Properties

Label 400.2.q.h.149.7
Level $400$
Weight $2$
Character 400.149
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,2,Mod(149,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.7
Root \(1.32070 - 0.505727i\) of defining polynomial
Character \(\chi\) \(=\) 400.149
Dual form 400.2.q.h.349.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39064 + 0.257150i) q^{2} +(-1.66366 - 1.66366i) q^{3} +(1.86775 + 0.715205i) q^{4} +(-1.88574 - 2.74137i) q^{6} +2.89402 q^{7} +(2.41345 + 1.47488i) q^{8} +2.53555i q^{9} +(1.84462 + 1.84462i) q^{11} +(-1.91744 - 4.29717i) q^{12} +(-3.08011 - 3.08011i) q^{13} +(4.02454 + 0.744198i) q^{14} +(2.97696 + 2.67165i) q^{16} -7.29875i q^{17} +(-0.652018 + 3.52604i) q^{18} +(1.23593 - 1.23593i) q^{19} +(-4.81468 - 4.81468i) q^{21} +(2.09086 + 3.03955i) q^{22} +4.60490 q^{23} +(-1.56145 - 6.46887i) q^{24} +(-3.49126 - 5.07536i) q^{26} +(-0.772683 + 0.772683i) q^{27} +(5.40530 + 2.06982i) q^{28} +(-4.24680 + 4.24680i) q^{29} +2.06299 q^{31} +(3.45286 + 4.48082i) q^{32} -6.13767i q^{33} +(1.87688 - 10.1499i) q^{34} +(-1.81344 + 4.73577i) q^{36} +(-1.17899 + 1.17899i) q^{37} +(2.03655 - 1.40091i) q^{38} +10.2485i q^{39} +4.61484i q^{41} +(-5.45738 - 7.93357i) q^{42} +(-3.03019 + 3.03019i) q^{43} +(2.12601 + 4.76458i) q^{44} +(6.40375 + 1.18415i) q^{46} +11.7111i q^{47} +(-0.507943 - 9.39739i) q^{48} +1.37537 q^{49} +(-12.1427 + 12.1427i) q^{51} +(-3.54995 - 7.95577i) q^{52} +(-2.73048 + 2.73048i) q^{53} +(-1.27322 + 0.875827i) q^{54} +(6.98457 + 4.26835i) q^{56} -4.11235 q^{57} +(-6.99782 + 4.81369i) q^{58} +(-3.11306 - 3.11306i) q^{59} +(2.34962 - 2.34962i) q^{61} +(2.86887 + 0.530498i) q^{62} +7.33795i q^{63} +(3.64944 + 7.11910i) q^{64} +(1.57830 - 8.53528i) q^{66} +(-8.24311 - 8.24311i) q^{67} +(5.22011 - 13.6322i) q^{68} +(-7.66101 - 7.66101i) q^{69} -3.25937i q^{71} +(-3.73965 + 6.11942i) q^{72} -12.6877 q^{73} +(-1.94272 + 1.33637i) q^{74} +(3.19235 - 1.42446i) q^{76} +(5.33839 + 5.33839i) q^{77} +(-2.63541 + 14.2520i) q^{78} +0.113885 q^{79} +10.1776 q^{81} +(-1.18671 + 6.41758i) q^{82} +(9.76813 + 9.76813i) q^{83} +(-5.54912 - 12.4361i) q^{84} +(-4.99310 + 3.43468i) q^{86} +14.1305 q^{87} +(1.73129 + 7.17251i) q^{88} +3.74593i q^{89} +(-8.91390 - 8.91390i) q^{91} +(8.60080 + 3.29345i) q^{92} +(-3.43212 - 3.43212i) q^{93} +(-3.01150 + 16.2858i) q^{94} +(1.71017 - 13.1990i) q^{96} +13.9853i q^{97} +(1.91264 + 0.353676i) q^{98} +(-4.67714 + 4.67714i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 4 q^{4} - 12 q^{6} + 8 q^{7} - 8 q^{8} - 8 q^{11} + 20 q^{12} - 4 q^{14} + 16 q^{16} + 12 q^{18} + 8 q^{19} - 20 q^{22} + 24 q^{23} - 8 q^{24} - 16 q^{26} + 24 q^{27} + 20 q^{28} + 16 q^{29}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39064 + 0.257150i 0.983329 + 0.181833i
\(3\) −1.66366 1.66366i −0.960517 0.960517i 0.0387330 0.999250i \(-0.487668\pi\)
−0.999250 + 0.0387330i \(0.987668\pi\)
\(4\) 1.86775 + 0.715205i 0.933874 + 0.357603i
\(5\) 0 0
\(6\) −1.88574 2.74137i −0.769851 1.11916i
\(7\) 2.89402 1.09384 0.546919 0.837186i \(-0.315801\pi\)
0.546919 + 0.837186i \(0.315801\pi\)
\(8\) 2.41345 + 1.47488i 0.853282 + 0.521450i
\(9\) 2.53555i 0.845184i
\(10\) 0 0
\(11\) 1.84462 + 1.84462i 0.556175 + 0.556175i 0.928216 0.372041i \(-0.121342\pi\)
−0.372041 + 0.928216i \(0.621342\pi\)
\(12\) −1.91744 4.29717i −0.553518 1.24048i
\(13\) −3.08011 3.08011i −0.854268 0.854268i 0.136388 0.990656i \(-0.456451\pi\)
−0.990656 + 0.136388i \(0.956451\pi\)
\(14\) 4.02454 + 0.744198i 1.07560 + 0.198895i
\(15\) 0 0
\(16\) 2.97696 + 2.67165i 0.744241 + 0.667912i
\(17\) 7.29875i 1.77021i −0.465393 0.885104i \(-0.654087\pi\)
0.465393 0.885104i \(-0.345913\pi\)
\(18\) −0.652018 + 3.52604i −0.153682 + 0.831095i
\(19\) 1.23593 1.23593i 0.283542 0.283542i −0.550978 0.834520i \(-0.685745\pi\)
0.834520 + 0.550978i \(0.185745\pi\)
\(20\) 0 0
\(21\) −4.81468 4.81468i −1.05065 1.05065i
\(22\) 2.09086 + 3.03955i 0.445773 + 0.648034i
\(23\) 4.60490 0.960189 0.480094 0.877217i \(-0.340602\pi\)
0.480094 + 0.877217i \(0.340602\pi\)
\(24\) −1.56145 6.46887i −0.318730 1.32045i
\(25\) 0 0
\(26\) −3.49126 5.07536i −0.684693 0.995360i
\(27\) −0.772683 + 0.772683i −0.148703 + 0.148703i
\(28\) 5.40530 + 2.06982i 1.02151 + 0.391159i
\(29\) −4.24680 + 4.24680i −0.788611 + 0.788611i −0.981266 0.192656i \(-0.938290\pi\)
0.192656 + 0.981266i \(0.438290\pi\)
\(30\) 0 0
\(31\) 2.06299 0.370524 0.185262 0.982689i \(-0.440687\pi\)
0.185262 + 0.982689i \(0.440687\pi\)
\(32\) 3.45286 + 4.48082i 0.610386 + 0.792104i
\(33\) 6.13767i 1.06843i
\(34\) 1.87688 10.1499i 0.321882 1.74070i
\(35\) 0 0
\(36\) −1.81344 + 4.73577i −0.302240 + 0.789296i
\(37\) −1.17899 + 1.17899i −0.193825 + 0.193825i −0.797346 0.603522i \(-0.793764\pi\)
0.603522 + 0.797346i \(0.293764\pi\)
\(38\) 2.03655 1.40091i 0.330373 0.227258i
\(39\) 10.2485i 1.64108i
\(40\) 0 0
\(41\) 4.61484i 0.720717i 0.932814 + 0.360359i \(0.117346\pi\)
−0.932814 + 0.360359i \(0.882654\pi\)
\(42\) −5.45738 7.93357i −0.842092 1.22418i
\(43\) −3.03019 + 3.03019i −0.462099 + 0.462099i −0.899343 0.437244i \(-0.855955\pi\)
0.437244 + 0.899343i \(0.355955\pi\)
\(44\) 2.12601 + 4.76458i 0.320508 + 0.718287i
\(45\) 0 0
\(46\) 6.40375 + 1.18415i 0.944182 + 0.174594i
\(47\) 11.7111i 1.70823i 0.520081 + 0.854117i \(0.325902\pi\)
−0.520081 + 0.854117i \(0.674098\pi\)
\(48\) −0.507943 9.39739i −0.0733152 1.35640i
\(49\) 1.37537 0.196481
\(50\) 0 0
\(51\) −12.1427 + 12.1427i −1.70031 + 1.70031i
\(52\) −3.54995 7.95577i −0.492290 1.10327i
\(53\) −2.73048 + 2.73048i −0.375061 + 0.375061i −0.869316 0.494256i \(-0.835441\pi\)
0.494256 + 0.869316i \(0.335441\pi\)
\(54\) −1.27322 + 0.875827i −0.173263 + 0.119185i
\(55\) 0 0
\(56\) 6.98457 + 4.26835i 0.933352 + 0.570382i
\(57\) −4.11235 −0.544694
\(58\) −6.99782 + 4.81369i −0.918859 + 0.632069i
\(59\) −3.11306 3.11306i −0.405285 0.405285i 0.474805 0.880091i \(-0.342518\pi\)
−0.880091 + 0.474805i \(0.842518\pi\)
\(60\) 0 0
\(61\) 2.34962 2.34962i 0.300838 0.300838i −0.540503 0.841342i \(-0.681766\pi\)
0.841342 + 0.540503i \(0.181766\pi\)
\(62\) 2.86887 + 0.530498i 0.364347 + 0.0673733i
\(63\) 7.33795i 0.924495i
\(64\) 3.64944 + 7.11910i 0.456180 + 0.889888i
\(65\) 0 0
\(66\) 1.57830 8.53528i 0.194276 1.05062i
\(67\) −8.24311 8.24311i −1.00706 1.00706i −0.999975 0.00708173i \(-0.997746\pi\)
−0.00708173 0.999975i \(-0.502254\pi\)
\(68\) 5.22011 13.6322i 0.633031 1.65315i
\(69\) −7.66101 7.66101i −0.922277 0.922277i
\(70\) 0 0
\(71\) 3.25937i 0.386816i −0.981118 0.193408i \(-0.938046\pi\)
0.981118 0.193408i \(-0.0619541\pi\)
\(72\) −3.73965 + 6.11942i −0.440721 + 0.721180i
