Properties

Label 400.4.n.d.143.3
Level $400$
Weight $4$
Character 400.143
Analytic conductor $23.601$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6007640023\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1731891456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.3
Root \(-1.35234 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 400.143
Dual form 400.4.n.d.207.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.12311 - 4.12311i) q^{3} +(4.12311 + 4.12311i) q^{7} -7.00000i q^{9} -13.8564i q^{11} +(-57.1314 - 57.1314i) q^{13} +(57.1314 - 57.1314i) q^{17} -96.9948 q^{19} +34.0000 q^{21} +(86.5852 - 86.5852i) q^{23} +(82.4621 + 82.4621i) q^{27} -174.000i q^{29} -193.990i q^{31} +(-57.1314 - 57.1314i) q^{33} -471.118 q^{39} +252.000 q^{41} +(-202.032 + 202.032i) q^{43} +(-284.494 - 284.494i) q^{47} -309.000i q^{49} -471.118i q^{51} +(399.920 + 399.920i) q^{53} +(-399.920 + 399.920i) q^{57} -872.954 q^{59} +56.0000 q^{61} +(28.8617 - 28.8617i) q^{63} +(317.479 + 317.479i) q^{67} -714.000i q^{69} -387.979i q^{71} +(399.920 + 399.920i) q^{73} +(57.1314 - 57.1314i) q^{77} -692.820 q^{79} +869.000 q^{81} +(-482.403 + 482.403i) q^{83} +(-717.420 - 717.420i) q^{87} +42.0000i q^{89} -471.118i q^{91} +(-799.840 - 799.840i) q^{93} +(742.709 - 742.709i) q^{97} -96.9948 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 272 q^{21} + 2016 q^{41} + 448 q^{61} + 6952 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.12311 4.12311i 0.793492 0.793492i −0.188568 0.982060i \(-0.560385\pi\)
0.982060 + 0.188568i \(0.0603846\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.12311 + 4.12311i 0.222627 + 0.222627i 0.809604 0.586977i \(-0.199682\pi\)
−0.586977 + 0.809604i \(0.699682\pi\)
\(8\) 0 0
\(9\) 7.00000i 0.259259i
\(10\) 0 0
\(11\) 13.8564i 0.379806i −0.981803 0.189903i \(-0.939183\pi\)
0.981803 0.189903i \(-0.0608173\pi\)
\(12\) 0 0
\(13\) −57.1314 57.1314i −1.21888 1.21888i −0.968025 0.250852i \(-0.919289\pi\)
−0.250852 0.968025i \(-0.580711\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 57.1314 57.1314i 0.815083 0.815083i −0.170308 0.985391i \(-0.554476\pi\)
0.985391 + 0.170308i \(0.0544763\pi\)
\(18\) 0 0
\(19\) −96.9948 −1.17117 −0.585583 0.810613i \(-0.699134\pi\)
−0.585583 + 0.810613i \(0.699134\pi\)
\(20\) 0 0
\(21\) 34.0000 0.353305
\(22\) 0 0
\(23\) 86.5852 86.5852i 0.784968 0.784968i −0.195696 0.980665i \(-0.562697\pi\)
0.980665 + 0.195696i \(0.0626967\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 82.4621 + 82.4621i 0.587772 + 0.587772i
\(28\) 0 0
\(29\) 174.000i 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 0 0
\(31\) 193.990i 1.12392i −0.827164 0.561961i \(-0.810047\pi\)
0.827164 0.561961i \(-0.189953\pi\)
\(32\) 0 0
\(33\) −57.1314 57.1314i −0.301373 0.301373i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) −471.118 −1.93434
\(40\) 0 0
\(41\) 252.000 0.959897 0.479949 0.877297i \(-0.340655\pi\)
0.479949 + 0.877297i \(0.340655\pi\)
\(42\) 0 0
\(43\) −202.032 + 202.032i −0.716503 + 0.716503i −0.967887 0.251385i \(-0.919114\pi\)
0.251385 + 0.967887i \(0.419114\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −284.494 284.494i −0.882931 0.882931i 0.110901 0.993832i \(-0.464627\pi\)
−0.993832 + 0.110901i \(0.964627\pi\)
\(48\) 0 0
\(49\) 309.000i 0.900875i
\(50\) 0 0
\(51\) 471.118i 1.29352i
\(52\) 0 0
\(53\) 399.920 + 399.920i 1.03648 + 1.03648i 0.999309 + 0.0371671i \(0.0118334\pi\)
0.0371671 + 0.999309i \(0.488167\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −399.920 + 399.920i −0.929310 + 0.929310i
