Properties

Label 400.3.bg.c.337.2
Level $400$
Weight $3$
Character 400.337
Analytic conductor $10.899$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(17,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 0, 13]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.bg (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 337.2
Character \(\chi\) \(=\) 400.337
Dual form 400.3.bg.c.273.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.210730 - 0.107372i) q^{3} +(-3.31432 + 3.74370i) q^{5} +(7.64532 + 7.64532i) q^{7} +(-5.25719 - 7.23590i) q^{9} +(-7.33868 - 5.33186i) q^{11} +(-2.12306 + 13.4044i) q^{13} +(1.10040 - 0.433046i) q^{15} +(0.704962 - 0.359196i) q^{17} +(-13.5696 - 4.40902i) q^{19} +(-0.790204 - 2.43200i) q^{21} +(-13.5597 + 2.14764i) q^{23} +(-3.03063 - 24.8156i) q^{25} +(0.663895 + 4.19167i) q^{27} +(-36.6306 + 11.9020i) q^{29} +(2.87530 - 8.84925i) q^{31} +(0.973987 + 1.91156i) q^{33} +(-53.9608 + 3.28280i) q^{35} +(9.13820 + 1.44735i) q^{37} +(1.88666 - 2.59677i) q^{39} +(-33.7351 + 24.5100i) q^{41} +(-49.4021 + 49.4021i) q^{43} +(44.5130 + 4.30070i) q^{45} +(-9.65116 + 18.9415i) q^{47} +67.9017i q^{49} -0.187125 q^{51} +(-56.8742 - 28.9788i) q^{53} +(44.2836 - 9.80236i) q^{55} +(2.38611 + 2.38611i) q^{57} +(45.6440 + 62.8235i) q^{59} +(11.4153 + 8.29369i) q^{61} +(15.1279 - 95.5136i) q^{63} +(-43.1458 - 52.3747i) q^{65} +(46.8978 - 23.8956i) q^{67} +(3.08803 + 1.00336i) q^{69} +(0.846117 + 2.60408i) q^{71} +(60.7976 - 9.62940i) q^{73} +(-2.02587 + 5.55481i) q^{75} +(-15.3427 - 96.8703i) q^{77} +(6.18905 - 2.01094i) q^{79} +(-24.5646 + 75.6022i) q^{81} +(-50.9593 - 100.013i) q^{83} +(-0.991742 + 3.82966i) q^{85} +(8.99712 + 1.42500i) q^{87} +(65.5853 - 90.2704i) q^{89} +(-118.713 + 86.2498i) q^{91} +(-1.55608 + 1.55608i) q^{93} +(61.4799 - 36.1875i) q^{95} +(-58.6053 + 115.019i) q^{97} +81.1325i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{3} - 10 q^{5} + 10 q^{7} - 10 q^{9} + 6 q^{11} - 10 q^{13} + 10 q^{15} + 60 q^{17} - 90 q^{19} - 6 q^{21} - 10 q^{23} - 40 q^{25} + 100 q^{27} - 110 q^{29} + 6 q^{31} - 190 q^{33} + 120 q^{35}+ \cdots + 270 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.210730 0.107372i −0.0702435 0.0357908i 0.418516 0.908209i \(-0.362550\pi\)
−0.488759 + 0.872419i \(0.662550\pi\)
\(4\) 0 0
\(5\) −3.31432 + 3.74370i −0.662863 + 0.748741i
\(6\) 0 0
\(7\) 7.64532 + 7.64532i 1.09219 + 1.09219i 0.995295 + 0.0968934i \(0.0308906\pi\)
0.0968934 + 0.995295i \(0.469109\pi\)
\(8\) 0 0
\(9\) −5.25719 7.23590i −0.584132 0.803989i
\(10\) 0 0
\(11\) −7.33868 5.33186i −0.667152 0.484715i 0.201918 0.979402i \(-0.435282\pi\)
−0.869071 + 0.494688i \(0.835282\pi\)
\(12\) 0 0
\(13\) −2.12306 + 13.4044i −0.163312 + 1.03111i 0.760799 + 0.648987i \(0.224807\pi\)
−0.924111 + 0.382124i \(0.875193\pi\)
\(14\) 0 0
\(15\) 1.10040 0.433046i 0.0733598 0.0288697i
\(16\) 0 0
\(17\) 0.704962 0.359196i 0.0414683 0.0211292i −0.433133 0.901330i \(-0.642592\pi\)
0.474602 + 0.880201i \(0.342592\pi\)
\(18\) 0 0
\(19\) −13.5696 4.40902i −0.714187 0.232054i −0.0706862 0.997499i \(-0.522519\pi\)
−0.643501 + 0.765445i \(0.722519\pi\)
\(20\) 0 0
\(21\) −0.790204 2.43200i −0.0376288 0.115809i
\(22\) 0 0
\(23\) −13.5597 + 2.14764i −0.589551 + 0.0933757i −0.444080 0.895987i \(-0.646470\pi\)
−0.145470 + 0.989363i \(0.546470\pi\)
\(24\) 0 0
\(25\) −3.03063 24.8156i −0.121225 0.992625i
\(26\) 0 0
\(27\) 0.663895 + 4.19167i 0.0245887 + 0.155247i
\(28\) 0 0
\(29\) −36.6306 + 11.9020i −1.26312 + 0.410413i −0.862606 0.505876i \(-0.831169\pi\)
−0.400517 + 0.916289i \(0.631169\pi\)
\(30\) 0 0
\(31\) 2.87530 8.84925i 0.0927515 0.285460i −0.893910 0.448247i \(-0.852048\pi\)
0.986661 + 0.162787i \(0.0520485\pi\)
\(32\) 0 0
\(33\) 0.973987 + 1.91156i 0.0295148 + 0.0579260i
\(34\) 0 0
\(35\) −53.9608 + 3.28280i −1.54174 + 0.0937944i
\(36\) 0 0
\(37\) 9.13820 + 1.44735i 0.246978 + 0.0391175i 0.278696 0.960379i \(-0.410098\pi\)
−0.0317178 + 0.999497i \(0.510098\pi\)
\(38\) 0 0
\(39\) 1.88666 2.59677i 0.0483759 0.0665838i
\(40\) 0 0
\(41\) −33.7351 + 24.5100i −0.822807 + 0.597805i −0.917515 0.397701i \(-0.869808\pi\)
0.0947079 + 0.995505i \(0.469808\pi\)
\(42\) 0 0
\(43\) −49.4021 + 49.4021i −1.14889 + 1.14889i −0.162113 + 0.986772i \(0.551831\pi\)
−0.986772 + 0.162113i \(0.948169\pi\)
\(44\) 0 0
\(45\) 44.5130 + 4.30070i 0.989179 + 0.0955711i
\(46\) 0 0
\(47\) −9.65116 + 18.9415i −0.205344 + 0.403010i −0.970594 0.240723i \(-0.922615\pi\)
0.765250 + 0.643733i \(0.222615\pi\)
\(48\) 0 0
\(49\) 67.9017i 1.38575i
\(50\) 0 0
\(51\) −0.187125 −0.00366911
\(52\) 0 0
\(53\) −56.8742 28.9788i −1.07310 0.546771i −0.174102 0.984728i \(-0.555702\pi\)
−0.898996 + 0.437957i \(0.855702\pi\)
\(54\) 0 0
\(55\) 44.2836 9.80236i 0.805156 0.178225i
\(56\) 0 0
\(57\) 2.38611 + 2.38611i 0.0418616 + 0.0418616i
\(58\) 0 0
\(59\) 45.6440 + 62.8235i 0.773627 + 1.06481i 0.995957 + 0.0898343i \(0.0286338\pi\)
−0.222330 + 0.974971i \(0.571366\pi\)
\(60\) 0 0
\(61\) 11.4153 + 8.29369i 0.187136 + 0.135962i 0.677409 0.735607i \(-0.263103\pi\)
−0.490273 + 0.871569i \(0.663103\pi\)
\(62\) 0 0
\(63\) 15.1279 95.5136i 0.240125 1.51609i
\(64\) 0 0
\(65\) −43.1458 52.3747i −0.663781 0.805764i
\(66\) 0 0
\(67\) 46.8978 23.8956i 0.699968 0.356651i −0.0675175 0.997718i \(-0.521508\pi\)
0.767485 + 0.641067i \(0.221508\pi\)
\(68\) 0 0
\(69\) 3.08803 + 1.00336i 0.0447541 + 0.0145415i
\(70\) 0 0
\(71\) 0.846117 + 2.60408i 0.0119171 + 0.0366772i 0.956838 0.290621i \(-0.0938619\pi\)
−0.944921 + 0.327298i \(0.893862\pi\)
\(72\) 0 0