\(73\) −12.6877 −1.48499 −0.742494 0.669853i \(-0.766357\pi\)
−0.742494 + 0.669853i \(0.766357\pi\)
\(74\) −1.94272 + 1.33637i −0.225837 + 0.155350i
\(75\) 0 0
\(76\) 3.19235 1.42446i 0.366188 0.163397i
\(77\) 5.33839 + 5.33839i 0.608365 + 0.608365i
\(78\) −2.63541 + 14.2520i −0.298401 + 1.61372i
\(79\) 0.113885 0.0128130 0.00640652 0.999979i \(-0.497961\pi\)
0.00640652 + 0.999979i \(0.497961\pi\)
\(80\) 0 0
\(81\) 10.1776 1.13085
\(82\) −1.18671 + 6.41758i −0.131050 + 0.708703i
\(83\) 9.76813 + 9.76813i 1.07219 + 1.07219i 0.997183 + 0.0750089i \(0.0238985\pi\)
0.0750089 + 0.997183i \(0.476101\pi\)
\(84\) −5.54912 12.4361i −0.605459 1.35689i
\(85\) 0 0
\(86\) −4.99310 + 3.43468i −0.538420 + 0.370371i
\(87\) 14.1305 1.51495
\(88\) 1.73129 + 7.17251i 0.184557 + 0.764592i
\(89\) 3.74593i 0.397068i 0.980094 + 0.198534i \(0.0636180\pi\)
−0.980094 + 0.198534i \(0.936382\pi\)
\(90\) 0 0
\(91\) −8.91390 8.91390i −0.934430 0.934430i
\(92\) 8.60080 + 3.29345i 0.896695 + 0.343366i
\(93\) −3.43212 3.43212i −0.355894 0.355894i
\(94\) −3.01150 + 16.2858i −0.310613 + 1.67976i
\(95\) 0 0
\(96\) 1.71017 13.1990i 0.174544 1.34711i
\(97\) 13.9853i 1.41999i 0.704206 + 0.709995i \(0.251303\pi\)
−0.704206 + 0.709995i \(0.748697\pi\)
\(98\) 1.91264 + 0.353676i 0.193206 + 0.0357267i
\(99\) −4.67714 + 4.67714i −0.470071 + 0.470071i
\(100\) 0 0
\(101\) 3.52228 + 3.52228i 0.350480 + 0.350480i 0.860288 0.509808i \(-0.170284\pi\)
−0.509808 + 0.860288i \(0.670284\pi\)
\(102\) −20.0085 + 13.7636i −1.98114 + 1.36280i
\(103\) −0.150216 −0.0148013 −0.00740063 0.999973i \(-0.502356\pi\)
−0.00740063 + 0.999973i \(0.502356\pi\)
\(104\) −2.89087 11.9765i −0.283473 1.17439i
\(105\) 0 0
\(106\) −4.49926 + 3.09497i −0.437006 + 0.300610i
\(107\) −2.75062 + 2.75062i −0.265912 + 0.265912i −0.827451 0.561539i \(-0.810210\pi\)
0.561539 + 0.827451i \(0.310210\pi\)
\(108\) −1.99580 + 0.890550i −0.192046 + 0.0856932i
\(109\) 6.90778 6.90778i 0.661646 0.661646i −0.294122 0.955768i \(-0.595027\pi\)
0.955768 + 0.294122i \(0.0950273\pi\)
\(110\) 0 0
\(111\) 3.92288 0.372344
\(112\) 8.61540 + 7.73181i 0.814078 + 0.730587i
\(113\) 3.49507i 0.328788i −0.986395 0.164394i \(-0.947433\pi\)
0.986395 0.164394i \(-0.0525669\pi\)
\(114\) −5.71879 1.05749i −0.535614 0.0990431i
\(115\) 0 0
\(116\) −10.9693 + 4.89461i −1.01847 + 0.454454i
\(117\) 7.80977 7.80977i 0.722014 0.722014i
\(118\) −3.52861 5.12966i −0.324835 0.472223i
\(119\) 21.1228i 1.93632i
\(120\) 0 0
\(121\) 4.19472i 0.381338i
\(122\) 3.87168 2.66327i 0.350526 0.241121i
\(123\) 7.67755 7.67755i 0.692261 0.692261i
\(124\) 3.85314 + 1.47546i 0.346022 + 0.132500i
\(125\) 0 0
\(126\) −1.88695 + 10.2044i −0.168103 + 0.909083i
\(127\) 6.25357i 0.554915i −0.960738 0.277458i \(-0.910508\pi\)
0.960738 0.277458i \(-0.0894918\pi\)
\(128\) 3.24437 + 10.8385i 0.286764 + 0.958001i
\(129\) 10.0824 0.887708
\(130\) 0 0
\(131\) −5.16490 + 5.16490i −0.451259 + 0.451259i −0.895772 0.444513i \(-0.853377\pi\)
0.444513 + 0.895772i \(0.353377\pi\)
\(132\) 4.38969 11.4636i 0.382074 0.997780i
\(133\) 3.57681 3.57681i 0.310149 0.310149i
\(134\) −9.34347 13.5829i −0.807153 1.17338i
\(135\) 0 0
\(136\) 10.7648 17.6151i 0.923075 1.51049i
\(137\) −18.9408 −1.61823 −0.809113 0.587654i \(-0.800052\pi\)
−0.809113 + 0.587654i \(0.800052\pi\)
\(138\) −8.68366 12.6237i −0.739203 1.07460i
\(139\) −2.79057 2.79057i −0.236693 0.236693i 0.578786 0.815479i \(-0.303527\pi\)
−0.815479 + 0.578786i \(0.803527\pi\)
\(140\) 0 0
\(141\) 19.4833 19.4833i 1.64079 1.64079i
\(142\) 0.838147 4.53260i 0.0703357 0.380367i
\(143\) 11.3633i 0.950245i
\(144\) −6.77410 + 7.54825i −0.564509 + 0.629021i
\(145\) 0 0
\(146\) −17.6441 3.26265i −1.46023 0.270019i
\(147\) −2.28815 2.28815i −0.188723 0.188723i
\(148\) −3.04527 + 1.35883i −0.250320 + 0.111696i
\(149\) 1.60372 + 1.60372i 0.131382 + 0.131382i 0.769740 0.638358i \(-0.220386\pi\)
−0.638358 + 0.769740i \(0.720386\pi\)
\(150\) 0 0
\(151\) 2.53754i 0.206502i 0.994655 + 0.103251i \(0.0329245\pi\)
−0.994655 + 0.103251i \(0.967076\pi\)
\(152\) 4.80571 1.16000i 0.389794 0.0940883i
\(153\) 18.5064 1.49615
\(154\) 6.05099 + 8.79653i 0.487603 + 0.708844i
\(155\) 0 0
\(156\) −7.32980 + 19.1417i −0.586854 + 1.53256i
\(157\) −10.2405 10.2405i −0.817278 0.817278i 0.168435 0.985713i \(-0.446129\pi\)
−0.985713 + 0.168435i \(0.946129\pi\)
\(158\) 0.158373 + 0.0292855i 0.0125994 + 0.00232983i
\(159\) 9.08521 0.720504
\(160\) 0 0
\(161\) 13.3267 1.05029
\(162\) 14.1534 + 2.61718i 1.11200 + 0.205625i
\(163\) 8.02607 + 8.02607i 0.628650 + 0.628650i 0.947728 0.319078i \(-0.103373\pi\)
−0.319078 + 0.947728i \(0.603373\pi\)
\(164\) −3.30056 + 8.61936i −0.257731 + 0.673059i
\(165\) 0 0
\(166\) 11.0721 + 16.0958i 0.859358 + 1.24928i
\(167\) −6.82611 −0.528221 −0.264110 0.964492i \(-0.585078\pi\)
−0.264110 + 0.964492i \(0.585078\pi\)
\(168\) −4.51888 18.7211i −0.348639 1.44436i
\(169\) 5.97411i 0.459547i
\(170\) 0 0
\(171\) 3.13377 + 3.13377i 0.239645 + 0.239645i
\(172\) −7.82683 + 3.49242i −0.596790 + 0.266294i
\(173\) 5.08901 + 5.08901i 0.386910 + 0.386910i 0.873584 0.486674i \(-0.161790\pi\)
−0.486674 + 0.873584i \(0.661790\pi\)
\(174\) 19.6504 + 3.63366i 1.48969 + 0.275467i
\(175\) 0 0
\(176\) 0.563193 + 10.4196i 0.0424523 + 0.785404i
\(177\) 10.3582i 0.778567i
\(178\) −0.963267 + 5.20924i −0.0721999 + 0.390449i
\(179\) −1.63797 + 1.63797i −0.122428 + 0.122428i −0.765666 0.643238i \(-0.777590\pi\)
0.643238 + 0.765666i \(0.277590\pi\)
\(180\) 0 0
\(181\) −16.7757 16.7757i −1.24693 1.24693i −0.957071 0.289855i \(-0.906393\pi\)
−0.289855 0.957071i \(-0.593607\pi\)
\(182\) −10.1038 14.6882i −0.748943 1.08876i
\(183\) −7.81797 −0.577921
\(184\) 11.1137 + 6.79170i 0.819312 + 0.500691i
\(185\) 0 0
\(186\) −3.89026 5.65540i −0.285248 0.414674i
\(187\) 13.4635 13.4635i 0.984546 0.984546i
\(188\) −8.37582 + 21.8733i −0.610869 + 1.59527i
\(189\) −2.23616 + 2.23616i −0.162657 + 0.162657i
\(190\) 0 0
\(191\) 5.85815 0.423881 0.211940 0.977283i \(-0.432022\pi\)
0.211940 + 0.977283i \(0.432022\pi\)
\(192\) 5.77235 17.9152i 0.416584 1.29292i
\(193\) 0.0241155i 0.00173587i −1.00000 0.000867935i \(-0.999724\pi\)
1.00000 0.000867935i \(-0.000276272\pi\)
\(194\) −3.59632 + 19.4485i −0.258201 + 1.39632i
\(195\) 0 0
\(196\) 2.56884 + 0.983671i 0.183489 + 0.0702622i
\(197\) 14.9086 14.9086i 1.06219 1.06219i 0.0642576 0.997933i \(-0.479532\pi\)
0.997933 0.0642576i \(-0.0204679\pi\)
\(198\) −7.70694 + 5.30149i −0.547708 + 0.376760i
\(199\) 13.6525i 0.967801i −0.875123 0.483900i \(-0.839220\pi\)
0.875123 0.483900i \(-0.160780\pi\)
\(200\) 0 0
\(201\) 27.4275i 1.93459i
\(202\) 3.99246 + 5.80397i 0.280909 + 0.408366i
\(203\) −12.2903 + 12.2903i −0.862612 + 0.862612i
