Properties

Label 400.4.c.b
Level 400400
Weight 44
Character orbit 400.c
Analytic conductor 23.60123.601
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 400.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.600764002323.6007640023
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9iq326iq754q9+59q1128iq13+5iq17+109q19+234q21194iq23243iq27+32q2910q31+531iq33198iq37+252q39+117q41+3186q99+O(q100) q + 9 i q^{3} - 26 i q^{7} - 54 q^{9} + 59 q^{11} - 28 i q^{13} + 5 i q^{17} + 109 q^{19} + 234 q^{21} - 194 i q^{23} - 243 i q^{27} + 32 q^{29} - 10 q^{31} + 531 i q^{33} - 198 i q^{37} + 252 q^{39} + 117 q^{41} + \cdots - 3186 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q108q9+118q11+218q19+468q21+64q2920q31+504q39+234q41666q4990q51+784q591420q61+3492q69+1224q71+828q79+1458q81+6372q99+O(q100) 2 q - 108 q^{9} + 118 q^{11} + 218 q^{19} + 468 q^{21} + 64 q^{29} - 20 q^{31} + 504 q^{39} + 234 q^{41} - 666 q^{49} - 90 q^{51} + 784 q^{59} - 1420 q^{61} + 3492 q^{69} + 1224 q^{71} + 828 q^{79} + 1458 q^{81}+ \cdots - 6372 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 9.00000i 0 0 0 26.0000i 0 −54.0000 0
49.2 0 9.00000i 0 0 0 26.0000i 0 −54.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.4.c.b 2
4.b odd 2 1 200.4.c.b 2
5.b even 2 1 inner 400.4.c.b 2
5.c odd 4 1 400.4.a.a 1
5.c odd 4 1 400.4.a.t 1
12.b even 2 1 1800.4.f.w 2
20.d odd 2 1 200.4.c.b 2
20.e even 4 1 200.4.a.b 1
20.e even 4 1 200.4.a.j yes 1
40.i odd 4 1 1600.4.a.b 1
40.i odd 4 1 1600.4.a.by 1
40.k even 4 1 1600.4.a.c 1
40.k even 4 1 1600.4.a.bz 1
60.h even 2 1 1800.4.f.w 2
60.l odd 4 1 1800.4.a.c 1
60.l odd 4 1 1800.4.a.bh 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.4.a.b 1 20.e even 4 1
200.4.a.j yes 1 20.e even 4 1
200.4.c.b 2 4.b odd 2 1
200.4.c.b 2 20.d odd 2 1
400.4.a.a 1 5.c odd 4 1
400.4.a.t 1 5.c odd 4 1
400.4.c.b 2 1.a even 1 1 trivial
400.4.c.b 2 5.b even 2 1 inner
1600.4.a.b 1 40.i odd 4 1
1600.4.a.c 1 40.k even 4 1
1600.4.a.by 1 40.i odd 4 1
1600.4.a.bz 1 40.k even 4 1
1800.4.a.c 1 60.l odd 4 1
1800.4.a.bh 1 60.l odd 4 1
1800.4.f.w 2 12.b even 2 1
1800.4.f.w 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(400,[χ])S_{4}^{\mathrm{new}}(400, [\chi]):

T32+81 T_{3}^{2} + 81 Copy content Toggle raw display
T72+676 T_{7}^{2} + 676 Copy content Toggle raw display
T1159 T_{11} - 59 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+81 T^{2} + 81 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+676 T^{2} + 676 Copy content Toggle raw display
1111 (T59)2 (T - 59)^{2} Copy content Toggle raw display
1313 T2+784 T^{2} + 784 Copy content Toggle raw display
1717 T2+25 T^{2} + 25 Copy content Toggle raw display
1919 (T109)2 (T - 109)^{2} Copy content Toggle raw display
2323 T2+37636 T^{2} + 37636 Copy content Toggle raw display
2929 (T32)2 (T - 32)^{2} Copy content Toggle raw display
3131 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3737 T2+39204 T^{2} + 39204 Copy content Toggle raw display
4141 (T117)2 (T - 117)^{2} Copy content Toggle raw display
4343 T2+150544 T^{2} + 150544 Copy content Toggle raw display
4747 T2+4624 T^{2} + 4624 Copy content Toggle raw display
5353 T2+324 T^{2} + 324 Copy content Toggle raw display
5959 (T392)2 (T - 392)^{2} Copy content Toggle raw display
6161 (T+710)2 (T + 710)^{2} Copy content Toggle raw display
6767 T2+64009 T^{2} + 64009 Copy content Toggle raw display
7171 (T612)2 (T - 612)^{2} Copy content Toggle raw display
7373 T2+301401 T^{2} + 301401 Copy content Toggle raw display
7979 (T414)2 (T - 414)^{2} Copy content Toggle raw display
8383 T2+14641 T^{2} + 14641 Copy content Toggle raw display
8989 (T81)2 (T - 81)^{2} Copy content Toggle raw display
9797 T2+2256004 T^{2} + 2256004 Copy content Toggle raw display
show more
show less