\(73\) 60.7976 9.62940i 0.832844 0.131910i 0.274571 0.961567i \(-0.411464\pi\)
0.558273 + 0.829657i \(0.311464\pi\)
\(74\) 0 0
\(75\) −2.02587 + 5.55481i −0.0270116 + 0.0740642i
\(76\) 0 0
\(77\) −15.3427 96.8703i −0.199256 1.25806i
\(78\) 0 0
\(79\) 6.18905 2.01094i 0.0783423 0.0254550i −0.269584 0.962977i \(-0.586886\pi\)
0.347926 + 0.937522i \(0.386886\pi\)
\(80\) 0 0
\(81\) −24.5646 + 75.6022i −0.303267 + 0.933360i
\(82\) 0 0
\(83\) −50.9593 100.013i −0.613967 1.20498i −0.963413 0.268021i \(-0.913630\pi\)
0.349446 0.936957i \(-0.386370\pi\)
\(84\) 0 0
\(85\) −0.991742 + 3.82966i −0.0116676 + 0.0450548i
\(86\) 0 0
\(87\) 8.99712 + 1.42500i 0.103415 + 0.0163794i
\(88\) 0 0
\(89\) 65.5853 90.2704i 0.736914 1.01427i −0.261877 0.965101i \(-0.584341\pi\)
0.998790 0.0491732i \(-0.0156586\pi\)
\(90\) 0 0
\(91\) −118.713 + 86.2498i −1.30454 + 0.947800i
\(92\) 0 0
\(93\) −1.55608 + 1.55608i −0.0167320 + 0.0167320i
\(94\) 0 0
\(95\) 61.4799 36.1875i 0.647156 0.380921i
\(96\) 0 0
\(97\) −58.6053 + 115.019i −0.604178 + 1.18577i 0.363029 + 0.931778i \(0.381743\pi\)
−0.967207 + 0.253989i \(0.918257\pi\)
\(98\) 0 0
\(99\) 81.1325i 0.819521i
\(100\) 0 0
\(101\) −32.5145 −0.321926 −0.160963 0.986960i \(-0.551460\pi\)
−0.160963 + 0.986960i \(0.551460\pi\)
\(102\) 0 0
\(103\) 46.2893 + 23.5856i 0.449411 + 0.228986i 0.664022 0.747713i \(-0.268848\pi\)
−0.214611 + 0.976700i \(0.568848\pi\)
\(104\) 0 0
\(105\) 11.7237 + 5.10212i 0.111654 + 0.0485916i
\(106\) 0 0
\(107\) 34.7993 + 34.7993i 0.325227 + 0.325227i 0.850768 0.525541i \(-0.176137\pi\)
−0.525541 + 0.850768i \(0.676137\pi\)
\(108\) 0 0
\(109\) 76.0086 + 104.617i 0.697326 + 0.959787i 0.999978 + 0.00668585i \(0.00212819\pi\)
−0.302651 + 0.953101i \(0.597872\pi\)
\(110\) 0 0
\(111\) −1.77029 1.28619i −0.0159486 0.0115873i
\(112\) 0 0
\(113\) 11.9724 75.5905i 0.105950 0.668942i −0.876357 0.481663i \(-0.840033\pi\)
0.982307 0.187279i \(-0.0599670\pi\)
\(114\) 0 0
\(115\) 36.9009 57.8813i 0.320877 0.503316i
\(116\) 0 0
\(117\) 108.155 55.1075i 0.924398 0.471004i
\(118\) 0 0
\(119\) 8.13582 + 2.64349i 0.0683682 + 0.0222142i
\(120\) 0 0
\(121\) −11.9636 36.8202i −0.0988729 0.304299i
\(122\) 0 0
\(123\) 9.74071 1.54278i 0.0791928 0.0125429i
\(124\) 0 0
\(125\) 102.947 + 70.9011i 0.823574 + 0.567208i
\(126\) 0 0
\(127\) −9.58264 60.5024i −0.0754539 0.476397i −0.996262 0.0863815i \(-0.972470\pi\)
0.920808 0.390016i \(-0.127530\pi\)
\(128\) 0 0
\(129\) 15.7149 5.10609i 0.121821 0.0395821i
\(130\) 0 0
\(131\) 1.09573 3.37230i 0.00836432 0.0257427i −0.946787 0.321860i \(-0.895692\pi\)
0.955152 + 0.296117i \(0.0956919\pi\)
\(132\) 0 0
\(133\) −70.0353 137.452i −0.526581 1.03347i
\(134\) 0 0
\(135\) −17.8927 11.4071i −0.132539 0.0844969i
\(136\) 0 0
\(137\) 246.624 + 39.0615i 1.80018 + 0.285120i 0.964497 0.264094i \(-0.0850728\pi\)
0.835682 + 0.549214i \(0.185073\pi\)
\(138\) 0 0
\(139\) 81.3839 112.015i 0.585496 0.805866i −0.408789 0.912629i \(-0.634049\pi\)
0.994284 + 0.106763i \(0.0340487\pi\)
\(140\) 0 0
\(141\) 4.06758 2.95527i 0.0288481 0.0209594i
\(142\) 0 0
\(143\) 87.0511 87.0511i 0.608749 0.608749i
\(144\) 0 0
\(145\) 76.8477 176.581i 0.529984 1.21780i
\(146\) 0 0
\(147\) 7.29078 14.3090i 0.0495971 0.0973399i
\(148\) 0 0
\(149\) 103.072i 0.691761i 0.938279 + 0.345880i \(0.112420\pi\)
−0.938279 + 0.345880i \(0.887580\pi\)
\(150\) 0 0
\(151\) 47.0940 0.311880 0.155940 0.987766i \(-0.450159\pi\)
0.155940 + 0.987766i \(0.450159\pi\)
\(152\) 0 0
\(153\) −6.30522 3.21267i −0.0412106 0.0209978i
\(154\) 0 0
\(155\) 23.5993 + 40.0935i 0.152254 + 0.258667i
\(156\) 0 0
\(157\) 94.7590 + 94.7590i 0.603561 + 0.603561i 0.941256 0.337695i \(-0.109647\pi\)
−0.337695 + 0.941256i \(0.609647\pi\)
\(158\) 0 0
\(159\) 8.87359 + 12.2134i 0.0558087 + 0.0768141i
\(160\) 0 0
\(161\) −120.087 87.2486i −0.745884 0.541917i
\(162\) 0 0
\(163\) −41.3763 + 261.240i −0.253842 + 1.60270i 0.450459 + 0.892797i \(0.351260\pi\)
−0.704302 + 0.709901i \(0.748740\pi\)
\(164\) 0 0
\(165\) −10.3844 2.68919i −0.0629358 0.0162981i
\(166\) 0 0
\(167\) 239.969 122.270i 1.43694 0.732158i 0.449969 0.893044i \(-0.351435\pi\)
0.986973 + 0.160886i \(0.0514351\pi\)
\(168\) 0 0
\(169\) −14.4433 4.69292i −0.0854634 0.0277687i
\(170\) 0 0
\(171\) 39.4345 + 121.367i 0.230611 + 0.709749i
\(172\) 0 0
\(173\) −184.026 + 29.1468i −1.06373 + 0.168479i −0.663682 0.748014i \(-0.731007\pi\)
−0.400050 + 0.916493i \(0.631007\pi\)
\(174\) 0 0
\(175\) 166.553 212.893i 0.951733 1.21653i
\(176\) 0 0
\(177\) −2.87305 18.1397i −0.0162319 0.102484i
\(178\) 0 0
\(179\) −194.558 + 63.2157i −1.08692 + 0.353161i −0.797054 0.603908i \(-0.793609\pi\)
−0.289862 + 0.957068i \(0.593609\pi\)
\(180\) 0 0
\(181\) 8.53397 26.2649i 0.0471490 0.145110i −0.924710 0.380671i \(-0.875693\pi\)
0.971859 + 0.235562i \(0.0756929\pi\)
\(182\) 0 0
\(183\) −1.51503 2.97342i −0.00827887 0.0162482i
\(184\) 0 0
\(185\) −35.7053 + 29.4137i −0.193002 + 0.158993i
\(186\) 0 0
\(187\) −7.08867 1.12273i −0.0379073 0.00600393i
\(188\) 0 0
\(189\) −26.9710 + 37.1223i −0.142703 + 0.196414i
\(190\) 0 0
\(191\) −75.2465 + 54.6697i −0.393960 + 0.286229i −0.767076 0.641556i \(-0.778289\pi\)
0.373116 + 0.927785i \(0.378289\pi\)
\(192\) 0 0
\(193\) −172.622 + 172.622i −0.894415 + 0.894415i −0.994935 0.100520i \(-0.967949\pi\)
0.100520 + 0.994935i \(0.467949\pi\)
\(194\) 0 0
\(195\) 3.46853 + 15.6696i 0.0177873 + 0.0803569i
\(196\) 0 0
\(197\) −19.6944 + 38.6524i −0.0999715 + 0.196205i −0.935575 0.353128i \(-0.885118\pi\)
0.835604 + 0.549333i \(0.185118\pi\)
\(198\) 0 0
\(199\) 331.210i 1.66437i 0.554496 + 0.832186i \(0.312911\pi\)