\(204\) −31.3640 + 13.9949i −2.19592 + 0.979842i
\(205\) 0 0
\(206\) −0.208897 0.0386282i −0.0145545 0.00269135i
\(207\) 11.6760i 0.811537i
\(208\) −0.940405 17.3983i −0.0652053 1.20636i
\(209\) 4.55966 0.315398
\(210\) 0 0
\(211\) −2.45103 + 2.45103i −0.168736 + 0.168736i −0.786424 0.617688i \(-0.788070\pi\)
0.617688 + 0.786424i \(0.288070\pi\)
\(212\) −7.05271 + 3.14700i −0.484382 + 0.216137i
\(213\) −5.42249 + 5.42249i −0.371543 + 0.371543i
\(214\) −4.53243 + 3.11779i −0.309831 + 0.213128i
\(215\) 0 0
\(216\) −3.00445 + 0.725211i −0.204427 + 0.0493444i
\(217\) 5.97033 0.405293
\(218\) 11.3826 7.82989i 0.770924 0.530307i
\(219\) 21.1081 + 21.1081i 1.42636 + 1.42636i
\(220\) 0 0
\(221\) −22.4809 + 22.4809i −1.51223 + 1.51223i
\(222\) 5.45531 + 1.00877i 0.366136 + 0.0677042i
\(223\) 13.9483i 0.934045i 0.884245 + 0.467023i \(0.154673\pi\)
−0.884245 + 0.467023i \(0.845327\pi\)
\(224\) 9.99266 + 12.9676i 0.667663 + 0.866434i
\(225\) 0 0
\(226\) 0.898758 4.86038i 0.0597845 0.323307i
\(227\) −4.43883 4.43883i −0.294616 0.294616i 0.544285 0.838901i \(-0.316801\pi\)
−0.838901 + 0.544285i \(0.816801\pi\)
\(228\) −7.68083 2.94117i −0.508675 0.194784i
\(229\) 5.35068 + 5.35068i 0.353583 + 0.353583i 0.861441 0.507858i \(-0.169562\pi\)
−0.507858 + 0.861441i \(0.669562\pi\)
\(230\) 0 0
\(231\) 17.7626i 1.16869i
\(232\) −16.5129 + 3.98588i −1.08413 + 0.261686i
\(233\) 11.9370 0.782019 0.391010 0.920387i \(-0.372126\pi\)
0.391010 + 0.920387i \(0.372126\pi\)
\(234\) 12.8689 8.85228i 0.841263 0.578692i
\(235\) 0 0
\(236\) −3.58793 8.04088i −0.233554 0.523416i
\(237\) −0.189466 0.189466i −0.0123071 0.0123071i
\(238\) 5.43172 29.3741i 0.352086 1.90404i
\(239\) 16.7720 1.08489 0.542445 0.840091i \(-0.317499\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(240\) 0 0
\(241\) −22.0294 −1.41904 −0.709519 0.704686i \(-0.751088\pi\)
−0.709519 + 0.704686i \(0.751088\pi\)
\(242\) 1.07867 5.83334i 0.0693397 0.374981i
\(243\) −14.6141 14.6141i −0.937495 0.937495i
\(244\) 6.06897 2.70804i 0.388526 0.173365i
\(245\) 0 0
\(246\) 12.6510 8.70241i 0.806596 0.554845i
\(247\) −7.61360 −0.484442
\(248\) 4.97891 + 3.04267i 0.316161 + 0.193210i
\(249\) 32.5018i 2.05972i
\(250\) 0 0
\(251\) 6.63925 + 6.63925i 0.419066 + 0.419066i 0.884882 0.465816i \(-0.154239\pi\)
−0.465816 + 0.884882i \(0.654239\pi\)
\(252\) −5.24814 + 13.7054i −0.330602 + 0.863361i
\(253\) 8.49432 + 8.49432i 0.534033 + 0.534033i
\(254\) 1.60811 8.69646i 0.100902 0.545664i
\(255\) 0 0
\(256\) 1.72461 + 15.9068i 0.107788 + 0.994174i
\(257\) 7.25821i 0.452755i 0.974040 + 0.226377i \(0.0726883\pi\)
−0.974040 + 0.226377i \(0.927312\pi\)
\(258\) 14.0210 + 2.59270i 0.872909 + 0.161414i
\(259\) −3.41202 + 3.41202i −0.212013 + 0.212013i
\(260\) 0 0
\(261\) −10.7680 10.7680i −0.666521 0.666521i
\(262\) −8.51066 + 5.85435i −0.525790 + 0.361683i
\(263\) 9.27431 0.571878 0.285939 0.958248i \(-0.407694\pi\)
0.285939 + 0.958248i \(0.407694\pi\)
\(264\) 9.05235 14.8129i 0.557133 0.911673i
\(265\) 0 0
\(266\) 5.89383 4.05428i 0.361374 0.248584i
\(267\) 6.23197 6.23197i 0.381390 0.381390i
\(268\) −9.50054 21.2916i −0.580338 1.30059i
\(269\) 13.4195 13.4195i 0.818199 0.818199i −0.167648 0.985847i \(-0.553617\pi\)
0.985847 + 0.167648i \(0.0536173\pi\)
\(270\) 0 0
\(271\) 22.5999 1.37285 0.686423 0.727202i \(-0.259180\pi\)
0.686423 + 0.727202i \(0.259180\pi\)
\(272\) 19.4997 21.7281i 1.18234 1.31746i
\(273\) 29.6595i 1.79507i
\(274\) −26.3399 4.87064i −1.59125 0.294246i
\(275\) 0 0
\(276\) −8.82964 19.7880i −0.531482 1.19110i
\(277\) 16.2015 16.2015i 0.973451 0.973451i −0.0262056 0.999657i \(-0.508342\pi\)
0.999657 + 0.0262056i \(0.00834245\pi\)
\(278\) −3.16308 4.59827i −0.189709 0.275786i
\(279\) 5.23082i 0.313161i
\(280\) 0 0
\(281\) 8.84793i 0.527824i −0.964547 0.263912i \(-0.914987\pi\)
0.964547 0.263912i \(-0.0850128\pi\)
\(282\) 32.1043 22.0840i 1.91178 1.31509i
\(283\) 20.3062 20.3062i 1.20708 1.20708i 0.235109 0.971969i \(-0.424455\pi\)
0.971969 0.235109i \(-0.0755447\pi\)
\(284\) 2.33112 6.08768i 0.138326 0.361237i
\(285\) 0 0
\(286\) 2.92207 15.8022i 0.172786 0.934404i
\(287\) 13.3555i 0.788348i
\(288\) −11.3614 + 8.75492i −0.669474 + 0.515888i
\(289\) −36.2718 −2.13364
\(290\) 0 0
\(291\) 23.2668 23.2668i 1.36392 1.36392i
\(292\) −23.6975 9.07434i −1.38679 0.531036i
\(293\) 7.16936 7.16936i 0.418839 0.418839i −0.465965 0.884803i \(-0.654293\pi\)
0.884803 + 0.465965i \(0.154293\pi\)
\(294\) −2.59359 3.77039i −0.151261 0.219893i
\(295\) 0 0
\(296\) −4.58430 + 1.10655i −0.266457 + 0.0643172i
\(297\) −2.85062 −0.165410
\(298\) 1.81779 + 2.64259i 0.105302 + 0.153081i
\(299\) −14.1836 14.1836i −0.820258 0.820258i
\(300\) 0 0
\(301\) −8.76943 + 8.76943i −0.505461 + 0.505461i
\(302\) −0.652528 + 3.52880i −0.0375488 + 0.203059i
\(303\) 11.7198i 0.673284i
\(304\) 6.98129 0.377349i 0.400405 0.0216425i
\(305\) 0 0
\(306\) 25.7357 + 4.75892i 1.47121 + 0.272049i
\(307\) 18.4308 + 18.4308i 1.05190 + 1.05190i 0.998577 + 0.0533241i \(0.0169816\pi\)
0.0533241 + 0.998577i \(0.483018\pi\)
\(308\) 6.15271 + 13.7888i 0.350583 + 0.785690i
\(309\) 0.249910 + 0.249910i 0.0142169 + 0.0142169i
\(310\) 0 0
\(311\) 7.08961i 0.402015i 0.979590 + 0.201007i \(0.0644215\pi\)
−0.979590 + 0.201007i \(0.935578\pi\)
\(312\) −15.1154 + 24.7342i −0.855739 + 1.40030i
\(313\) −22.0477 −1.24621 −0.623104 0.782139i \(-0.714129\pi\)
−0.623104 + 0.782139i \(0.714129\pi\)
\(314\) −11.6074 16.8741i −0.655046 0.952262i
\(315\) 0 0
\(316\) 0.212708 + 0.0814510i 0.0119658 + 0.00458198i
\(317\) 6.19670 + 6.19670i 0.348042 + 0.348042i 0.859380 0.511338i \(-0.170850\pi\)
−0.511338 + 0.859380i \(0.670850\pi\)
\(318\) 12.6342 + 2.33626i 0.708493 + 0.131011i
\(319\) −15.6675 −0.877211
\(320\) 0 0
\(321\) 9.15220 0.510826
\(322\) 18.5326 + 3.42696i 1.03278 + 0.190977i
\(323\) −9.02076 9.02076i −0.501929 0.501929i
\(324\) 19.0092 + 7.27910i 1.05607 + 0.404394i
\(325\) 0 0
\(326\) 9.09745 + 13.2253i 0.503861 + 0.732479i
\(327\) −22.9845 −1.27104
\(328\) −6.80636 + 11.1377i −0.375818 + 0.614975i
\(329\) 33.8921i 1.86853i
\(330\) 0 0
\(331\) −18.6174 18.6174i −1.02330 1.02330i −0.999722 0.0235823i \(-0.992493\pi\)
−0.0235823 0.999722i \(-0.507507\pi\)
\(332\) 11.2582 + 25.2306i 0.617873 + 1.38471i
\(333\) −2.98939 2.98939i −0.163818 0.163818i
\(334\) −9.49265 1.75534i −0.519415 0.0960477i
\(335\) 0 0
\(336\) −1.47000 27.1962i −0.0801949 1.48368i
\(337\) 14.2577i 0.776666i −0.921519 0.388333i \(-0.873051\pi\)
0.921519 0.388333i \(-0.126949\pi\)
\(338\) −1.53624 + 8.30782i −0.0835606 + 0.451886i
\(339\) −5.81462 + 5.81462i −0.315807 + 0.315807i
\(340\) 0 0
\(341\) 3.80544 + 3.80544i 0.206076 + 0.206076i