\(58\) 0 0
\(59\) −872.954 −1.92625 −0.963126 0.269050i \(-0.913290\pi\)
−0.963126 + 0.269050i \(0.913290\pi\)
\(60\) 0 0
\(61\) 56.0000 0.117542 0.0587710 0.998271i \(-0.481282\pi\)
0.0587710 + 0.998271i \(0.481282\pi\)
\(62\) 0 0
\(63\) 28.8617 28.8617i 0.0577181 0.0577181i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 317.479 + 317.479i 0.578899 + 0.578899i 0.934600 0.355701i \(-0.115758\pi\)
−0.355701 + 0.934600i \(0.615758\pi\)
\(68\) 0 0
\(69\) 714.000i 1.24573i
\(70\) 0 0
\(71\) 387.979i 0.648517i −0.945969 0.324258i \(-0.894885\pi\)
0.945969 0.324258i \(-0.105115\pi\)
\(72\) 0 0
\(73\) 399.920 + 399.920i 0.641193 + 0.641193i 0.950849 0.309656i \(-0.100214\pi\)
−0.309656 + 0.950849i \(0.600214\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 57.1314 57.1314i 0.0845549 0.0845549i
\(78\) 0 0
\(79\) −692.820 −0.986688 −0.493344 0.869834i \(-0.664226\pi\)
−0.493344 + 0.869834i \(0.664226\pi\)
\(80\) 0 0
\(81\) 869.000 1.19204
\(82\) 0 0
\(83\) −482.403 + 482.403i −0.637960 + 0.637960i −0.950052 0.312092i \(-0.898970\pi\)
0.312092 + 0.950052i \(0.398970\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −717.420 717.420i −0.884087 0.884087i
\(88\) 0 0
\(89\) 42.0000i 0.0500224i 0.999687 + 0.0250112i \(0.00796214\pi\)
−0.999687 + 0.0250112i \(0.992038\pi\)
\(90\) 0 0
\(91\) 471.118i 0.542710i
\(92\) 0 0
\(93\) −799.840 799.840i −0.891823 0.891823i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 742.709 742.709i 0.777429 0.777429i −0.201964 0.979393i \(-0.564732\pi\)
0.979393 + 0.201964i \(0.0647323\pi\)
\(98\) 0 0
\(99\) −96.9948 −0.0984682
\(100\) 0 0
\(101\) −1050.00 −1.03444 −0.517222 0.855851i \(-0.673034\pi\)
−0.517222 + 0.855851i \(0.673034\pi\)
\(102\) 0 0
\(103\) 869.975 869.975i 0.832245 0.832245i −0.155579 0.987823i \(-0.549724\pi\)
0.987823 + 0.155579i \(0.0497242\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1298.78 + 1298.78i 1.17344 + 1.17344i 0.981385 + 0.192051i \(0.0615139\pi\)
0.192051 + 0.981385i \(0.438486\pi\)
\(108\) 0 0
\(109\) 272.000i 0.239017i −0.992833 0.119509i \(-0.961868\pi\)
0.992833 0.119509i \(-0.0381319\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −799.840 799.840i −0.665864 0.665864i 0.290892 0.956756i \(-0.406048\pi\)
−0.956756 + 0.290892i \(0.906048\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −399.920 + 399.920i −0.316005 + 0.316005i
\(118\) 0 0
\(119\) 471.118 0.362918
\(120\) 0 0
\(121\) 1139.00 0.855748
\(122\) 0 0
\(123\) 1039.02 1039.02i 0.761671 0.761671i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −28.8617 28.8617i −0.0201659 0.0201659i 0.696952 0.717118i \(-0.254539\pi\)
−0.717118 + 0.696952i \(0.754539\pi\)
\(128\) 0 0
\(129\) 1666.00i 1.13708i
\(130\) 0 0
\(131\) 1842.90i 1.22912i 0.788869 + 0.614561i \(0.210667\pi\)
−0.788869 + 0.614561i \(0.789333\pi\)
\(132\) 0 0
\(133\) −399.920 399.920i −0.260733 0.260733i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 799.840 799.840i 0.498795 0.498795i −0.412268 0.911063i \(-0.635263\pi\)
0.911063 + 0.412268i \(0.135263\pi\)
\(138\) 0 0
\(139\) 2036.89 1.24293 0.621464 0.783443i \(-0.286538\pi\)
0.621464 + 0.783443i \(0.286538\pi\)
\(140\) 0 0
\(141\) −2346.00 −1.40120
\(142\) 0 0
\(143\) −791.636 + 791.636i −0.462937 + 0.462937i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1274.04 1274.04i −0.714837 0.714837i
\(148\) 0 0
\(149\) 744.000i 0.409066i −0.978860 0.204533i \(-0.934432\pi\)
0.978860 0.204533i \(-0.0655676\pi\)
\(150\) 0 0