−0.554496 + 0.832186i \(0.687089\pi\)
\(200\) 0 0
\(201\) −12.4485 −0.0619330
\(202\) 0 0
\(203\) −371.047 189.058i −1.82782 0.931319i
\(204\) 0 0
\(205\) 20.0507 207.528i 0.0978081 1.01233i
\(206\) 0 0
\(207\) 86.8259 + 86.8259i 0.419449 + 0.419449i
\(208\) 0 0
\(209\) 76.0744 + 104.707i 0.363992 + 0.500992i
\(210\) 0 0
\(211\) −203.359 147.749i −0.963785 0.700231i −0.00975810 0.999952i \(-0.503106\pi\)
−0.954027 + 0.299722i \(0.903106\pi\)
\(212\) 0 0
\(213\) 0.101304 0.639609i 0.000475606 0.00300286i
\(214\) 0 0
\(215\) −21.2126 348.681i −0.0986634 1.62177i
\(216\) 0 0
\(217\) 89.6379 45.6728i 0.413078 0.210474i
\(218\) 0 0
\(219\) −13.8458 4.49879i −0.0632230 0.0205424i
\(220\) 0 0
\(221\) 3.31815 + 10.2122i 0.0150143 + 0.0462091i
\(222\) 0 0
\(223\) 74.7975 11.8468i 0.335415 0.0531245i 0.0135446 0.999908i \(-0.495688\pi\)
0.321870 + 0.946784i \(0.395688\pi\)
\(224\) 0 0
\(225\) −163.631 + 152.390i −0.727248 + 0.677288i
\(226\) 0 0
\(227\) 53.6868 + 338.965i 0.236506 + 1.49324i 0.764850 + 0.644208i \(0.222813\pi\)
−0.528345 + 0.849030i \(0.677187\pi\)
\(228\) 0 0
\(229\) 22.2341 7.22430i 0.0970921 0.0315471i −0.260068 0.965590i \(-0.583745\pi\)
0.357160 + 0.934043i \(0.383745\pi\)
\(230\) 0 0
\(231\) −7.16802 + 22.0609i −0.0310304 + 0.0955017i
\(232\) 0 0
\(233\) −86.9078 170.566i −0.372995 0.732044i 0.625858 0.779937i \(-0.284749\pi\)
−0.998852 + 0.0478936i \(0.984749\pi\)
\(234\) 0 0
\(235\) −38.9242 98.9090i −0.165635 0.420890i
\(236\) 0 0
\(237\) −1.52014 0.240767i −0.00641409 0.00101589i
\(238\) 0 0
\(239\) −32.3070 + 44.4668i −0.135176 + 0.186054i −0.871239 0.490860i \(-0.836683\pi\)
0.736063 + 0.676913i \(0.236683\pi\)
\(240\) 0 0
\(241\) −27.3775 + 19.8909i −0.113600 + 0.0825349i −0.643135 0.765753i \(-0.722366\pi\)
0.529535 + 0.848288i \(0.322366\pi\)
\(242\) 0 0
\(243\) 40.3022 40.3022i 0.165853 0.165853i
\(244\) 0 0
\(245\) −254.204 225.048i −1.03757 0.918562i
\(246\) 0 0
\(247\) 87.9094 172.532i 0.355908 0.698510i
\(248\) 0 0
\(249\) 26.5474i 0.106616i
\(250\) 0 0
\(251\) −221.852 −0.883872 −0.441936 0.897046i \(-0.645708\pi\)
−0.441936 + 0.897046i \(0.645708\pi\)
\(252\) 0 0
\(253\) 110.961 + 56.5374i 0.438581 + 0.223468i
\(254\) 0 0
\(255\) 0.620190 0.700539i 0.00243212 0.00274721i
\(256\) 0 0
\(257\) −20.3380 20.3380i −0.0791363 0.0791363i 0.666431 0.745567i \(-0.267821\pi\)
−0.745567 + 0.666431i \(0.767821\pi\)
\(258\) 0 0
\(259\) 58.7990 + 80.9299i 0.227023 + 0.312471i
\(260\) 0 0
\(261\) 278.695 + 202.484i 1.06780 + 0.775801i
\(262\) 0 0
\(263\) 0.847808 5.35285i 0.00322361 0.0203530i −0.986024 0.166603i \(-0.946720\pi\)
0.989248 + 0.146250i \(0.0467203\pi\)
\(264\) 0 0
\(265\) 296.987 116.875i 1.12071 0.441038i
\(266\) 0 0
\(267\) −23.5134 + 11.9807i −0.0880651 + 0.0448714i
\(268\) 0 0
\(269\) −59.0391 19.1830i −0.219476 0.0713122i 0.197215 0.980360i \(-0.436810\pi\)
−0.416691 + 0.909048i \(0.636810\pi\)
\(270\) 0 0
\(271\) 99.9539 + 307.626i 0.368833 + 1.13515i 0.947546 + 0.319621i \(0.103556\pi\)
−0.578712 + 0.815532i \(0.696444\pi\)
\(272\) 0 0
\(273\) 34.2772 5.42898i 0.125558 0.0198864i
\(274\) 0 0
\(275\) −110.073 + 198.273i −0.400264 + 0.720992i
\(276\) 0 0
\(277\) 11.4134 + 72.0614i 0.0412036 + 0.260150i 0.999688 0.0249971i \(-0.00795767\pi\)
−0.958484 + 0.285147i \(0.907958\pi\)
\(278\) 0 0
\(279\) −79.1483 + 25.7168i −0.283686 + 0.0921750i
\(280\) 0 0
\(281\) −84.2374 + 259.256i −0.299777 + 0.922619i 0.681798 + 0.731541i \(0.261199\pi\)
−0.981575 + 0.191079i \(0.938801\pi\)
\(282\) 0 0
\(283\) −89.6096 175.869i −0.316642 0.621445i 0.676750 0.736212i \(-0.263388\pi\)
−0.993392 + 0.114768i \(0.963388\pi\)
\(284\) 0 0
\(285\) −16.8412 + 1.02457i −0.0590920 + 0.00359497i
\(286\) 0 0
\(287\) −445.302 70.5289i −1.55158 0.245745i
\(288\) 0 0
\(289\) −169.502 + 233.299i −0.586512 + 0.807265i
\(290\) 0 0
\(291\) 24.6998 17.9455i 0.0848792 0.0616683i
\(292\) 0 0
\(293\) 237.228 237.228i 0.809652 0.809652i −0.174929 0.984581i \(-0.555970\pi\)
0.984581 + 0.174929i \(0.0559695\pi\)
\(294\) 0 0
\(295\) −386.471 37.3396i −1.31007 0.126575i
\(296\) 0 0
\(297\) 17.4773 34.3011i 0.0588461 0.115492i
\(298\) 0 0
\(299\) 186.319i 0.623142i
\(300\) 0 0
\(301\) −755.389 −2.50960
\(302\) 0 0
\(303\) 6.85180 + 3.49117i 0.0226132 + 0.0115220i
\(304\) 0 0
\(305\) −68.8829 + 15.2475i −0.225846 + 0.0499919i
\(306\) 0 0
\(307\) 79.0993 + 79.0993i 0.257653 + 0.257653i 0.824099 0.566446i \(-0.191682\pi\)
−0.566446 + 0.824099i \(0.691682\pi\)
\(308\) 0 0
\(309\) −7.22212 9.94040i −0.0233726 0.0321696i
\(310\) 0 0
\(311\) 91.8901 + 66.7620i 0.295466 + 0.214669i 0.725635 0.688080i \(-0.241546\pi\)
−0.430169 + 0.902748i \(0.641546\pi\)
\(312\) 0 0
\(313\) −16.0776 + 101.510i −0.0513662 + 0.324314i 0.948603 + 0.316469i \(0.102497\pi\)
−0.999969 + 0.00784510i \(0.997503\pi\)
\(314\) 0 0
\(315\) 307.436 + 373.197i 0.975988 + 1.18475i
\(316\) 0 0
\(317\) −363.850 + 185.391i −1.14779 + 0.584829i −0.921172 0.389155i \(-0.872767\pi\)
−0.226618 + 0.973984i \(0.572767\pi\)
\(318\) 0 0
\(319\) 332.280 + 107.964i 1.04163 + 0.338446i
\(320\) 0 0
\(321\) −3.59678 11.0698i −0.0112049 0.0344852i
\(322\) 0 0
\(323\) −11.1497 + 1.76594i −0.0345193 + 0.00546731i
\(324\) 0 0
\(325\) 339.074 + 12.0611i 1.04330 + 0.0371111i
\(326\) 0 0
\(327\) −4.78435 30.2072i −0.0146310 0.0923767i
\(328\) 0 0
\(329\) −218.600 + 71.0273i −0.664437 + 0.215889i
\(330\) 0 0
\(331\) 37.2677 114.698i 0.112591 0.346520i −0.878846 0.477106i \(-0.841686\pi\)
0.991437 + 0.130586i \(0.0416858\pi\)
\(332\) 0 0
\(333\) −37.5684 73.7321i −0.112818 0.221418i
\(334\) 0 0