\(342\) 3.55209 + 5.16379i 0.192075 + 0.279226i
\(343\) −16.2778 −0.878919
\(344\) −11.7824 + 2.84402i −0.635262 + 0.153339i
\(345\) 0 0
\(346\) 5.76833 + 8.38561i 0.310107 + 0.450813i
\(347\) −23.5395 + 23.5395i −1.26367 + 1.26367i −0.314363 + 0.949303i \(0.601791\pi\)
−0.949303 + 0.314363i \(0.898209\pi\)
\(348\) 26.3922 + 10.1062i 1.41477 + 0.541749i
\(349\) 1.56682 1.56682i 0.0838701 0.0838701i −0.663927 0.747797i \(-0.731112\pi\)
0.747797 + 0.663927i \(0.231112\pi\)
\(350\) 0 0
\(351\) 4.75989 0.254064
\(352\) −1.89619 + 14.6347i −0.101068 + 0.780030i
\(353\) 9.44678i 0.502801i 0.967883 + 0.251401i \(0.0808912\pi\)
−0.967883 + 0.251401i \(0.919109\pi\)
\(354\) −2.66360 + 14.4044i −0.141569 + 0.765588i
\(355\) 0 0
\(356\) −2.67911 + 6.99646i −0.141993 + 0.370811i
\(357\) −35.1412 + 35.1412i −1.85987 + 1.85987i
\(358\) −2.69903 + 1.85662i −0.142648 + 0.0981256i
\(359\) 18.0452i 0.952392i 0.879339 + 0.476196i \(0.157985\pi\)
−0.879339 + 0.476196i \(0.842015\pi\)
\(360\) 0 0
\(361\) 15.9449i 0.839208i
\(362\) −19.0150 27.6427i −0.999407 1.45287i
\(363\) −6.97860 + 6.97860i −0.366282 + 0.366282i
\(364\) −10.2736 23.0242i −0.538485 1.20679i
\(365\) 0 0
\(366\) −10.8720 2.01039i −0.568286 0.105085i
\(367\) 29.1329i 1.52073i −0.649498 0.760363i \(-0.725021\pi\)
0.649498 0.760363i \(-0.274979\pi\)
\(368\) 13.7086 + 12.3027i 0.714612 + 0.641321i
\(369\) −11.7012 −0.609139
\(370\) 0 0
\(371\) −7.90208 + 7.90208i −0.410255 + 0.410255i
\(372\) −3.95566 8.86500i −0.205091 0.459629i
\(373\) −3.35598 + 3.35598i −0.173766 + 0.173766i −0.788632 0.614866i \(-0.789210\pi\)
0.614866 + 0.788632i \(0.289210\pi\)
\(374\) 22.1849 15.2607i 1.14716 0.789110i
\(375\) 0 0
\(376\) −17.2725 + 28.2640i −0.890759 + 1.45760i
\(377\) 26.1612 1.34737
\(378\) −3.68472 + 2.53466i −0.189522 + 0.130369i
\(379\) −11.6507 11.6507i −0.598457 0.598457i 0.341445 0.939902i \(-0.389084\pi\)
−0.939902 + 0.341445i \(0.889084\pi\)
\(380\) 0 0
\(381\) −10.4038 + 10.4038i −0.533005 + 0.533005i
\(382\) 8.14656 + 1.50642i 0.416814 + 0.0770753i
\(383\) 21.8044i 1.11415i −0.830461 0.557077i \(-0.811923\pi\)
0.830461 0.557077i \(-0.188077\pi\)
\(384\) 12.6342 23.4292i 0.644734 1.19562i
\(385\) 0 0
\(386\) 0.00620130 0.0335359i 0.000315638 0.00170693i
\(387\) −7.68320 7.68320i −0.390559 0.390559i
\(388\) −10.0024 + 26.1210i −0.507793 + 1.32609i
\(389\) 11.8899 + 11.8899i 0.602842 + 0.602842i 0.941066 0.338224i \(-0.109826\pi\)
−0.338224 + 0.941066i \(0.609826\pi\)
\(390\) 0 0
\(391\) 33.6101i 1.69973i
\(392\) 3.31938 + 2.02851i 0.167654 + 0.102455i
\(393\) 17.1853 0.866884
\(394\) 24.5661 16.8987i 1.23762 0.851343i
\(395\) 0 0
\(396\) −12.0808 + 5.39061i −0.607085 + 0.270888i
\(397\) 9.23905 + 9.23905i 0.463694 + 0.463694i 0.899864 0.436170i \(-0.143665\pi\)
−0.436170 + 0.899864i \(0.643665\pi\)
\(398\) 3.51074 18.9857i 0.175978 0.951667i
\(399\) −11.9012 −0.595807
\(400\) 0 0
\(401\) −14.4744 −0.722818 −0.361409 0.932407i \(-0.617704\pi\)
−0.361409 + 0.932407i \(0.617704\pi\)
\(402\) −7.05300 + 38.1418i −0.351771 + 1.90234i
\(403\) −6.35422 6.35422i −0.316526 0.316526i
\(404\) 4.05958 + 9.09789i 0.201972 + 0.452637i
\(405\) 0 0
\(406\) −20.2519 + 13.9309i −1.00508 + 0.691381i
\(407\) −4.34958 −0.215601
\(408\) −47.2147 + 11.3967i −2.33748 + 0.564218i
\(409\) 9.54117i 0.471781i 0.971780 + 0.235890i \(0.0758006\pi\)
−0.971780 + 0.235890i \(0.924199\pi\)
\(410\) 0 0
\(411\) 31.5112 + 31.5112i 1.55433 + 1.55433i
\(412\) −0.280566 0.107436i −0.0138225 0.00529297i
\(413\) −9.00925 9.00925i −0.443316 0.443316i
\(414\) −3.00248 + 16.2371i −0.147564 + 0.798008i
\(415\) 0 0
\(416\) 3.16622 24.4366i 0.155237 1.19810i
\(417\) 9.28514i 0.454695i
\(418\) 6.34083 + 1.17252i 0.310140 + 0.0573497i
\(419\) −0.837667 + 0.837667i −0.0409227 + 0.0409227i −0.727272 0.686349i \(-0.759212\pi\)
0.686349 + 0.727272i \(0.259212\pi\)
\(420\) 0 0
\(421\) 17.9679 + 17.9679i 0.875702 + 0.875702i 0.993087 0.117385i \(-0.0374511\pi\)
−0.117385 + 0.993087i \(0.537451\pi\)
\(422\) −4.03878 + 2.77822i −0.196605 + 0.135241i
\(423\) −29.6940 −1.44377
\(424\) −10.6170 + 2.56273i −0.515608 + 0.124457i
\(425\) 0 0
\(426\) −8.93512 + 6.14633i −0.432908 + 0.297791i
\(427\) 6.79986 6.79986i 0.329068 0.329068i
\(428\) −7.10471 + 3.17020i −0.343419 + 0.153237i
\(429\) −18.9047 + 18.9047i −0.912726 + 0.912726i
\(430\) 0 0
\(431\) −3.85473 −0.185676 −0.0928380 0.995681i \(-0.529594\pi\)
−0.0928380 + 0.995681i \(0.529594\pi\)
\(432\) −4.36459 + 0.235912i −0.209991 + 0.0113503i
\(433\) 25.5651i 1.22858i −0.789081 0.614289i \(-0.789443\pi\)
0.789081 0.614289i \(-0.210557\pi\)
\(434\) 8.30257 + 1.53527i 0.398536 + 0.0736954i
\(435\) 0 0
\(436\) 17.8425 7.96151i 0.854500 0.381287i
\(437\) 5.69135 5.69135i 0.272254 0.272254i
\(438\) 23.9258 + 34.7817i 1.14322 + 1.66194i
\(439\) 30.1311i 1.43808i 0.694970 + 0.719039i \(0.255418\pi\)
−0.694970 + 0.719039i \(0.744582\pi\)
\(440\) 0 0
\(441\) 3.48732i 0.166063i
\(442\) −37.0438 + 25.4819i −1.76199 + 1.21205i
\(443\) −20.1625 + 20.1625i −0.957948 + 0.957948i −0.999151 0.0412027i \(-0.986881\pi\)
0.0412027 + 0.999151i \(0.486881\pi\)
\(444\) 7.32695 + 2.80567i 0.347722 + 0.133151i
\(445\) 0 0
\(446\) −3.58680 + 19.3970i −0.169840 + 0.918474i
\(447\) 5.33610i 0.252389i
\(448\) 10.5616 + 20.6028i 0.498987 + 0.973393i
\(449\) 36.5827 1.72644 0.863221 0.504826i \(-0.168443\pi\)
0.863221 + 0.504826i \(0.168443\pi\)
\(450\) 0 0
\(451\) −8.51265 + 8.51265i −0.400845 + 0.400845i
\(452\) 2.49969 6.52791i 0.117576 0.307047i
\(453\) 4.22161 4.22161i 0.198349 0.198349i
\(454\) −5.03136 7.31426i −0.236134 0.343275i
\(455\) 0 0
\(456\) −9.92493 6.06523i −0.464777 0.284031i
\(457\) −16.7340 −0.782785 −0.391392 0.920224i \(-0.628006\pi\)
−0.391392 + 0.920224i \(0.628006\pi\)
\(458\) 6.06493 + 8.81679i 0.283396 + 0.411982i
\(459\) 5.63962 + 5.63962i 0.263235 + 0.263235i
\(460\) 0 0
\(461\) 11.8377 11.8377i 0.551335 0.551335i −0.375491 0.926826i \(-0.622526\pi\)
0.926826 + 0.375491i \(0.122526\pi\)
\(462\) 4.56764 24.7013i 0.212506 1.14921i
\(463\) 32.2711i 1.49976i −0.661572 0.749882i \(-0.730110\pi\)
0.661572 0.749882i \(-0.269890\pi\)
\(464\) −23.9885 + 1.29661i −1.11364 + 0.0601938i
\(465\) 0 0
\(466\) 16.6000 + 3.06960i 0.768982 + 0.142197i
\(467\) −1.22565 1.22565i −0.0567163 0.0567163i 0.678180 0.734896i \(-0.262769\pi\)
−0.734896 + 0.678180i \(0.762769\pi\)
\(468\) 20.1723 9.00109i 0.932464 0.416076i
\(469\) −23.8558 23.8558i −1.10156 1.10156i
\(470\) 0 0
\(471\) 34.0734i 1.57002i
\(472\) −2.92180 12.1046i −0.134487 0.557159i
\(473\) −11.1791 −0.514016
\(474\) −0.214757 0.312200i −0.00986413 0.0143398i
\(475\) 0 0