\(151\) 859.097i 0.462996i 0.972835 + 0.231498i \(0.0743626\pi\)
−0.972835 + 0.231498i \(0.925637\pi\)
\(152\) 0 0
\(153\) −399.920 399.920i −0.211318 0.211318i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 799.840 799.840i 0.406587 0.406587i −0.473960 0.880547i \(-0.657176\pi\)
0.880547 + 0.473960i \(0.157176\pi\)
\(158\) 0 0
\(159\) 3297.82 1.64487
\(160\) 0 0
\(161\) 714.000 0.349510
\(162\) 0 0
\(163\) −1356.50 + 1356.50i −0.651837 + 0.651837i −0.953435 0.301598i \(-0.902480\pi\)
0.301598 + 0.953435i \(0.402480\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1274.04 + 1274.04i 0.590348 + 0.590348i 0.937725 0.347377i \(-0.112928\pi\)
−0.347377 + 0.937725i \(0.612928\pi\)
\(168\) 0 0
\(169\) 4331.00i 1.97132i
\(170\) 0 0
\(171\) 678.964i 0.303635i
\(172\) 0 0
\(173\) 2856.57 + 2856.57i 1.25538 + 1.25538i 0.953274 + 0.302109i \(0.0976905\pi\)
0.302109 + 0.953274i \(0.402309\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3599.28 + 3599.28i −1.52847 + 1.52847i
\(178\) 0 0
\(179\) 1842.90 0.769525 0.384762 0.923016i \(-0.374283\pi\)
0.384762 + 0.923016i \(0.374283\pi\)
\(180\) 0 0
\(181\) −3094.00 −1.27058 −0.635291 0.772273i \(-0.719120\pi\)
−0.635291 + 0.772273i \(0.719120\pi\)
\(182\) 0 0
\(183\) 230.894 230.894i 0.0932687 0.0932687i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −791.636 791.636i −0.309573 0.309573i
\(188\) 0 0
\(189\) 680.000i 0.261708i
\(190\) 0 0
\(191\) 3990.65i 1.51180i 0.654690 + 0.755898i \(0.272799\pi\)
−0.654690 + 0.755898i \(0.727201\pi\)
\(192\) 0 0
\(193\) 2799.44 + 2799.44i 1.04408 + 1.04408i 0.998982 + 0.0451010i \(0.0143610\pi\)
0.0451010 + 0.998982i \(0.485639\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 399.920 399.920i 0.144635 0.144635i −0.631081 0.775717i \(-0.717389\pi\)
0.775717 + 0.631081i \(0.217389\pi\)
\(198\) 0 0
\(199\) 3103.84 1.10565 0.552827 0.833296i \(-0.313549\pi\)
0.552827 + 0.833296i \(0.313549\pi\)
\(200\) 0 0
\(201\) 2618.00 0.918704
\(202\) 0 0
\(203\) 717.420 717.420i 0.248045 0.248045i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −606.097 606.097i −0.203510 0.203510i
\(208\) 0 0
\(209\) 1344.00i 0.444815i
\(210\) 0 0
\(211\) 180.133i 0.0587720i 0.999568 + 0.0293860i \(0.00935520\pi\)
−0.999568 + 0.0293860i \(0.990645\pi\)
\(212\) 0 0
\(213\) −1599.68 1599.68i −0.514593 0.514593i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 799.840 799.840i 0.250215 0.250215i
\(218\) 0 0
\(219\) 3297.82 1.01756
\(220\) 0 0
\(221\) −6528.00 −1.98697
\(222\) 0 0
\(223\) −3756.15 + 3756.15i −1.12794 + 1.12794i −0.137427 + 0.990512i \(0.543883\pi\)
−0.990512 + 0.137427i \(0.956117\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3401.56 3401.56i −0.994580 0.994580i 0.00540561 0.999985i \(-0.498279\pi\)
−0.999985 + 0.00540561i \(0.998279\pi\)
\(228\) 0 0
\(229\) 2170.00i 0.626191i −0.949722 0.313095i \(-0.898634\pi\)
0.949722 0.313095i \(-0.101366\pi\)
\(230\) 0 0
\(231\) 471.118i 0.134187i
\(232\) 0 0
\(233\) −1199.76 1199.76i −0.337334 0.337334i 0.518029 0.855363i \(-0.326666\pi\)
−0.855363 + 0.518029i \(0.826666\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2856.57 + 2856.57i −0.782929 + 0.782929i
\(238\) 0 0
\(239\) −2798.99 −0.757539 −0.378770 0.925491i \(-0.623653\pi\)
−0.378770 + 0.925491i \(0.623653\pi\)
\(240\) 0 0
\(241\) 5908.00 1.57912 0.789560 0.613674i \(-0.210309\pi\)
0.789560 + 0.613674i \(0.210309\pi\)
\(242\) 0 0
\(243\) 1356.50 1356.50i 0.358105 0.358105i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5541.45 + 5541.45i 1.42751 + 1.42751i