\(335\) −65.9760 + 254.769i −0.196943 + 0.760505i
\(336\) 0 0
\(337\) −38.2752 6.06219i −0.113576 0.0179887i 0.0993876 0.995049i \(-0.468312\pi\)
−0.212964 + 0.977060i \(0.568312\pi\)
\(338\) 0 0
\(339\) −10.6393 + 14.6437i −0.0313843 + 0.0431968i
\(340\) 0 0
\(341\) −68.2838 + 49.6111i −0.200246 + 0.145487i
\(342\) 0 0
\(343\) −144.510 + 144.510i −0.421311 + 0.421311i
\(344\) 0 0
\(345\) −13.9910 + 8.23522i −0.0405536 + 0.0238702i
\(346\) 0 0
\(347\) 106.794 209.594i 0.307762 0.604018i −0.684381 0.729125i \(-0.739927\pi\)
0.992143 + 0.125107i \(0.0399274\pi\)
\(348\) 0 0
\(349\) 16.9114i 0.0484568i −0.999706 0.0242284i \(-0.992287\pi\)
0.999706 0.0242284i \(-0.00771289\pi\)
\(350\) 0 0
\(351\) −57.5965 −0.164093
\(352\) 0 0
\(353\) −449.055 228.805i −1.27211 0.648173i −0.318132 0.948046i \(-0.603056\pi\)
−0.953979 + 0.299873i \(0.903056\pi\)
\(354\) 0 0
\(355\) −12.5532 5.46313i −0.0353611 0.0153891i
\(356\) 0 0
\(357\) −1.43063 1.43063i −0.00400736 0.00400736i
\(358\) 0 0
\(359\) −198.037 272.575i −0.551636 0.759262i 0.438597 0.898684i \(-0.355475\pi\)
−0.990233 + 0.139422i \(0.955475\pi\)
\(360\) 0 0
\(361\) −127.362 92.5336i −0.352802 0.256326i
\(362\) 0 0
\(363\) −1.43238 + 9.04370i −0.00394596 + 0.0249138i
\(364\) 0 0
\(365\) −165.453 + 259.523i −0.453296 + 0.711022i
\(366\) 0 0
\(367\) −416.928 + 212.435i −1.13604 + 0.578843i −0.917797 0.397050i \(-0.870034\pi\)
−0.218247 + 0.975894i \(0.570034\pi\)
\(368\) 0 0
\(369\) 354.704 + 115.250i 0.961256 + 0.312331i
\(370\) 0 0
\(371\) −213.269 656.374i −0.574848 1.76920i
\(372\) 0 0
\(373\) 474.868 75.2117i 1.27310 0.201640i 0.516940 0.856022i \(-0.327071\pi\)
0.756164 + 0.654382i \(0.227071\pi\)
\(374\) 0 0
\(375\) −14.0812 25.9947i −0.0375498 0.0693191i
\(376\) 0 0
\(377\) −81.7709 516.281i −0.216899 1.36945i
\(378\) 0 0
\(379\) 597.265 194.063i 1.57590 0.512040i 0.614901 0.788604i \(-0.289196\pi\)
0.960995 + 0.276564i \(0.0891958\pi\)
\(380\) 0 0
\(381\) −4.47694 + 13.7786i −0.0117505 + 0.0361643i
\(382\) 0 0
\(383\) −175.227 343.902i −0.457511 0.897916i −0.998385 0.0568121i \(-0.981906\pi\)
0.540874 0.841104i \(-0.318094\pi\)
\(384\) 0 0
\(385\) 413.504 + 263.620i 1.07404 + 0.684727i
\(386\) 0 0
\(387\) 617.184 + 97.7524i 1.59479 + 0.252590i
\(388\) 0 0
\(389\) 230.009 316.581i 0.591284 0.813833i −0.403592 0.914939i \(-0.632238\pi\)
0.994876 + 0.101107i \(0.0322383\pi\)
\(390\) 0 0
\(391\) −8.78762 + 6.38458i −0.0224747 + 0.0163289i
\(392\) 0 0
\(393\) −0.592995 + 0.592995i −0.00150889 + 0.00150889i
\(394\) 0 0
\(395\) −12.9841 + 29.8348i −0.0328711 + 0.0755313i
\(396\) 0 0
\(397\) 155.364 304.919i 0.391345 0.768058i −0.608326 0.793687i \(-0.708159\pi\)
0.999672 + 0.0256288i \(0.00815880\pi\)
\(398\) 0 0
\(399\) 36.4852i 0.0914415i
\(400\) 0 0
\(401\) 665.647 1.65997 0.829983 0.557788i \(-0.188350\pi\)
0.829983 + 0.557788i \(0.188350\pi\)
\(402\) 0 0
\(403\) 112.515 + 57.3292i 0.279193 + 0.142256i
\(404\) 0 0
\(405\) −201.617 342.532i −0.497820 0.845759i
\(406\) 0 0
\(407\) −59.3452 59.3452i −0.145811 0.145811i
\(408\) 0 0
\(409\) −369.812 509.003i −0.904187 1.24451i −0.969113 0.246616i \(-0.920681\pi\)
0.0649265 0.997890i \(-0.479319\pi\)
\(410\) 0 0
\(411\) −47.7771 34.7121i −0.116246 0.0844577i
\(412\) 0 0
\(413\) −131.343 + 829.269i −0.318022 + 2.00791i
\(414\) 0 0
\(415\) 543.315 + 140.699i 1.30919 + 0.339033i
\(416\) 0 0
\(417\) −29.1774 + 14.8666i −0.0699699 + 0.0356514i
\(418\) 0 0
\(419\) 111.166 + 36.1200i 0.265312 + 0.0862052i 0.438652 0.898657i \(-0.355456\pi\)
−0.173340 + 0.984862i \(0.555456\pi\)
\(420\) 0 0
\(421\) 1.06048 + 3.26382i 0.00251896 + 0.00775255i 0.952308 0.305138i \(-0.0987026\pi\)
−0.949789 + 0.312891i \(0.898703\pi\)
\(422\) 0 0
\(423\) 187.796 29.7440i 0.443963 0.0703169i
\(424\) 0 0
\(425\) −11.0501 16.4055i −0.0260003 0.0386011i
\(426\) 0 0
\(427\) 23.8656 + 150.681i 0.0558913 + 0.352884i
\(428\) 0 0
\(429\) −27.6912 + 8.99742i −0.0645482 + 0.0209730i
\(430\) 0 0
\(431\) −144.037 + 443.300i −0.334193 + 1.02854i 0.632926 + 0.774212i \(0.281854\pi\)
−0.967118 + 0.254327i \(0.918146\pi\)
\(432\) 0 0
\(433\) 90.0802 + 176.792i 0.208037 + 0.408296i 0.971323 0.237765i \(-0.0764149\pi\)
−0.763285 + 0.646062i \(0.776415\pi\)
\(434\) 0 0
\(435\) −35.1541 + 28.9596i −0.0808140 + 0.0665739i
\(436\) 0 0
\(437\) 193.468 + 30.6423i 0.442718 + 0.0701196i
\(438\) 0 0
\(439\) −288.145 + 396.598i −0.656367 + 0.903412i −0.999354 0.0359283i \(-0.988561\pi\)
0.342987 + 0.939340i \(0.388561\pi\)
\(440\) 0 0
\(441\) 491.330 356.972i 1.11413 0.809461i
\(442\) 0 0
\(443\) −241.629 + 241.629i −0.545437 + 0.545437i −0.925118 0.379681i \(-0.876034\pi\)
0.379681 + 0.925118i \(0.376034\pi\)
\(444\) 0 0
\(445\) 120.575 + 544.717i 0.270956 + 1.22408i
\(446\) 0 0
\(447\) 11.0671 21.7205i 0.0247587 0.0485917i
\(448\) 0 0
\(449\) 344.192i 0.766575i 0.923629 + 0.383288i \(0.125208\pi\)
−0.923629 + 0.383288i \(0.874792\pi\)
\(450\) 0 0
\(451\) 378.255 0.838703
\(452\) 0 0
\(453\) −9.92413 5.05660i −0.0219076 0.0111625i
\(454\) 0 0
\(455\) 70.5576 730.284i 0.155072 1.60502i
\(456\) 0 0
\(457\) −145.902 145.902i −0.319260 0.319260i 0.529223 0.848483i \(-0.322484\pi\)
−0.848483 + 0.529223i \(0.822484\pi\)
\(458\) 0 0
\(459\) 1.97365 + 2.71650i 0.00429989 + 0.00591829i
\(460\) 0 0
\(461\) 270.507 + 196.534i 0.586782 + 0.426322i 0.841163 0.540782i \(-0.181872\pi\)
−0.254381 + 0.967104i \(0.581872\pi\)
\(462\) 0 0
\(463\) 4.34214 27.4152i 0.00937827 0.0592120i −0.982555 0.185970i \(-0.940457\pi\)
0.991934 + 0.126758i \(0.0404572\pi\)
\(464\) 0 0
\(465\) −0.668161 10.9828i −0.00143690 0.0236190i