\(476\) 15.1071 39.4520i 0.692433 1.80828i
\(477\) −6.92328 6.92328i −0.316995 0.316995i
\(478\) 23.3238 + 4.31292i 1.06680 + 0.197268i
\(479\) −28.8399 −1.31773 −0.658865 0.752261i \(-0.728963\pi\)
−0.658865 + 0.752261i \(0.728963\pi\)
\(480\) 0 0
\(481\) 7.26282 0.331156
\(482\) −30.6349 5.66486i −1.39538 0.258027i
\(483\) −22.1711 22.1711i −1.00882 1.00882i
\(484\) 3.00009 7.83468i 0.136368 0.356122i
\(485\) 0 0
\(486\) −16.5649 24.0809i −0.751399 1.09233i
\(487\) 32.1668 1.45762 0.728808 0.684718i \(-0.240075\pi\)
0.728808 + 0.684718i \(0.240075\pi\)
\(488\) 9.13611 2.20527i 0.413572 0.0998278i
\(489\) 26.7054i 1.20766i
\(490\) 0 0
\(491\) −5.43607 5.43607i −0.245326 0.245326i 0.573723 0.819049i \(-0.305499\pi\)
−0.819049 + 0.573723i \(0.805499\pi\)
\(492\) 19.8307 8.84870i 0.894039 0.398930i
\(493\) 30.9963 + 30.9963i 1.39600 + 1.39600i
\(494\) −10.5878 1.95784i −0.476366 0.0880873i
\(495\) 0 0
\(496\) 6.14144 + 5.51157i 0.275759 + 0.247477i
\(497\) 9.43268i 0.423114i
\(498\) 8.35783 45.1982i 0.374524 2.02538i
\(499\) 17.1282 17.1282i 0.766762 0.766762i −0.210773 0.977535i \(-0.567598\pi\)
0.977535 + 0.210773i \(0.0675981\pi\)
\(500\) 0 0
\(501\) 11.3564 + 11.3564i 0.507365 + 0.507365i
\(502\) 7.52551 + 10.9401i 0.335880 + 0.488280i
\(503\) 23.5180 1.04862 0.524308 0.851529i \(-0.324324\pi\)
0.524308 + 0.851529i \(0.324324\pi\)
\(504\) −10.8226 + 17.7097i −0.482078 + 0.788855i
\(505\) 0 0
\(506\) 9.62821 + 13.9968i 0.428026 + 0.622235i
\(507\) 9.93890 9.93890i 0.441402 0.441402i
\(508\) 4.47259 11.6801i 0.198439 0.518221i
\(509\) −20.3147 + 20.3147i −0.900434 + 0.900434i −0.995474 0.0950391i \(-0.969702\pi\)
0.0950391 + 0.995474i \(0.469702\pi\)
\(510\) 0 0
\(511\) −36.7186 −1.62434
\(512\) −1.69212 + 22.5641i −0.0747820 + 0.997200i
\(513\) 1.90997i 0.0843271i
\(514\) −1.86645 + 10.0935i −0.0823256 + 0.445207i
\(515\) 0 0
\(516\) 18.8314 + 7.21100i 0.829007 + 0.317447i
\(517\) −21.6025 + 21.6025i −0.950077 + 0.950077i
\(518\) −5.62229 + 3.86748i −0.247029 + 0.169928i
\(519\) 16.9328i 0.743268i
\(520\) 0 0
\(521\) 35.5082i 1.55564i −0.628487 0.777820i \(-0.716325\pi\)
0.628487 0.777820i \(-0.283675\pi\)
\(522\) −12.2054 17.7434i −0.534215 0.776606i
\(523\) −0.677766 + 0.677766i −0.0296366 + 0.0296366i −0.721770 0.692133i \(-0.756671\pi\)
0.692133 + 0.721770i \(0.256671\pi\)
\(524\) −13.3407 + 5.95276i −0.582791 + 0.260048i
\(525\) 0 0
\(526\) 12.8972 + 2.38489i 0.562345 + 0.103986i
\(527\) 15.0572i 0.655904i
\(528\) 16.3977 18.2716i 0.713618 0.795170i
\(529\) −1.79485 −0.0780371
\(530\) 0 0
\(531\) 7.89332 7.89332i 0.342541 0.342541i
\(532\) 9.23874 4.12243i 0.400550 0.178730i
\(533\) 14.2142 14.2142i 0.615686 0.615686i
\(534\) 10.2690 7.06386i 0.444382 0.305683i
\(535\) 0 0
\(536\) −7.73667 32.0519i −0.334173 1.38443i
\(537\) 5.45007 0.235188
\(538\) 22.1124 15.2108i 0.953334 0.655784i
\(539\) 2.53704 + 2.53704i 0.109278 + 0.109278i
\(540\) 0 0
\(541\) 5.37099 5.37099i 0.230917 0.230917i −0.582158 0.813075i \(-0.697792\pi\)
0.813075 + 0.582158i \(0.197792\pi\)
\(542\) 31.4283 + 5.81157i 1.34996 + 0.249628i
\(543\) 55.8181i 2.39539i
\(544\) 32.7044 25.2016i 1.40219 1.08051i
\(545\) 0 0
\(546\) −7.62693 + 41.2456i −0.326403 + 1.76515i
\(547\) −8.86782 8.86782i −0.379161 0.379161i 0.491639 0.870799i \(-0.336398\pi\)
−0.870799 + 0.491639i \(0.836398\pi\)
\(548\) −35.3767 13.5466i −1.51122 0.578682i
\(549\) 5.95760 + 5.95760i 0.254264 + 0.254264i
\(550\) 0 0
\(551\) 10.4975i 0.447209i
\(552\) −7.19034 29.7885i −0.306041 1.26788i
\(553\) 0.329585 0.0140154
\(554\) 26.6966 18.3641i 1.13423 0.780218i
\(555\) 0 0
\(556\) −3.21625 7.20791i −0.136399 0.305684i
\(557\) 22.8089 + 22.8089i 0.966446 + 0.966446i 0.999455 0.0330091i \(-0.0105090\pi\)
−0.0330091 + 0.999455i \(0.510509\pi\)
\(558\) −1.34510 + 7.27417i −0.0569428 + 0.307940i
\(559\) 18.6666 0.789513
\(560\) 0 0
\(561\) −44.7973 −1.89135
\(562\) 2.27525 12.3043i 0.0959755 0.519024i
\(563\) 20.9711 + 20.9711i 0.883826 + 0.883826i 0.993921 0.110095i \(-0.0351156\pi\)
−0.110095 + 0.993921i \(0.535116\pi\)
\(564\) 50.3244 22.4553i 2.11904 0.945538i
\(565\) 0 0
\(566\) 33.4603 23.0168i 1.40644 0.967469i
\(567\) 29.4543 1.23696
\(568\) 4.80719 7.86630i 0.201705 0.330063i
\(569\) 8.05295i 0.337597i 0.985651 + 0.168799i \(0.0539888\pi\)
−0.985651 + 0.168799i \(0.946011\pi\)
\(570\) 0 0
\(571\) −22.5040 22.5040i −0.941762 0.941762i 0.0566333 0.998395i \(-0.481963\pi\)
−0.998395 + 0.0566333i \(0.981963\pi\)
\(572\) 8.12708 21.2237i 0.339810 0.887409i
\(573\) −9.74599 9.74599i −0.407144 0.407144i
\(574\) −3.43436 + 18.5726i −0.143347 + 0.775206i
\(575\) 0 0
\(576\) −18.0509 + 9.25334i −0.752119 + 0.385556i
\(577\) 15.9819i 0.665334i −0.943044 0.332667i \(-0.892051\pi\)
0.943044 0.332667i \(-0.107949\pi\)
\(578\) −50.4410 9.32730i −2.09807 0.387965i
\(579\) −0.0401200 + 0.0401200i −0.00166733 + 0.00166733i
\(580\) 0 0
\(581\) 28.2692 + 28.2692i 1.17280 + 1.17280i
\(582\) 38.3388 26.3727i 1.58919 1.09318i
\(583\) −10.0734 −0.417199
\(584\) −30.6212 18.7129i −1.26711 0.774347i
\(585\) 0 0
\(586\) 11.8136 8.12638i 0.488015 0.335698i
\(587\) −5.25752 + 5.25752i −0.217001 + 0.217001i −0.807233 0.590232i \(-0.799036\pi\)
0.590232 + 0.807233i \(0.299036\pi\)
\(588\) −2.63719 5.91018i −0.108756 0.243732i
\(589\) 2.54971 2.54971i 0.105059 0.105059i
\(590\) 0 0
\(591\) −49.6057 −2.04050
\(592\) −6.65965 + 0.359964i −0.273710 + 0.0147944i
\(593\) 3.96571i 0.162852i 0.996679 + 0.0814260i \(0.0259474\pi\)
−0.996679 + 0.0814260i \(0.974053\pi\)
\(594\) −3.96418 0.733038i −0.162652 0.0300769i
\(595\) 0 0
\(596\) 1.84835 + 4.14233i 0.0757115 + 0.169676i
\(597\) −22.7132 + 22.7132i −0.929589 + 0.929589i
\(598\) −16.0769 23.3716i −0.657435 0.955734i
\(599\) 8.31600i 0.339783i −0.985463 0.169891i \(-0.945658\pi\)
0.985463 0.169891i \(-0.0543417\pi\)
\(600\) 0 0
\(601\) 46.0550i 1.87862i −0.343068 0.939310i \(-0.611466\pi\)
0.343068 0.939310i \(-0.388534\pi\)
\(602\) −14.4502 + 9.94004i −0.588944 + 0.405126i
\(603\) 20.9009 20.9009i 0.851149 0.851149i
\(604\) −1.81486 + 4.73948i −0.0738456 + 0.192847i
\(605\) 0 0
\(606\) 3.01374 16.2980i 0.122425 0.662060i
\(607\) 5.05760i 0.205282i 0.994718 + 0.102641i \(0.0327292\pi\)
−0.994718 + 0.102641i \(0.967271\pi\)
\(608\) 9.80549 + 1.27048i 0.397665 + 0.0515249i
\(609\) 40.8940 1.65711
\(610\) 0 0
\(611\) 36.0713 36.0713i 1.45929 1.45929i
\(612\) 34.5652 + 13.2359i 1.39722 + 0.535028i
\(613\) −31.2000 + 31.2000i −1.26016 + 1.26016i −0.309141 + 0.951016i \(0.600042\pi\)
−0.951016 + 0.309141i \(0.899958\pi\)
\(614\) 20.8911 + 30.3701i 0.843096 + 1.22564i
\(615\) 0 0
\(616\) 5.01041 + 20.7574i 0.201875 + 0.836339i
