Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [400,4,Mod(49,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.49");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 400.c (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 200) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | − | 9.00000i | 0 | 0 | 0 | 26.0000i | 0 | −54.0000 | 0 | |||||||||||||||||||||||
49.2 | 0 | 9.00000i | 0 | 0 | 0 | − | 26.0000i | 0 | −54.0000 | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.4.c.b | 2 | |
4.b | odd | 2 | 1 | 200.4.c.b | 2 | ||
5.b | even | 2 | 1 | inner | 400.4.c.b | 2 | |
5.c | odd | 4 | 1 | 400.4.a.a | 1 | ||
5.c | odd | 4 | 1 | 400.4.a.t | 1 | ||
12.b | even | 2 | 1 | 1800.4.f.w | 2 | ||
20.d | odd | 2 | 1 | 200.4.c.b | 2 | ||
20.e | even | 4 | 1 | 200.4.a.b | ✓ | 1 | |
20.e | even | 4 | 1 | 200.4.a.j | yes | 1 | |
40.i | odd | 4 | 1 | 1600.4.a.b | 1 | ||
40.i | odd | 4 | 1 | 1600.4.a.by | 1 | ||
40.k | even | 4 | 1 | 1600.4.a.c | 1 | ||
40.k | even | 4 | 1 | 1600.4.a.bz | 1 | ||
60.h | even | 2 | 1 | 1800.4.f.w | 2 | ||
60.l | odd | 4 | 1 | 1800.4.a.c | 1 | ||
60.l | odd | 4 | 1 | 1800.4.a.bh | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
200.4.a.b | ✓ | 1 | 20.e | even | 4 | 1 | |
200.4.a.j | yes | 1 | 20.e | even | 4 | 1 | |
200.4.c.b | 2 | 4.b | odd | 2 | 1 | ||
200.4.c.b | 2 | 20.d | odd | 2 | 1 | ||
400.4.a.a | 1 | 5.c | odd | 4 | 1 | ||
400.4.a.t | 1 | 5.c | odd | 4 | 1 | ||
400.4.c.b | 2 | 1.a | even | 1 | 1 | trivial | |
400.4.c.b | 2 | 5.b | even | 2 | 1 | inner | |
1600.4.a.b | 1 | 40.i | odd | 4 | 1 | ||
1600.4.a.c | 1 | 40.k | even | 4 | 1 | ||
1600.4.a.by | 1 | 40.i | odd | 4 | 1 | ||
1600.4.a.bz | 1 | 40.k | even | 4 | 1 | ||
1800.4.a.c | 1 | 60.l | odd | 4 | 1 | ||
1800.4.a.bh | 1 | 60.l | odd | 4 | 1 | ||
1800.4.f.w | 2 | 12.b | even | 2 | 1 | ||
1800.4.f.w | 2 | 60.h | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|