\(466\) 0 0
\(467\) 365.168 186.062i 0.781943 0.398420i −0.0169777 0.999856i \(-0.505404\pi\)
0.798921 + 0.601436i \(0.205404\pi\)
\(468\) 0 0
\(469\) 541.238 + 175.859i 1.15403 + 0.374966i
\(470\) 0 0
\(471\) −9.79409 30.1431i −0.0207943 0.0639981i
\(472\) 0 0
\(473\) 625.951 99.1408i 1.32336 0.209600i
\(474\) 0 0
\(475\) −68.2883 + 350.099i −0.143765 + 0.737051i
\(476\) 0 0
\(477\) 89.3103 + 563.883i 0.187233 + 1.18215i
\(478\) 0 0
\(479\) −579.516 + 188.296i −1.20985 + 0.393103i −0.843374 0.537326i \(-0.819434\pi\)
−0.366472 + 0.930429i \(0.619434\pi\)
\(480\) 0 0
\(481\) −38.8018 + 119.420i −0.0806691 + 0.248274i
\(482\) 0 0
\(483\) 15.9380 + 31.2800i 0.0329978 + 0.0647619i
\(484\) 0 0
\(485\) −236.362 600.611i −0.487344 1.23837i
\(486\) 0 0
\(487\) −229.164 36.2960i −0.470563 0.0745298i −0.0833503 0.996520i \(-0.526562\pi\)
−0.387213 + 0.921990i \(0.626562\pi\)
\(488\) 0 0
\(489\) 36.7692 50.6085i 0.0751927 0.103494i
\(490\) 0 0
\(491\) 288.845 209.858i 0.588279 0.427409i −0.253421 0.967356i \(-0.581556\pi\)
0.841699 + 0.539947i \(0.181556\pi\)
\(492\) 0 0
\(493\) −21.5480 + 21.5480i −0.0437079 + 0.0437079i
\(494\) 0 0
\(495\) −303.736 268.899i −0.613608 0.543230i
\(496\) 0 0
\(497\) −13.4402 + 26.3779i −0.0270426 + 0.0530742i
\(498\) 0 0
\(499\) 752.086i 1.50719i −0.657341 0.753593i \(-0.728319\pi\)
0.657341 0.753593i \(-0.271681\pi\)
\(500\) 0 0
\(501\) −63.6973 −0.127140
\(502\) 0 0
\(503\) 728.768 + 371.326i 1.44884 + 0.738222i 0.988740 0.149644i \(-0.0478127\pi\)
0.460102 + 0.887866i \(0.347813\pi\)
\(504\) 0 0
\(505\) 107.763 121.725i 0.213393 0.241039i
\(506\) 0 0
\(507\) 2.53975 + 2.53975i 0.00500938 + 0.00500938i
\(508\) 0 0
\(509\) −529.260 728.463i −1.03980 1.43117i −0.897327 0.441367i \(-0.854494\pi\)
−0.142476 0.989798i \(-0.545506\pi\)
\(510\) 0 0
\(511\) 538.437 + 391.197i 1.05369 + 0.765552i
\(512\) 0 0
\(513\) 9.47238 59.8062i 0.0184647 0.116581i
\(514\) 0 0
\(515\) −241.715 + 95.1234i −0.469349 + 0.184706i
\(516\) 0 0
\(517\) 171.820 87.5466i 0.332340 0.169336i
\(518\) 0 0
\(519\) 41.9094 + 13.6172i 0.0807503 + 0.0262374i
\(520\) 0 0
\(521\) −145.536 447.915i −0.279340 0.859721i −0.988038 0.154209i \(-0.950717\pi\)
0.708698 0.705512i \(-0.249283\pi\)
\(522\) 0 0
\(523\) 582.366 92.2377i 1.11351 0.176363i 0.427543 0.903995i \(-0.359379\pi\)
0.685967 + 0.727632i \(0.259379\pi\)
\(524\) 0 0
\(525\) −57.9567 + 26.9799i −0.110394 + 0.0513902i
\(526\) 0 0
\(527\) −1.15164 7.27118i −0.00218528 0.0137973i
\(528\) 0 0
\(529\) −323.857 + 105.227i −0.612205 + 0.198918i
\(530\) 0 0
\(531\) 214.626 660.550i 0.404192 1.24397i
\(532\) 0 0
\(533\) −256.921 504.236i −0.482029 0.946035i
\(534\) 0 0
\(535\) −245.614 + 14.9424i −0.459092 + 0.0279297i
\(536\) 0 0
\(537\) 47.7869 + 7.56870i 0.0889887 + 0.0140944i
\(538\) 0 0
\(539\) 362.043 498.309i 0.671693 0.924506i
\(540\) 0 0
\(541\) 4.98311 3.62044i 0.00921092 0.00669212i −0.583170 0.812350i \(-0.698188\pi\)
0.592381 + 0.805658i \(0.298188\pi\)
\(542\) 0 0
\(543\) −4.61849 + 4.61849i −0.00850551 + 0.00850551i
\(544\) 0 0
\(545\) −643.571 62.1796i −1.18086 0.114091i
\(546\) 0 0
\(547\) 137.666 270.185i 0.251675 0.493940i −0.730257 0.683172i \(-0.760600\pi\)
0.981932 + 0.189232i \(0.0605998\pi\)
\(548\) 0 0
\(549\) 126.201i 0.229875i
\(550\) 0 0
\(551\) 549.537 0.997344
\(552\) 0 0
\(553\) 62.6915 + 31.9429i 0.113366 + 0.0577630i
\(554\) 0 0
\(555\) 10.6824 2.36460i 0.0192476 0.00426054i
\(556\) 0 0
\(557\) 39.2190 + 39.2190i 0.0704112 + 0.0704112i 0.741435 0.671024i \(-0.234145\pi\)
−0.671024 + 0.741435i \(0.734145\pi\)
\(558\) 0 0
\(559\) −557.324 767.091i −0.997002 1.37226i
\(560\) 0 0
\(561\) 1.37325 + 0.997722i 0.00244786 + 0.00177847i
\(562\) 0 0
\(563\) −93.1829 + 588.334i −0.165511 + 1.04500i 0.755411 + 0.655251i \(0.227437\pi\)
−0.920922 + 0.389746i \(0.872563\pi\)
\(564\) 0 0
\(565\) 243.308 + 295.352i 0.430634 + 0.522746i
\(566\) 0 0
\(567\) −765.807 + 390.198i −1.35063 + 0.688180i
\(568\) 0 0
\(569\) 258.923 + 84.1291i 0.455049 + 0.147854i 0.527568 0.849513i \(-0.323104\pi\)
−0.0725195 + 0.997367i \(0.523104\pi\)
\(570\) 0 0
\(571\) 69.9094 + 215.159i 0.122433 + 0.376811i 0.993425 0.114487i \(-0.0365225\pi\)
−0.870991 + 0.491298i \(0.836523\pi\)
\(572\) 0 0
\(573\) 21.7267 3.44118i 0.0379175 0.00600555i
\(574\) 0 0
\(575\) 94.3893 + 329.983i 0.164155 + 0.573884i
\(576\) 0 0
\(577\) 140.082 + 884.446i 0.242777 + 1.53284i 0.744391 + 0.667744i \(0.232740\pi\)
−0.501614 + 0.865092i \(0.667260\pi\)
\(578\) 0 0
\(579\) 54.9116 17.8419i 0.0948387 0.0308150i
\(580\) 0 0
\(581\) 375.033 1154.23i 0.645495 1.98663i
\(582\) 0 0
\(583\) 262.870 + 515.912i 0.450892 + 0.884926i
\(584\) 0 0
\(585\) −152.152 + 587.542i −0.260089 + 1.00435i
\(586\) 0 0
\(587\) −346.752 54.9201i −0.590718 0.0935606i −0.146083 0.989272i \(-0.546667\pi\)
−0.444635 + 0.895712i \(0.646667\pi\)
\(588\) 0 0
\(589\) −78.0330 + 107.403i −0.132484 + 0.182348i
\(590\) 0 0
\(591\) 8.30041 6.03060i 0.0140447 0.0102041i
\(592\) 0 0
\(593\) −355.629 + 355.629i −0.599711 + 0.599711i −0.940236 0.340525i \(-0.889395\pi\)
0.340525 + 0.940236i \(0.389395\pi\)
\(594\) 0 0
\(595\) −36.8611 + 21.6967i −0.0619514 + 0.0364651i
\(596\) 0 0
\(597\) 35.5629 69.7960i 0.0595693 0.116911i
\(598\) 0 0
\(599\) 1001.80i 1.67245i 0.548390 + 0.836223i \(0.315241\pi\)
−0.548390 + 0.836223i \(0.684759\pi\)
\(600\) 0 0
\(601\) 796.655 1.32555 0.662775 0.748819i \(-0.269379\pi\)
0.662775 + 0.748819i \(0.269379\pi\)
\(602\) 0 0
\(603\) −419.457 213.724i −0.695617 0.354435i
\(604\) 0 0
\(605\) 177.495 + 77.2456i 0.293380 + 0.127679i