\(617\) 30.7412 1.23759 0.618796 0.785551i \(-0.287621\pi\)
0.618796 + 0.785551i \(0.287621\pi\)
\(618\) 0.283269 + 0.411798i 0.0113948 + 0.0165649i
\(619\) 16.8766 + 16.8766i 0.678329 + 0.678329i 0.959622 0.281293i \(-0.0907632\pi\)
−0.281293 + 0.959622i \(0.590763\pi\)
\(620\) 0 0
\(621\) −3.55813 + 3.55813i −0.142783 + 0.142783i
\(622\) −1.82309 + 9.85908i −0.0730994 + 0.395313i
\(623\) 10.8408i 0.434328i
\(624\) −27.3804 + 30.5095i −1.09609 + 1.22136i
\(625\) 0 0
\(626\) −30.6603 5.66956i −1.22543 0.226601i
\(627\) −7.58574 7.58574i −0.302945 0.302945i
\(628\) −11.8026 26.4506i −0.470974 1.05550i
\(629\) 8.60515 + 8.60515i 0.343110 + 0.343110i
\(630\) 0 0
\(631\) 30.7318i 1.22342i 0.791084 + 0.611708i \(0.209517\pi\)
−0.791084 + 0.611708i \(0.790483\pi\)
\(632\) 0.274855 + 0.167967i 0.0109331 + 0.00668136i
\(633\) 8.15539 0.324147
\(634\) 7.02389 + 10.2109i 0.278954 + 0.405525i
\(635\) 0 0
\(636\) 16.9689 + 6.49779i 0.672860 + 0.257654i
\(637\) −4.23628 4.23628i −0.167848 0.167848i
\(638\) −21.7878 4.02890i −0.862588 0.159506i
\(639\) 8.26430 0.326931
\(640\) 0 0
\(641\) 22.1658 0.875496 0.437748 0.899098i \(-0.355776\pi\)
0.437748 + 0.899098i \(0.355776\pi\)
\(642\) 12.7274 + 2.35349i 0.502310 + 0.0928848i
\(643\) 0.975773 + 0.975773i 0.0384807 + 0.0384807i 0.726085 0.687605i \(-0.241338\pi\)
−0.687605 + 0.726085i \(0.741338\pi\)
\(644\) 24.8909 + 9.53133i 0.980839 + 0.375587i
\(645\) 0 0
\(646\) −10.2249 14.8643i −0.402294 0.584828i
\(647\) −23.2610 −0.914484 −0.457242 0.889342i \(-0.651163\pi\)
−0.457242 + 0.889342i \(0.651163\pi\)
\(648\) 24.5632 + 15.0108i 0.964932 + 0.589681i
\(649\) 11.4848i 0.450819i
\(650\) 0 0
\(651\) −9.93263 9.93263i −0.389290 0.389290i
\(652\) 9.25038 + 20.7310i 0.362273 + 0.811887i
\(653\) −23.9372 23.9372i −0.936735 0.936735i 0.0613792 0.998115i \(-0.480450\pi\)
−0.998115 + 0.0613792i \(0.980450\pi\)
\(654\) −31.9631 5.91046i −1.24985 0.231117i
\(655\) 0 0
\(656\) −12.3292 + 13.7382i −0.481376 + 0.536387i
\(657\) 32.1704i 1.25509i
\(658\) −8.71535 + 47.1316i −0.339760 + 1.83738i
\(659\) 14.1064 14.1064i 0.549508 0.549508i −0.376790 0.926299i \(-0.622972\pi\)
0.926299 + 0.376790i \(0.122972\pi\)
\(660\) 0 0
\(661\) −3.04121 3.04121i −0.118289 0.118289i 0.645484 0.763774i \(-0.276656\pi\)
−0.763774 + 0.645484i \(0.776656\pi\)
\(662\) −21.1026 30.6775i −0.820175 1.19232i
\(663\) 74.8014 2.90505
\(664\) 9.16800 + 37.9817i 0.355787 + 1.47398i
\(665\) 0 0
\(666\) −3.38844 4.92588i −0.131299 0.190874i
\(667\) −19.5561 + 19.5561i −0.757215 + 0.757215i
\(668\) −12.7495 4.88207i −0.493291 0.188893i
\(669\) 23.2052 23.2052i 0.897166 0.897166i
\(670\) 0 0
\(671\) 8.66835 0.334638
\(672\) 4.94928 38.1981i 0.190923 1.47353i
\(673\) 25.3628i 0.977662i −0.872378 0.488831i \(-0.837423\pi\)
0.872378 0.488831i \(-0.162577\pi\)
\(674\) 3.66637 19.8273i 0.141223 0.763719i
\(675\) 0 0
\(676\) −4.27271 + 11.1581i −0.164335 + 0.429159i
\(677\) 9.36526 9.36526i 0.359936 0.359936i −0.503853 0.863789i \(-0.668085\pi\)
0.863789 + 0.503853i \(0.168085\pi\)
\(678\) −9.58126 + 6.59080i −0.367966 + 0.253118i
\(679\) 40.4737i 1.55324i
\(680\) 0 0
\(681\) 14.7695i 0.565967i
\(682\) 4.31342 + 6.27056i 0.165169 + 0.240112i
\(683\) −4.20530 + 4.20530i −0.160911 + 0.160911i −0.782970 0.622059i \(-0.786296\pi\)
0.622059 + 0.782970i \(0.286296\pi\)
\(684\) 3.61180 + 8.09438i 0.138101 + 0.309496i
\(685\) 0 0
\(686\) −22.6365 4.18584i −0.864267 0.159816i
\(687\) 17.8035i 0.679245i
\(688\) −17.1163 + 0.925163i −0.652554 + 0.0352715i
\(689\) 16.8204 0.640804
\(690\) 0 0
\(691\) 5.79295 5.79295i 0.220374 0.220374i −0.588282 0.808656i \(-0.700195\pi\)
0.808656 + 0.588282i \(0.200195\pi\)
\(692\) 5.86530 + 13.1447i 0.222965 + 0.499686i
\(693\) −13.5358 + 13.5358i −0.514181 + 0.514181i
\(694\) −38.7881 + 26.6817i −1.47238 + 1.01282i
\(695\) 0 0
\(696\) 34.1032 + 20.8408i 1.29268 + 0.789969i
\(697\) 33.6826 1.27582
\(698\) 2.58179 1.77598i 0.0977223 0.0672217i
\(699\) −19.8592 19.8592i −0.751142 0.751142i
\(700\) 0 0
\(701\) −0.258991 + 0.258991i −0.00978196 + 0.00978196i −0.711981 0.702199i \(-0.752202\pi\)
0.702199 + 0.711981i \(0.252202\pi\)
\(702\) 6.61929 + 1.22401i 0.249829 + 0.0461972i
\(703\) 2.91430i 0.109915i
\(704\) −6.40023 + 19.8639i −0.241218 + 0.748649i
\(705\) 0 0
\(706\) −2.42924 + 13.1370i −0.0914257 + 0.494419i
\(707\) 10.1936 + 10.1936i 0.383368 + 0.383368i
\(708\) −7.40821 + 19.3464i −0.278418 + 0.727083i
\(709\) 0.751674 + 0.751674i 0.0282297 + 0.0282297i 0.721081 0.692851i \(-0.243646\pi\)
−0.692851 + 0.721081i \(0.743646\pi\)
\(710\) 0 0
\(711\) 0.288761i 0.0108294i
\(712\) −5.52481 + 9.04060i −0.207051 + 0.338811i
\(713\) 9.49986 0.355773
\(714\) −57.9052 + 39.8321i −2.16705 + 1.49068i
\(715\) 0 0
\(716\) −4.23081 + 1.88783i −0.158113 + 0.0705516i
\(717\) −27.9029 27.9029i −1.04205 1.04205i
\(718\) −4.64034 + 25.0944i −0.173176 + 0.936515i
\(719\) −39.6557 −1.47891 −0.739455 0.673206i \(-0.764917\pi\)
−0.739455 + 0.673206i \(0.764917\pi\)
\(720\) 0 0
\(721\) −0.434730 −0.0161902
\(722\) −4.10025 + 22.1736i −0.152595 + 0.825218i
\(723\) 36.6495 + 36.6495i 1.36301 + 1.36301i
\(724\) −19.3347 43.3308i −0.718567 1.61037i
\(725\) 0 0
\(726\) −11.4993 + 7.91016i −0.426778 + 0.293574i
\(727\) 22.2952 0.826881 0.413441 0.910531i \(-0.364327\pi\)
0.413441 + 0.910531i \(0.364327\pi\)
\(728\) −8.36625 34.6602i −0.310074 1.28459i
\(729\) 18.0930i 0.670112i
\(730\) 0 0
\(731\) 22.1166 + 22.1166i 0.818011 + 0.818011i
\(732\) −14.6020 5.59145i −0.539705 0.206666i
\(733\) 28.2309 + 28.2309i 1.04273 + 1.04273i 0.999045 + 0.0436851i \(0.0139098\pi\)
0.0436851 + 0.999045i \(0.486090\pi\)
\(734\) 7.49154 40.5134i 0.276518 1.49538i
\(735\) 0 0
\(736\) 15.9001 + 20.6337i 0.586086 + 0.760570i
\(737\) 30.4109i 1.12020i
\(738\) −16.2721 3.00896i −0.598985 0.110761i
\(739\) 5.45140 5.45140i 0.200533 0.200533i −0.599695 0.800228i \(-0.704712\pi\)
0.800228 + 0.599695i \(0.204712\pi\)
\(740\) 0 0
\(741\) 12.6665 + 12.6665i 0.465314 + 0.465314i
\(742\) −13.0210 + 8.95691i −0.478014 + 0.328819i
\(743\) −52.5667 −1.92849 −0.964243 0.265020i \(-0.914621\pi\)
−0.964243 + 0.265020i \(0.914621\pi\)
\(744\) −3.22126 13.3452i −0.118097 0.489259i
\(745\) 0 0
\(746\) −5.52994 + 3.80396i −0.202466 + 0.139273i
\(747\) −24.7676 + 24.7676i −0.906200 + 0.906200i
\(748\) 34.7755 15.5172i 1.27152 0.567365i
\(749\) −7.96035 + 7.96035i −0.290865 + 0.290865i
\(750\) 0 0
\(751\) 31.0189 1.13190 0.565948 0.824441i \(-0.308510\pi\)
0.565948 + 0.824441i \(0.308510\pi\)
\(752\) −31.2878 + 34.8634i −1.14095 + 1.27134i
\(753\) 22.0910i 0.805040i
\(754\) 36.3807 + 6.72735i 1.32491 + 0.244996i
\(755\) 0 0
\(756\) −5.77590 + 2.57727i −0.210068 + 0.0937345i
