\) 2.67291 + 32.3903i 0.0860440 + 1.04268i
\(966\) 0 0
\(967\) −14.8068 2.34516i −0.476154 0.0754153i −0.0862550 0.996273i \(-0.527490\pi\)
−0.389899 + 0.920858i \(0.627490\pi\)
\(968\) 0 0
\(969\) 4.33743 + 5.96996i 0.139338 + 0.191783i
\(970\) 0 0
\(971\) 33.6414 46.3034i 1.07960 1.48595i 0.219647 0.975579i \(-0.429509\pi\)
0.859956 0.510368i \(-0.170491\pi\)
\(972\) 0 0
\(973\) 20.5511 10.4713i 0.658838 0.335695i
\(974\) 0 0
\(975\) 38.5344 + 5.80374i 1.23409 + 0.185868i
\(976\) 0 0
\(977\) 6.58360 + 12.9210i 0.210628 + 0.413381i 0.972016 0.234916i \(-0.0754816\pi\)
−0.761388 + 0.648297i \(0.775482\pi\)
\(978\) 0 0
\(979\) 21.2229 + 15.4194i 0.678288 + 0.492805i
\(980\) 0 0
\(981\) −1.47956 + 1.07496i −0.0472386 + 0.0343209i
\(982\) 0 0
\(983\) 2.85036 17.9964i 0.0909122 0.573997i −0.899615 0.436683i \(-0.856153\pi\)
0.990528 0.137314i \(-0.0438469\pi\)
\(984\) 0 0
\(985\) 27.1630 + 16.5040i 0.865484 + 0.525861i
\(986\) 0 0
\(987\) −5.17630 + 10.1591i −0.164763 + 0.323366i
\(988\) 0 0
\(989\) −41.6737 13.5406i −1.32515 0.430566i
\(990\) 0 0
\(991\) 19.9240 6.47370i 0.632907 0.205644i 0.0250446 0.999686i \(-0.492027\pi\)
0.607862 + 0.794042i \(0.292027\pi\)
\(992\) 0 0
\(993\) 27.3129 + 27.3129i 0.866750 + 0.866750i
\(994\) 0 0
\(995\) 25.8763 + 21.9311i 0.820334 + 0.695264i
\(996\) 0 0
\(997\) 47.9547 7.59528i 1.51874 0.240545i 0.659339 0.751846i \(-0.270836\pi\)
0.859402 + 0.511301i \(0.170836\pi\)
\(998\) 0 0
\(999\) −5.10471 −0.161506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.b.303.2 yes 16
4.3 odd 2 inner 400.2.bi.b.303.1 16
25.17 odd 20 inner 400.2.bi.b.367.1 yes 16
100.67 even 20 inner 400.2.bi.b.367.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.b.303.1 16 4.3 odd 2 inner
400.2.bi.b.303.2 yes 16 1.1 even 1 trivial
400.2.bi.b.367.1 yes 16 25.17 odd 20 inner
400.2.bi.b.367.2 yes 16 100.67 even 20 inner