\(606\) 0 0
\(607\) −728.906 728.906i −1.20083 1.20083i −0.973913 0.226920i \(-0.927134\pi\)
−0.226920 0.973913i \(-0.572866\pi\)
\(608\) 0 0
\(609\) 57.8912 + 79.6804i 0.0950595 + 0.130838i
\(610\) 0 0
\(611\) −233.410 169.582i −0.382013 0.277549i
\(612\) 0 0
\(613\) −19.5383 + 123.360i −0.0318732 + 0.201240i −0.998486 0.0550007i \(-0.982484\pi\)
0.966613 + 0.256240i \(0.0824839\pi\)
\(614\) 0 0
\(615\) −26.5081 + 41.5796i −0.0431026 + 0.0676091i
\(616\) 0 0
\(617\) −639.236 + 325.707i −1.03604 + 0.527888i −0.887399 0.461003i \(-0.847490\pi\)
−0.148640 + 0.988891i \(0.547490\pi\)
\(618\) 0 0
\(619\) 196.553 + 63.8639i 0.317533 + 0.103173i 0.463447 0.886125i \(-0.346612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(620\) 0 0
\(621\) −18.0044 55.4118i −0.0289926 0.0892300i
\(622\) 0 0
\(623\) 1191.57 188.726i 1.91263 0.302930i
\(624\) 0 0
\(625\) −606.631 + 150.414i −0.970609 + 0.240662i
\(626\) 0 0
\(627\) −4.78849 30.2333i −0.00763714 0.0482190i
\(628\) 0 0
\(629\) 6.96196 2.26208i 0.0110683 0.00359631i
\(630\) 0 0
\(631\) −68.8404 + 211.869i −0.109097 + 0.335767i −0.990670 0.136281i \(-0.956485\pi\)
0.881573 + 0.472048i \(0.156485\pi\)
\(632\) 0 0
\(633\) 26.9897 + 52.9703i 0.0426377 + 0.0836813i
\(634\) 0 0
\(635\) 258.263 + 164.650i 0.406713 + 0.259291i
\(636\) 0 0
\(637\) −910.185 144.159i −1.42886 0.226310i
\(638\) 0 0
\(639\) 14.3947 19.8126i 0.0225269 0.0310056i
\(640\) 0 0
\(641\) −709.800 + 515.700i −1.10733 + 0.804524i −0.982241 0.187622i \(-0.939922\pi\)
−0.125090 + 0.992145i \(0.539922\pi\)
\(642\) 0 0
\(643\) −430.122 + 430.122i −0.668929 + 0.668929i −0.957468 0.288539i \(-0.906831\pi\)
0.288539 + 0.957468i \(0.406831\pi\)
\(644\) 0 0
\(645\) −32.9686 + 75.7553i −0.0511141 + 0.117450i
\(646\) 0 0
\(647\) −400.518 + 786.060i −0.619038 + 1.21493i 0.342308 + 0.939588i \(0.388791\pi\)
−0.961346 + 0.275343i \(0.911209\pi\)
\(648\) 0 0
\(649\) 704.409i 1.08538i
\(650\) 0 0
\(651\) −23.7934 −0.0365490
\(652\) 0 0
\(653\) 868.933 + 442.744i 1.33068 + 0.678015i 0.967302 0.253627i \(-0.0816237\pi\)
0.363377 + 0.931642i \(0.381624\pi\)
\(654\) 0 0
\(655\) 8.99330 + 15.2789i 0.0137302 + 0.0233266i
\(656\) 0 0
\(657\) −389.302 389.302i −0.592545 0.592545i
\(658\) 0 0
\(659\) −337.348 464.320i −0.511909 0.704582i 0.472331 0.881421i \(-0.343413\pi\)
−0.984240 + 0.176839i \(0.943413\pi\)
\(660\) 0 0
\(661\) 83.1335 + 60.4000i 0.125769 + 0.0913767i 0.648892 0.760881i \(-0.275233\pi\)
−0.523122 + 0.852258i \(0.675233\pi\)
\(662\) 0 0
\(663\) 0.397276 2.50830i 0.000599210 0.00378326i
\(664\) 0 0
\(665\) 746.698 + 193.368i 1.12285 + 0.290779i
\(666\) 0 0
\(667\) 471.137 240.056i 0.706353 0.359905i
\(668\) 0 0
\(669\) −17.0341 5.53472i −0.0254621 0.00827313i
\(670\) 0 0
\(671\) −39.5523 121.729i −0.0589453 0.181415i
\(672\) 0 0
\(673\) 742.996 117.679i 1.10401 0.174857i 0.422280 0.906465i \(-0.361230\pi\)
0.681726 + 0.731608i \(0.261230\pi\)
\(674\) 0 0
\(675\) 102.007 29.1784i 0.151121 0.0432272i
\(676\) 0 0
\(677\) −104.837 661.912i −0.154855 0.977714i −0.935651 0.352928i \(-0.885186\pi\)
0.780796 0.624786i \(-0.214814\pi\)
\(678\) 0 0
\(679\) −1327.42 + 431.304i −1.95496 + 0.635204i
\(680\) 0 0
\(681\) 25.0821 77.1947i 0.0368313 0.113355i
\(682\) 0 0
\(683\) −477.148 936.456i −0.698607 1.37109i −0.918442 0.395556i \(-0.870552\pi\)
0.219835 0.975537i \(-0.429448\pi\)
\(684\) 0 0
\(685\) −963.626 + 793.827i −1.40675 + 1.15887i
\(686\) 0 0
\(687\) −5.46109 0.864952i −0.00794919 0.00125903i
\(688\) 0 0
\(689\) 509.193 700.843i 0.739031 1.01719i
\(690\) 0 0
\(691\) −281.760 + 204.711i −0.407757 + 0.296253i −0.772693 0.634780i \(-0.781091\pi\)
0.364936 + 0.931033i \(0.381091\pi\)
\(692\) 0 0
\(693\) −620.284 + 620.284i −0.895071 + 0.895071i
\(694\) 0 0
\(695\) 149.620 + 675.931i 0.215281 + 0.972563i
\(696\) 0 0
\(697\) −14.9781 + 29.3961i −0.0214893 + 0.0421752i
\(698\) 0 0
\(699\) 45.2750i 0.0647711i
\(700\) 0 0
\(701\) 685.412 0.977764 0.488882 0.872350i \(-0.337405\pi\)
0.488882 + 0.872350i \(0.337405\pi\)
\(702\) 0 0
\(703\) −117.620 59.9304i −0.167312 0.0852495i
\(704\) 0 0
\(705\) −2.41759 + 25.0225i −0.00342921 + 0.0354930i
\(706\) 0 0
\(707\) −248.584 248.584i −0.351604 0.351604i
\(708\) 0 0
\(709\) −142.144 195.644i −0.200485 0.275944i 0.696922 0.717146i \(-0.254552\pi\)
−0.897408 + 0.441202i \(0.854552\pi\)
\(710\) 0 0
\(711\) −47.0880 34.2114i −0.0662278 0.0481173i
\(712\) 0 0
\(713\) −19.9831 + 126.168i −0.0280267 + 0.176954i
\(714\) 0 0
\(715\) 37.3787 + 614.408i 0.0522778 + 0.859312i
\(716\) 0 0
\(717\) 11.5826 5.90162i 0.0161542 0.00823099i
\(718\) 0 0
\(719\) 126.747 + 41.1825i 0.176282 + 0.0572774i 0.395828 0.918325i \(-0.370458\pi\)
−0.219546 + 0.975602i \(0.570458\pi\)
\(720\) 0 0
\(721\) 173.577 + 534.216i 0.240745 + 0.740937i
\(722\) 0 0
\(723\) 7.90500 1.25203i 0.0109336 0.00173171i
\(724\) 0 0
\(725\) 406.369 + 872.940i 0.560509 + 1.20405i
\(726\) 0 0
\(727\) −202.138 1276.25i −0.278044 1.75550i −0.591881 0.806025i \(-0.701615\pi\)
0.313837 0.949477i \(-0.398385\pi\)
\(728\) 0 0
\(729\) 667.599 216.916i 0.915774 0.297553i
\(730\) 0 0
\(731\) −17.0815 + 52.5716i −0.0233674 + 0.0719173i
\(732\) 0 0
\(733\) −379.282 744.383i −0.517438 1.01553i −0.990885 0.134707i \(-0.956991\pi\)
0.473448 0.880822i \(-0.343009\pi\)
\(734\) 0 0
\(735\) 29.4046 + 74.7189i 0.0400062 + 0.101658i
\(736\) 0 0
\(737\) −471.576 74.6903i −0.639859 0.101344i
\(738\) 0 0
\(739\) 651.261 896.383i 0.881273 1.21297i −0.0947939 0.995497i \(-0.530219\pi\)
0.976067 0.217471i \(-0.0697808\pi\)
\(740\) 0 0
\(741\) −37.0504 + 26.9187i −0.0500005 + 0.0363275i