\(757\) −2.47389 + 2.47389i −0.0899152 + 0.0899152i −0.750634 0.660719i \(-0.770252\pi\)
0.660719 + 0.750634i \(0.270252\pi\)
\(758\) −13.2059 19.1979i −0.479662 0.697300i
\(759\) 28.2634i 1.02590i
\(760\) 0 0
\(761\) 2.48375i 0.0900358i −0.998986 0.0450179i \(-0.985666\pi\)
0.998986 0.0450179i \(-0.0143345\pi\)
\(762\) −17.1433 + 11.7926i −0.621037 + 0.427202i
\(763\) 19.9913 19.9913i 0.723733 0.723733i
\(764\) 10.9415 + 4.18978i 0.395851 + 0.151581i
\(765\) 0 0
\(766\) 5.60701 30.3221i 0.202590 1.09558i
\(767\) 19.1771i 0.692444i
\(768\) 23.5944 29.3327i 0.851388 1.05845i
\(769\) −43.4690 −1.56753 −0.783767 0.621055i \(-0.786704\pi\)
−0.783767 + 0.621055i \(0.786704\pi\)
\(770\) 0 0
\(771\) 12.0752 12.0752i 0.434879 0.434879i
\(772\) 0.0172475 0.0450416i 0.000620752 0.00162108i
\(773\) −0.297026 + 0.297026i −0.0106833 + 0.0106833i −0.712428 0.701745i \(-0.752405\pi\)
0.701745 + 0.712428i \(0.252405\pi\)
\(774\) −8.70881 12.6603i −0.313032 0.455064i
\(775\) 0 0
\(776\) −20.6267 + 33.7527i −0.740454 + 1.21165i
\(777\) 11.3529 0.407283
\(778\) 13.4771 + 19.5920i 0.483176 + 0.702409i
\(779\) 5.70363 + 5.70363i 0.204354 + 0.204354i
\(780\) 0 0
\(781\) 6.01231 6.01231i 0.215137 0.215137i
\(782\) 8.64283 46.7394i 0.309067 1.67140i
\(783\) 6.56286i 0.234537i
\(784\) 4.09442 + 3.67450i 0.146229 + 0.131232i
\(785\) 0 0
\(786\) 23.8985 + 4.41920i 0.852433 + 0.157628i
\(787\) 23.6931 + 23.6931i 0.844567 + 0.844567i 0.989449 0.144882i \(-0.0462802\pi\)
−0.144882 + 0.989449i \(0.546280\pi\)
\(788\) 38.5081 17.1827i 1.37179 0.612110i
\(789\) −15.4293 15.4293i −0.549299 0.549299i
\(790\) 0 0
\(791\) 10.1148i 0.359641i
\(792\) −18.1863 + 4.38979i −0.646221 + 0.155984i
\(793\) −14.4742 −0.513993
\(794\) 10.4723 + 15.2240i 0.371650 + 0.540279i
\(795\) 0 0
\(796\) 9.76435 25.4994i 0.346088 0.903804i
\(797\) −38.2292 38.2292i −1.35415 1.35415i −0.880963 0.473186i \(-0.843104\pi\)
−0.473186 0.880963i \(-0.656896\pi\)
\(798\) −16.5503 3.06040i −0.585874 0.108337i
\(799\) 85.4762 3.02393
\(800\) 0 0
\(801\) −9.49801 −0.335596
\(802\) −20.1287 3.72210i −0.710768 0.131432i
\(803\) −23.4041 23.4041i −0.825913 0.825913i
\(804\) −19.6163 + 51.2277i −0.691814 + 1.80666i
\(805\) 0 0
\(806\) −7.20243 10.4704i −0.253695 0.368804i
\(807\) −44.6509 −1.57179
\(808\) 3.30588 + 13.6958i 0.116300 + 0.481816i
\(809\) 53.8310i 1.89260i −0.323296 0.946298i \(-0.604791\pi\)
0.323296 0.946298i \(-0.395209\pi\)
\(810\) 0 0
\(811\) 27.0549 + 27.0549i 0.950025 + 0.950025i 0.998809 0.0487847i \(-0.0155348\pi\)
−0.0487847 + 0.998809i \(0.515535\pi\)
\(812\) −31.7454 + 14.1651i −1.11404 + 0.497098i
\(813\) −37.5986 37.5986i −1.31864 1.31864i
\(814\) −6.04870 1.11850i −0.212007 0.0392033i
\(815\) 0 0
\(816\) −68.5892 + 3.70735i −2.40110 + 0.129783i
\(817\) 7.49020i 0.262049i
\(818\) −2.45351 + 13.2683i −0.0857851 + 0.463916i
\(819\) 22.6017 22.6017i 0.789766 0.789766i
\(820\) 0 0
\(821\) −24.2170 24.2170i −0.845180 0.845180i 0.144347 0.989527i \(-0.453892\pi\)
−0.989527 + 0.144347i \(0.953892\pi\)
\(822\) 35.7175 + 51.9238i 1.24579 + 1.81105i
\(823\) 41.3013 1.43967 0.719836 0.694144i \(-0.244217\pi\)
0.719836 + 0.694144i \(0.244217\pi\)
\(824\) −0.362539 0.221552i −0.0126296 0.00771812i
\(825\) 0 0
\(826\) −10.2119 14.8453i −0.355317 0.516535i
\(827\) 15.7264 15.7264i 0.546862 0.546862i −0.378670 0.925532i \(-0.623618\pi\)
0.925532 + 0.378670i \(0.123618\pi\)
\(828\) −8.35072 + 21.8078i −0.290208 + 0.757873i
\(829\) 20.7323 20.7323i 0.720061 0.720061i −0.248556 0.968618i \(-0.579956\pi\)
0.968618 + 0.248556i \(0.0799560\pi\)
\(830\) 0 0
\(831\) −53.9075 −1.87003
\(832\) 10.6869 33.1682i 0.370503 1.14990i
\(833\) 10.0385i 0.347813i
\(834\) −2.38767 + 12.9123i −0.0826784 + 0.447115i
\(835\) 0 0
\(836\) 8.51629 + 3.26109i 0.294542 + 0.112787i
\(837\) −1.59404 + 1.59404i −0.0550980 + 0.0550980i
\(838\) −1.38030 + 0.949485i −0.0476816 + 0.0327994i
\(839\) 43.6919i 1.50841i −0.656638 0.754206i \(-0.728022\pi\)
0.656638 0.754206i \(-0.271978\pi\)
\(840\) 0 0
\(841\) 7.07060i 0.243814i
\(842\) 20.3664 + 29.6073i 0.701872 + 1.02033i
\(843\) −14.7200 + 14.7200i −0.506983 + 0.506983i
\(844\) −6.33090 + 2.82492i −0.217919 + 0.0972377i
\(845\) 0 0
\(846\) −41.2936 7.63582i −1.41970 0.262525i
\(847\) 12.1396i 0.417122i
\(848\) −15.4234 + 0.833659i −0.529643 + 0.0286280i
\(849\) −67.5654 −2.31884
\(850\) 0 0
\(851\) −5.42913 + 5.42913i −0.186108 + 0.186108i
\(852\) −14.0060 + 6.24965i −0.479839 + 0.214109i
\(853\) 35.0610 35.0610i 1.20046 1.20046i 0.226439 0.974025i \(-0.427292\pi\)
0.974025 0.226439i \(-0.0727084\pi\)
\(854\) 11.2047 7.70756i 0.383418 0.263747i
\(855\) 0 0
\(856\) −10.6953 + 2.58162i −0.365558 + 0.0882381i
\(857\) −45.3397 −1.54878 −0.774388 0.632711i \(-0.781942\pi\)
−0.774388 + 0.632711i \(0.781942\pi\)
\(858\) −31.1509 + 21.4282i −1.06347 + 0.731547i
\(859\) −32.1229 32.1229i −1.09602 1.09602i −0.994871 0.101147i \(-0.967749\pi\)
−0.101147 0.994871i \(-0.532251\pi\)
\(860\) 0 0
\(861\) 22.2190 22.2190i 0.757221 0.757221i
\(862\) −5.36054 0.991245i −0.182581 0.0337619i
\(863\) 36.9142i 1.25657i 0.777981 + 0.628287i \(0.216244\pi\)
−0.777981 + 0.628287i \(0.783756\pi\)
\(864\) −6.13022 0.794285i −0.208554 0.0270221i
\(865\) 0 0
\(866\) 6.57406 35.5517i 0.223396 1.20810i
\(867\) 60.3441 + 60.3441i 2.04939 + 2.04939i
\(868\) 11.1511 + 4.27002i 0.378492 + 0.144934i
\(869\) 0.210075 + 0.210075i 0.00712630 + 0.00712630i
\(870\) 0 0
\(871\) 50.7793i 1.72059i
\(872\) 26.8597 6.48338i 0.909585 0.219555i
\(873\) −35.4604 −1.20015
\(874\) 9.37813 6.45107i 0.317220 0.218211i
\(875\) 0 0
\(876\) 24.3280 + 54.5213i 0.821967 + 1.84210i
\(877\) 15.7178 + 15.7178i 0.530753 + 0.530753i 0.920796 0.390044i \(-0.127540\pi\)
−0.390044 + 0.920796i \(0.627540\pi\)
\(878\) −7.74821 + 41.9014i −0.261490 + 1.41410i
\(879\) −23.8548 −0.804603
\(880\) 0 0
\(881\) 1.16748 0.0393335 0.0196667 0.999807i \(-0.493739\pi\)
0.0196667 + 0.999807i \(0.493739\pi\)
\(882\) −0.896765 + 4.84960i −0.0301956 + 0.163294i
\(883\) 32.2410 + 32.2410i 1.08500 + 1.08500i 0.996035 + 0.0889621i \(0.0283550\pi\)
0.0889621 + 0.996035i \(0.471645\pi\)
\(884\) −58.0672 + 25.9102i −1.95301 + 0.871455i
\(885\) 0 0
\(886\) −33.2235 + 22.8539i −1.11616 + 0.767792i
\(887\) −42.7282 −1.43467 −0.717336 0.696728i \(-0.754639\pi\)
−0.717336 + 0.696728i \(0.754639\pi\)
\(888\) 9.46766 + 5.78579i 0.317714 + 0.194159i
\(889\) 18.0980i 0.606987i
\(890\) 0 0
\(891\) 18.7739 + 18.7739i 0.628949 + 0.628949i
\(892\) −9.97588 + 26.0518i −0.334017 + 0.872280i
\(893\) 14.4741 + 14.4741i 0.484356 + 0.484356i
\(894\) 1.37218 7.42058i 0.0458925 0.248181i
\(895\) 0 0
