gp: [N,k,chi] = [400,4,Mod(49,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.49");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,0,0,0,0,-108,0,118]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 400 Z ) × \left(\mathbb{Z}/400\mathbb{Z}\right)^\times ( Z / 4 0 0 Z ) × .
n n n
101 101 1 0 1
177 177 1 7 7
351 351 3 5 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 400 , [ χ ] ) S_{4}^{\mathrm{new}}(400, [\chi]) S 4 n e w ( 4 0 0 , [ χ ] ) :
T 3 2 + 81 T_{3}^{2} + 81 T 3 2 + 8 1
T3^2 + 81
T 7 2 + 676 T_{7}^{2} + 676 T 7 2 + 6 7 6
T7^2 + 676
T 11 − 59 T_{11} - 59 T 1 1 − 5 9
T11 - 59
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 81 T^{2} + 81 T 2 + 8 1
T^2 + 81
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 676 T^{2} + 676 T 2 + 6 7 6
T^2 + 676
11 11 1 1
( T − 59 ) 2 (T - 59)^{2} ( T − 5 9 ) 2
(T - 59)^2
13 13 1 3
T 2 + 784 T^{2} + 784 T 2 + 7 8 4
T^2 + 784
17 17 1 7
T 2 + 25 T^{2} + 25 T 2 + 2 5
T^2 + 25
19 19 1 9
( T − 109 ) 2 (T - 109)^{2} ( T − 1 0 9 ) 2
(T - 109)^2
23 23 2 3
T 2 + 37636 T^{2} + 37636 T 2 + 3 7 6 3 6
T^2 + 37636
29 29 2 9
( T − 32 ) 2 (T - 32)^{2} ( T − 3 2 ) 2
(T - 32)^2
31 31 3 1
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
37 37 3 7
T 2 + 39204 T^{2} + 39204 T 2 + 3 9 2 0 4
T^2 + 39204
41 41 4 1
( T − 117 ) 2 (T - 117)^{2} ( T − 1 1 7 ) 2
(T - 117)^2
43 43 4 3
T 2 + 150544 T^{2} + 150544 T 2 + 1 5 0 5 4 4
T^2 + 150544
47 47 4 7
T 2 + 4624 T^{2} + 4624 T 2 + 4 6 2 4
T^2 + 4624
53 53 5 3
T 2 + 324 T^{2} + 324 T 2 + 3 2 4
T^2 + 324
59 59 5 9
( T − 392 ) 2 (T - 392)^{2} ( T − 3 9 2 ) 2
(T - 392)^2
61 61 6 1
( T + 710 ) 2 (T + 710)^{2} ( T + 7 1 0 ) 2
(T + 710)^2
67 67 6 7
T 2 + 64009 T^{2} + 64009 T 2 + 6 4 0 0 9
T^2 + 64009
71 71 7 1
( T − 612 ) 2 (T - 612)^{2} ( T − 6 1 2 ) 2
(T - 612)^2
73 73 7 3
T 2 + 301401 T^{2} + 301401 T 2 + 3 0 1 4 0 1
T^2 + 301401
79 79 7 9
( T − 414 ) 2 (T - 414)^{2} ( T − 4 1 4 ) 2
(T - 414)^2
83 83 8 3
T 2 + 14641 T^{2} + 14641 T 2 + 1 4 6 4 1
T^2 + 14641
89 89 8 9
( T − 81 ) 2 (T - 81)^{2} ( T − 8 1 ) 2
(T - 81)^2
97 97 9 7
T 2 + 2256004 T^{2} + 2256004 T 2 + 2 2 5 6 0 0 4
T^2 + 2256004
show more
show less