\(742\) 0 0
\(743\) 333.821 333.821i 0.449289 0.449289i −0.445829 0.895118i \(-0.647091\pi\)
0.895118 + 0.445829i \(0.147091\pi\)
\(744\) 0 0
\(745\) −385.872 341.614i −0.517950 0.458543i
\(746\) 0 0
\(747\) −455.783 + 894.524i −0.610151 + 1.19749i
\(748\) 0 0
\(749\) 532.104i 0.710419i
\(750\) 0 0
\(751\) −698.285 −0.929807 −0.464904 0.885361i \(-0.653911\pi\)
−0.464904 + 0.885361i \(0.653911\pi\)
\(752\) 0 0
\(753\) 46.7510 + 23.8208i 0.0620863 + 0.0316345i
\(754\) 0 0
\(755\) −156.084 + 176.306i −0.206734 + 0.233518i
\(756\) 0 0
\(757\) −465.289 465.289i −0.614648 0.614648i 0.329505 0.944154i \(-0.393118\pi\)
−0.944154 + 0.329505i \(0.893118\pi\)
\(758\) 0 0
\(759\) −17.3123 23.8283i −0.0228093 0.0313944i
\(760\) 0 0
\(761\) −1146.83 833.219i −1.50700 1.09490i −0.967486 0.252924i \(-0.918608\pi\)
−0.539515 0.841976i \(-0.681392\pi\)
\(762\) 0 0
\(763\) −218.719 + 1380.94i −0.286657 + 1.80988i
\(764\) 0 0
\(765\) 32.9248 12.9571i 0.0430389 0.0169373i
\(766\) 0 0
\(767\) −939.020 + 478.454i −1.22428 + 0.623800i
\(768\) 0 0
\(769\) −805.374 261.682i −1.04730 0.340288i −0.265692 0.964058i \(-0.585600\pi\)
−0.781608 + 0.623770i \(0.785600\pi\)
\(770\) 0 0
\(771\) 2.10210 + 6.46959i 0.00272645 + 0.00839116i
\(772\) 0 0
\(773\) −319.914 + 50.6693i −0.413860 + 0.0655489i −0.359893 0.932994i \(-0.617187\pi\)
−0.0539672 + 0.998543i \(0.517187\pi\)
\(774\) 0 0
\(775\) −228.314 44.5335i −0.294598 0.0574626i
\(776\) 0 0
\(777\) −3.70109 23.3678i −0.00476331 0.0300744i
\(778\) 0 0
\(779\) 565.836 183.851i 0.726361 0.236009i
\(780\) 0 0
\(781\) 7.67522 23.6219i 0.00982742 0.0302457i
\(782\) 0 0
\(783\) −74.2081 145.642i −0.0947740 0.186005i
\(784\) 0 0
\(785\) −668.811 + 40.6884i −0.851989 + 0.0518323i
\(786\) 0 0
\(787\) 813.494 + 128.845i 1.03366 + 0.163716i 0.650140 0.759815i \(-0.274710\pi\)
0.383524 + 0.923531i \(0.374710\pi\)
\(788\) 0 0
\(789\) −0.753408 + 1.03698i −0.000954890 + 0.00131429i
\(790\) 0 0
\(791\) 669.446 486.381i 0.846328 0.614893i
\(792\) 0 0
\(793\) −135.408 + 135.408i −0.170754 + 0.170754i
\(794\) 0 0
\(795\) −75.1334 7.25914i −0.0945074 0.00913099i
\(796\) 0 0
\(797\) −393.451 + 772.191i −0.493665 + 0.968872i 0.500974 + 0.865462i \(0.332975\pi\)
−0.994639 + 0.103410i \(0.967025\pi\)
\(798\) 0 0
\(799\) 16.8197i 0.0210509i
\(800\) 0 0
\(801\) −997.982 −1.24592
\(802\) 0 0
\(803\) −497.517 253.497i −0.619573 0.315688i
\(804\) 0 0
\(805\) 724.640 160.402i 0.900174 0.199257i
\(806\) 0 0
\(807\) 10.3816 + 10.3816i 0.0128645 + 0.0128645i
\(808\) 0 0
\(809\) 72.5617 + 99.8726i 0.0896931 + 0.123452i 0.851505 0.524346i \(-0.175690\pi\)
−0.761812 + 0.647798i \(0.775690\pi\)
\(810\) 0 0
\(811\) −378.763 275.188i −0.467033 0.339319i 0.329251 0.944242i \(-0.393204\pi\)
−0.796284 + 0.604923i \(0.793204\pi\)
\(812\) 0 0
\(813\) 11.9673 75.5585i 0.0147199 0.0929379i
\(814\) 0 0
\(815\) −840.870 1020.73i −1.03174 1.25243i
\(816\) 0 0
\(817\) 888.179 452.550i 1.08712 0.553916i
\(818\) 0 0
\(819\) 1248.19 + 405.562i 1.52404 + 0.495191i
\(820\) 0 0
\(821\) 285.639 + 879.107i 0.347916 + 1.07078i 0.960004 + 0.279986i \(0.0903298\pi\)
−0.612088 + 0.790790i \(0.709670\pi\)
\(822\) 0 0
\(823\) 757.643 119.999i 0.920587 0.145807i 0.321885 0.946779i \(-0.395684\pi\)
0.598702 + 0.800972i \(0.295684\pi\)
\(824\) 0 0
\(825\) 44.4847 29.9633i 0.0539208 0.0363192i
\(826\) 0 0
\(827\) 36.5445 + 230.733i 0.0441892 + 0.279000i 0.999882 0.0153664i \(-0.00489148\pi\)
−0.955693 + 0.294366i \(0.904891\pi\)
\(828\) 0 0
\(829\) −1244.32 + 404.304i −1.50099 + 0.487701i −0.940306 0.340330i \(-0.889461\pi\)
−0.560682 + 0.828031i \(0.689461\pi\)
\(830\) 0 0
\(831\) 5.33226 16.4110i 0.00641668 0.0197485i
\(832\) 0 0
\(833\) 24.3900 + 47.8681i 0.0292797 + 0.0574647i
\(834\) 0 0
\(835\) −337.590 + 1303.62i −0.404299 + 1.56122i
\(836\) 0 0
\(837\) 39.0020 + 6.17731i 0.0465974 + 0.00738030i
\(838\) 0 0
\(839\) 614.547 845.852i 0.732476 1.00817i −0.266541 0.963824i \(-0.585881\pi\)
0.999016 0.0443428i \(-0.0141194\pi\)
\(840\) 0 0
\(841\) 519.757 377.626i 0.618023 0.449020i
\(842\) 0 0
\(843\) 45.5884 45.5884i 0.0540787 0.0540787i
\(844\) 0 0
\(845\) 65.4386 38.5177i 0.0774421 0.0455830i
\(846\) 0 0
\(847\) 190.037 372.968i 0.224364 0.440340i
\(848\) 0 0
\(849\) 46.6825i 0.0549853i
\(850\) 0 0
\(851\) −127.019 −0.149259
\(852\) 0 0
\(853\) 32.3156 + 16.4656i 0.0378846 + 0.0193032i 0.472830 0.881154i \(-0.343232\pi\)
−0.434946 + 0.900457i \(0.643232\pi\)
\(854\) 0 0
\(855\) −585.061 254.617i −0.684281 0.297798i
\(856\) 0 0
\(857\) 687.485 + 687.485i 0.802199 + 0.802199i 0.983439 0.181240i \(-0.0580110\pi\)
−0.181240 + 0.983439i \(0.558011\pi\)
\(858\) 0 0
\(859\) −884.589 1217.53i −1.02979 1.41738i −0.905106 0.425187i \(-0.860208\pi\)
−0.124684 0.992197i \(-0.539792\pi\)
\(860\) 0 0
\(861\) 86.2658 + 62.6758i 0.100193 + 0.0727942i
\(862\) 0 0
\(863\) −205.361 + 1296.60i −0.237962 + 1.50243i 0.522269 + 0.852781i \(0.325086\pi\)
−0.760231 + 0.649653i \(0.774914\pi\)
\(864\) 0 0
\(865\) 500.802 785.540i 0.578962 0.908138i
\(866\) 0 0
\(867\) 60.7692 30.9634i 0.0700913 0.0357133i
\(868\) 0 0
\(869\) −56.1415 18.2415i −0.0646047 0.0209913i
\(870\) 0 0
\(871\) 220.741 + 679.371i 0.253434 + 0.779990i
\(872\) 0 0
\(873\) 1140.37 180.617i 1.30626 0.206892i
\(874\) 0 0
\(875\) 245.000 + 1329.12i 0.280000 + 1.51900i
\(876\) 0 0
\(877\) −58.9645 372.287i −0.0672343 0.424501i −0.998230 0.0594706i \(-0.981059\pi\)
0.930996 0.365030i \(-0.118941\pi\)
\(878\) 0 0
\(879\) −75.4629 + 24.5194i −0.0858509 + 0.0278947i
\(880\) 0 0