\(896\) 9.38928 + 31.3670i 0.313674 + 1.04790i
\(897\) 47.1935i 1.57574i
\(898\) 50.8732 + 9.40724i 1.69766 + 0.313924i
\(899\) −8.76109 + 8.76109i −0.292199 + 0.292199i
\(900\) 0 0
\(901\) 19.9291 + 19.9291i 0.663935 + 0.663935i
\(902\) −14.0270 + 9.64899i −0.467050 + 0.321276i
\(903\) 29.1788 0.971008
\(904\) 5.15482 8.43516i 0.171447 0.280549i
\(905\) 0 0
\(906\) 6.95632 4.78514i 0.231108 0.158976i
\(907\) 1.23335 1.23335i 0.0409528 0.0409528i −0.686334 0.727287i \(-0.740781\pi\)
0.727287 + 0.686334i \(0.240781\pi\)
\(908\) −5.11594 11.4653i −0.169779 0.380489i
\(909\) −8.93093 + 8.93093i −0.296220 + 0.296220i
\(910\) 0 0
\(911\) 23.9284 0.792785 0.396392 0.918081i \(-0.370262\pi\)
0.396392 + 0.918081i \(0.370262\pi\)
\(912\) −12.2423 10.9867i −0.405383 0.363807i
\(913\) 36.0371i 1.19265i
\(914\) −23.2710 4.30316i −0.769735 0.142336i
\(915\) 0 0
\(916\) 6.16689 + 13.8206i 0.203760 + 0.456644i
\(917\) −14.9473 + 14.9473i −0.493605 + 0.493605i
\(918\) 6.39245 + 9.29291i 0.210982 + 0.306712i
\(919\) 45.3844i 1.49709i 0.663082 + 0.748546i \(0.269248\pi\)
−0.663082 + 0.748546i \(0.730752\pi\)
\(920\) 0 0
\(921\) 61.3253i 2.02074i
\(922\) 19.5060 13.4179i 0.642395 0.441893i
\(923\) −10.0392 + 10.0392i −0.330444 + 0.330444i
\(924\) 12.7039 33.1760i 0.417927 1.09141i
\(925\) 0 0
\(926\) 8.29851 44.8774i 0.272706 1.47476i
\(927\) 0.380882i 0.0125098i
\(928\) −33.6927 4.36553i −1.10602 0.143305i
\(929\) 6.51036 0.213598 0.106799 0.994281i \(-0.465940\pi\)
0.106799 + 0.994281i \(0.465940\pi\)
\(930\) 0 0
\(931\) 1.69986 1.69986i 0.0557107 0.0557107i
\(932\) 22.2953 + 8.53741i 0.730307 + 0.279652i
\(933\) 11.7947 11.7947i 0.386142 0.386142i
\(934\) −1.38926 2.01961i −0.0454579 0.0660837i
\(935\) 0 0
\(936\) 30.3670 7.32996i 0.992575 0.239587i
\(937\) −40.2986 −1.31650 −0.658248 0.752801i \(-0.728702\pi\)
−0.658248 + 0.752801i \(0.728702\pi\)
\(938\) −27.0402 39.3092i −0.882894 1.28349i
\(939\) 36.6799 + 36.6799i 1.19700 + 1.19700i
\(940\) 0 0
\(941\) 1.10649 1.10649i 0.0360705 0.0360705i −0.688841 0.724912i \(-0.741880\pi\)
0.724912 + 0.688841i \(0.241880\pi\)
\(942\) −8.76198 + 47.3837i −0.285481 + 1.54385i
\(943\) 21.2509i 0.692025i
\(944\) −0.950465 17.5844i −0.0309350 0.572325i
\(945\) 0 0
\(946\) −15.5461 2.87471i −0.505447 0.0934649i
\(947\) 8.83833 + 8.83833i 0.287207 + 0.287207i 0.835975 0.548768i \(-0.184903\pi\)
−0.548768 + 0.835975i \(0.684903\pi\)
\(948\) −0.218368 0.489382i −0.00709225 0.0158944i
\(949\) 39.0796 + 39.0796i 1.26858 + 1.26858i
\(950\) 0 0
\(951\) 20.6185i 0.668600i
\(952\) 31.1536 50.9786i 1.00969 1.65223i
\(953\) −14.9610 −0.484636 −0.242318 0.970197i \(-0.577908\pi\)
−0.242318 + 0.970197i \(0.577908\pi\)
\(954\) −7.84746 11.4081i −0.254071 0.369351i
\(955\) 0 0
\(956\) 31.3258 + 11.9954i 1.01315 + 0.387959i
\(957\) 26.0654 + 26.0654i 0.842576 + 0.842576i
\(958\) −40.1059 7.41620i −1.29576 0.239606i
\(959\) −54.8152 −1.77008
\(960\) 0 0
\(961\) −26.7441 −0.862712
\(962\) 10.1000 + 1.86764i 0.325636 + 0.0602150i
\(963\) −6.97433 6.97433i −0.224745 0.224745i
\(964\) −41.1453 15.7555i −1.32520 0.507452i
\(965\) 0 0
\(966\) −25.1307 36.5333i −0.808568 1.17544i
\(967\) −3.95287 −0.127116 −0.0635578 0.997978i \(-0.520245\pi\)
−0.0635578 + 0.997978i \(0.520245\pi\)
\(968\) 6.18672 10.1237i 0.198849 0.325389i
\(969\) 30.0150i 0.964221i
\(970\) 0 0
\(971\) −29.0538 29.0538i −0.932380 0.932380i 0.0654740 0.997854i \(-0.479144\pi\)
−0.997854 + 0.0654740i \(0.979144\pi\)
\(972\) −16.8434 37.7475i −0.540251 1.21075i
\(973\) −8.07597 8.07597i −0.258904 0.258904i
\(974\) 44.7323 + 8.27169i 1.43332 + 0.265042i
\(975\) 0 0
\(976\) 13.2721 0.717377i 0.424830 0.0229627i
\(977\) 25.8962i 0.828494i −0.910164 0.414247i \(-0.864045\pi\)
0.910164 0.414247i \(-0.135955\pi\)
\(978\) 6.86729 37.1375i 0.219592 1.18753i
\(979\) −6.90984 + 6.90984i −0.220839 + 0.220839i
\(980\) 0 0
\(981\) 17.5151 + 17.5151i 0.559213 + 0.559213i
\(982\) −6.16172 8.95749i −0.196628 0.285845i
\(983\) −22.0151 −0.702173 −0.351087 0.936343i \(-0.614188\pi\)
−0.351087 + 0.936343i \(0.614188\pi\)
\(984\) 29.8528 7.20585i 0.951673 0.229714i
\(985\) 0 0
\(986\) 35.1340 + 51.0754i 1.11889 + 1.62657i
\(987\) 56.3850 56.3850i 1.79476 1.79476i
\(988\) −14.2203 5.44529i −0.452407 0.173238i
\(989\) −13.9537 + 13.9537i −0.443702 + 0.443702i
\(990\) 0 0
\(991\) −54.3207 −1.72556 −0.862778 0.505583i \(-0.831277\pi\)
−0.862778 + 0.505583i \(0.831277\pi\)
\(992\) 7.12321 + 9.24388i 0.226162 + 0.293493i
\(993\) 61.9461i 1.96580i
\(994\) 2.42562 13.1174i 0.0769359 0.416060i
\(995\) 0 0
\(996\) 23.2454 60.7051i 0.736560 1.92351i
\(997\) 8.14405 8.14405i 0.257925 0.257925i −0.566285 0.824210i \(-0.691620\pi\)
0.824210 + 0.566285i \(0.191620\pi\)
\(998\) 28.2236 19.4146i 0.893402 0.614557i
\(999\) 1.82197i 0.0576446i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.q.h.149.7 16
4.3 odd 2 1600.2.q.g.49.7 16
5.2 odd 4 80.2.l.a.21.4 16
5.3 odd 4 400.2.l.h.101.5 16
5.4 even 2 400.2.q.g.149.2 16
15.2 even 4 720.2.t.c.181.5 16
16.3 odd 4 1600.2.q.h.849.2 16
16.13 even 4 400.2.q.g.349.2 16
20.3 even 4 1600.2.l.i.1201.2 16
20.7 even 4 320.2.l.a.241.7 16
20.19 odd 2 1600.2.q.h.49.2 16
40.27 even 4 640.2.l.a.481.2 16
40.37 odd 4 640.2.l.b.481.7 16
60.47 odd 4 2880.2.t.c.2161.6 16
80.3 even 4 1600.2.l.i.401.2 16
80.13 odd 4 400.2.l.h.301.5 16
80.19 odd 4 1600.2.q.g.849.7 16
80.27 even 4 640.2.l.a.161.2 16
80.29 even 4 inner 400.2.q.h.349.7 16
80.37 odd 4 640.2.l.b.161.7 16
80.67 even 4 320.2.l.a.81.7 16
80.77 odd 4 80.2.l.a.61.4 yes 16
160.67 even 8 5120.2.a.t.1.8 8
160.77 odd 8 5120.2.a.s.1.8 8
160.147 even 8 5120.2.a.u.1.1 8
160.157 odd 8 5120.2.a.v.1.1 8
240.77 even 4 720.2.t.c.541.5 16
240.227 odd 4 2880.2.t.c.721.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.4 16 5.2 odd 4
80.2.l.a.61.4 yes 16 80.77 odd 4
320.2.l.a.81.7 16 80.67 even 4
320.2.l.a.241.7 16 20.7 even 4
400.2.l.h.101.5 16 5.3 odd 4
400.2.l.h.301.5 16 80.13 odd 4
400.2.q.g.149.2 16 5.4 even 2
400.2.q.g.349.2 16 16.13 even 4
400.2.q.h.149.7 16 1.1 even 1 trivial
400.2.q.h.349.7 16 80.29 even 4 inner
640.2.l.a.161.2 16 80.27 even 4
640.2.l.a.481.2 16 40.27 even 4
640.2.l.b.161.7 16 80.37 odd 4
640.2.l.b.481.7 16 40.37 odd 4
720.2.t.c.181.5 16 15.2 even 4
720.2.t.c.541.5 16 240.77 even 4
1600.2.l.i.401.2 16 80.3 even 4
1600.2.l.i.1201.2 16 20.3 even 4
1600.2.q.g.49.7 16 4.3 odd 2
1600.2.q.g.849.7 16 80.19 odd 4
1600.2.q.h.49.2 16 20.19 odd 2
1600.2.q.h.849.2 16 16.3 odd 4
2880.2.t.c.721.7 16 240.227 odd 4
2880.2.t.c.2161.6 16 60.47 odd 4
5120.2.a.s.1.8 8 160.77 odd 8
5120.2.a.t.1.8 8 160.67 even 8
5120.2.a.u.1.1 8 160.147 even 8
5120.2.a.v.1.1 8 160.157 odd 8