\(881\) −297.148 + 914.528i −0.337285 + 1.03806i 0.628300 + 0.777971i \(0.283751\pi\)
−0.965585 + 0.260086i \(0.916249\pi\)
\(882\) 0 0
\(883\) −16.1759 31.7470i −0.0183192 0.0359535i 0.881666 0.471875i \(-0.156423\pi\)
−0.899985 + 0.435921i \(0.856423\pi\)
\(884\) 0 0
\(885\) 77.4320 + 49.3650i 0.0874938 + 0.0557796i
\(886\) 0 0
\(887\) 296.686 + 46.9904i 0.334482 + 0.0529768i 0.321417 0.946938i \(-0.395841\pi\)
0.0130655 + 0.999915i \(0.495841\pi\)
\(888\) 0 0
\(889\) 389.298 535.823i 0.437905 0.602725i
\(890\) 0 0
\(891\) 583.372 423.845i 0.654739 0.475696i
\(892\) 0 0
\(893\) 214.475 214.475i 0.240174 0.240174i
\(894\) 0 0
\(895\) 408.166 937.884i 0.456051 1.04792i
\(896\) 0 0
\(897\) −20.0056 + 39.2632i −0.0223028 + 0.0437717i
\(898\) 0 0
\(899\) 358.375i 0.398637i
\(900\) 0 0
\(901\) −50.5032 −0.0560524
\(902\) 0 0
\(903\) 159.183 + 81.1080i 0.176283 + 0.0898206i
\(904\) 0 0
\(905\) 70.0436 + 118.999i 0.0773962 + 0.131490i
\(906\) 0 0
\(907\) 505.478 + 505.478i 0.557307 + 0.557307i 0.928540 0.371233i \(-0.121065\pi\)
−0.371233 + 0.928540i \(0.621065\pi\)
\(908\) 0 0
\(909\) 170.935 + 235.272i 0.188047 + 0.258825i
\(910\) 0 0
\(911\) 1112.30 + 808.135i 1.22097 + 0.887086i 0.996180 0.0873220i \(-0.0278309\pi\)
0.224788 + 0.974408i \(0.427831\pi\)
\(912\) 0 0
\(913\) −159.283 + 1005.67i −0.174461 + 1.10150i
\(914\) 0 0
\(915\) 16.1529 + 4.18302i 0.0176534 + 0.00457160i
\(916\) 0 0
\(917\) 34.1594 17.4051i 0.0372513 0.0189805i
\(918\) 0 0
\(919\) −1241.96 403.536i −1.35142 0.439104i −0.458252 0.888822i \(-0.651524\pi\)
−0.893170 + 0.449718i \(0.851524\pi\)
\(920\) 0 0
\(921\) −8.17554 25.1617i −0.00887681 0.0273200i
\(922\) 0 0
\(923\) −36.7026 + 5.81312i −0.0397645 + 0.00629808i
\(924\) 0 0
\(925\) 8.22240 231.157i 0.00888909 0.249899i
\(926\) 0 0
\(927\) −72.6888 458.939i −0.0784129 0.495080i
\(928\) 0 0
\(929\) −430.474 + 139.870i −0.463374 + 0.150559i −0.531394 0.847125i \(-0.678332\pi\)
0.0680204 + 0.997684i \(0.478332\pi\)
\(930\) 0 0
\(931\) 299.380 921.397i 0.321568 0.989685i
\(932\) 0 0
\(933\) −12.1956 23.9353i −0.0130714 0.0256541i
\(934\) 0 0
\(935\) 27.6973 22.8168i 0.0296227 0.0244030i
\(936\) 0 0
\(937\) −517.916 82.0298i −0.552738 0.0875451i −0.126184 0.992007i \(-0.540273\pi\)
−0.426555 + 0.904462i \(0.640273\pi\)
\(938\) 0 0
\(939\) 14.2874 19.6650i 0.0152156 0.0209425i
\(940\) 0 0
\(941\) 983.490 714.547i 1.04515 0.759349i 0.0738692 0.997268i \(-0.476465\pi\)
0.971285 + 0.237919i \(0.0764653\pi\)
\(942\) 0 0
\(943\) 404.798 404.798i 0.429266 0.429266i
\(944\) 0 0
\(945\) −49.5847 224.006i −0.0524706 0.237044i
\(946\) 0 0
\(947\) −561.219 + 1101.45i −0.592628 + 1.16310i 0.378736 + 0.925505i \(0.376359\pi\)
−0.971365 + 0.237594i \(0.923641\pi\)
\(948\) 0 0
\(949\) 835.402i 0.880297i
\(950\) 0 0
\(951\) 96.5800 0.101556
\(952\) 0 0
\(953\) 90.7422 + 46.2355i 0.0952174 + 0.0485157i 0.500951 0.865476i \(-0.332984\pi\)
−0.405733 + 0.913992i \(0.632984\pi\)
\(954\) 0 0
\(955\) 44.7232 462.893i 0.0468306 0.484705i
\(956\) 0 0
\(957\) −58.4290 58.4290i −0.0610544 0.0610544i
\(958\) 0 0
\(959\) 1586.89 + 2184.16i 1.65473 + 2.27754i
\(960\) 0 0
\(961\) 707.423 + 513.973i 0.736133 + 0.534832i
\(962\) 0 0
\(963\) 68.8578 434.751i 0.0715034 0.451455i
\(964\) 0 0
\(965\) −74.1218 1218.37i −0.0768102 1.26256i
\(966\) 0 0
\(967\) 421.887 214.962i 0.436284 0.222298i −0.222032 0.975039i \(-0.571269\pi\)
0.658316 + 0.752741i \(0.271269\pi\)
\(968\) 0 0
\(969\) 2.53920 + 0.825036i 0.00262043 + 0.000851430i
\(970\) 0 0
\(971\) −520.392 1601.60i −0.535934 1.64943i −0.741623 0.670817i \(-0.765944\pi\)
0.205690 0.978617i \(-0.434056\pi\)
\(972\) 0 0
\(973\) 1478.60 234.187i 1.51963 0.240686i
\(974\) 0 0
\(975\) −70.1582 38.9489i −0.0719571 0.0399475i
\(976\) 0 0
\(977\) 17.9443 + 113.296i 0.0183667 + 0.115963i 0.995168 0.0981833i \(-0.0313032\pi\)
−0.976802 + 0.214146i \(0.931303\pi\)
\(978\) 0 0
\(979\) −962.619 + 312.774i −0.983267 + 0.319483i
\(980\) 0 0
\(981\) 357.405 1099.98i 0.364328 1.12128i
\(982\) 0 0
\(983\) −583.651 1145.48i −0.593744 1.16529i −0.970978 0.239170i \(-0.923125\pi\)
0.377233 0.926118i \(-0.376875\pi\)
\(984\) 0 0
\(985\) −79.4297 201.836i −0.0806393 0.204910i
\(986\) 0 0
\(987\) 53.6920 + 8.50397i 0.0543992 + 0.00861598i
\(988\) 0 0
\(989\) 563.778 775.973i 0.570048 0.784604i
\(990\) 0 0
\(991\) 392.287 285.013i 0.395850 0.287602i −0.371999 0.928233i \(-0.621327\pi\)
0.767848 + 0.640631i \(0.221327\pi\)
\(992\) 0 0
\(993\) −20.1689 + 20.1689i −0.0203110 + 0.0203110i
\(994\) 0 0
\(995\) −1239.95 1097.73i −1.24618 1.10325i
\(996\) 0 0
\(997\) 589.304 1156.57i 0.591077 1.16005i −0.380820 0.924649i \(-0.624358\pi\)
0.971897 0.235405i \(-0.0756417\pi\)
\(998\) 0 0
\(999\) 39.2652i 0.0393045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.bg.c.337.2 32
4.3 odd 2 25.3.f.a.12.3 32
12.11 even 2 225.3.r.a.37.2 32
20.3 even 4 125.3.f.a.43.3 32
20.7 even 4 125.3.f.b.43.2 32
20.19 odd 2 125.3.f.c.82.2 32
25.23 odd 20 inner 400.3.bg.c.273.2 32
100.11 odd 10 125.3.f.a.32.3 32
100.23 even 20 25.3.f.a.23.3 yes 32
100.27 even 20 125.3.f.c.93.2 32
100.39 odd 10 125.3.f.b.32.2 32
300.23 odd 20 225.3.r.a.73.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.3.f.a.12.3 32 4.3 odd 2
25.3.f.a.23.3 yes 32 100.23 even 20
125.3.f.a.32.3 32 100.11 odd 10
125.3.f.a.43.3 32 20.3 even 4
125.3.f.b.32.2 32 100.39 odd 10
125.3.f.b.43.2 32 20.7 even 4
125.3.f.c.82.2 32 20.19 odd 2
125.3.f.c.93.2 32 100.27 even 20
225.3.r.a.37.2 32 12.11 even 2
225.3.r.a.73.2 32 300.23 odd 20
400.3.bg.c.273.2 32 25.23 odd 20 inner
400.3.bg.c.337.2 32 1.1 even 1 trivial