\(248\) 0 0
\(249\) 3978.00i 1.01243i
\(250\) 0 0
\(251\) 3588.81i 0.902485i 0.892401 + 0.451242i \(0.149019\pi\)
−0.892401 + 0.451242i \(0.850981\pi\)
\(252\) 0 0
\(253\) −1199.76 1199.76i −0.298135 0.298135i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4799.04 4799.04i 1.16481 1.16481i 0.181399 0.983410i \(-0.441937\pi\)
0.983410 0.181399i \(-0.0580627\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1218.00 −0.288859
\(262\) 0 0
\(263\) 3723.16 3723.16i 0.872928 0.872928i −0.119862 0.992791i \(-0.538245\pi\)
0.992791 + 0.119862i \(0.0382453\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 173.170 + 173.170i 0.0396924 + 0.0396924i
\(268\) 0 0
\(269\) 2856.00i 0.647336i −0.946171 0.323668i \(-0.895084\pi\)
0.946171 0.323668i \(-0.104916\pi\)
\(270\) 0 0
\(271\) 6013.68i 1.34799i −0.738736 0.673995i \(-0.764577\pi\)
0.738736 0.673995i \(-0.235423\pi\)
\(272\) 0 0
\(273\) −1942.47 1942.47i −0.430636 0.430636i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1599.68 1599.68i 0.346987 0.346987i −0.511999 0.858986i \(-0.671095\pi\)
0.858986 + 0.511999i \(0.171095\pi\)
\(278\) 0 0
\(279\) −1357.93 −0.291387
\(280\) 0 0
\(281\) 636.000 0.135020 0.0675099 0.997719i \(-0.478495\pi\)
0.0675099 + 0.997719i \(0.478495\pi\)
\(282\) 0 0
\(283\) 5661.02 5661.02i 1.18909 1.18909i 0.211773 0.977319i \(-0.432076\pi\)
0.977319 0.211773i \(-0.0679237\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1039.02 + 1039.02i 0.213699 + 0.213699i
\(288\) 0 0
\(289\) 1615.00i 0.328720i
\(290\) 0 0
\(291\) 6124.53i 1.23377i
\(292\) 0 0
\(293\) −1942.47 1942.47i −0.387305 0.387305i 0.486420 0.873725i \(-0.338302\pi\)
−0.873725 + 0.486420i \(0.838302\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1142.63 1142.63i 0.223239 0.223239i
\(298\) 0 0
\(299\) −9893.47 −1.91356
\(300\) 0 0
\(301\) −1666.00 −0.319025
\(302\) 0 0
\(303\) −4329.26 + 4329.26i −0.820824 + 0.820824i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1331.76 1331.76i −0.247582 0.247582i 0.572395 0.819978i \(-0.306014\pi\)
−0.819978 + 0.572395i \(0.806014\pi\)
\(308\) 0 0
\(309\) 7174.00i 1.32076i
\(310\) 0 0
\(311\) 4849.74i 0.884256i 0.896952 + 0.442128i \(0.145776\pi\)
−0.896952 + 0.442128i \(0.854224\pi\)
\(312\) 0 0
\(313\) −2742.31 2742.31i −0.495222 0.495222i 0.414725 0.909947i \(-0.363878\pi\)
−0.909947 + 0.414725i \(0.863878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1199.76 1199.76i 0.212572 0.212572i −0.592787 0.805359i \(-0.701973\pi\)
0.805359 + 0.592787i \(0.201973\pi\)
\(318\) 0 0
\(319\) −2411.01 −0.423169
\(320\) 0 0
\(321\) 10710.0 1.86222
\(322\) 0 0
\(323\) −5541.45 + 5541.45i −0.954597 + 0.954597i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1121.48 1121.48i −0.189658 0.189658i
\(328\) 0 0
\(329\) 2346.00i 0.393128i
\(330\) 0 0
\(331\) 5722.70i 0.950296i −0.879906 0.475148i \(-0.842395\pi\)
0.879906 0.475148i \(-0.157605\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4799.04 + 4799.04i −0.775728 + 0.775728i −0.979101 0.203373i \(-0.934810\pi\)
0.203373 + 0.979101i \(0.434810\pi\)
\(338\) 0 0
\(339\) −6595.65 −1.05672
\(340\) 0 0
\(341\) −2688.00 −0.426872
\(342\) 0 0
\(343\) 2688.26 2688.26i 0.423186 0.423186i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3203.65 + 3203.65i 0.495623 + 0.495623i 0.910072 0.414450i \(-0.136026\pi\)
−0.414450 + 0.910072i \(0.636026\pi\)
\(348\) 0 0
\(349\) 1778.00i 0.272705i −0.990660 0.136353i \(-0.956462\pi\)
0.990660 0.136353i \(-0.0435380\pi\)
\(350\) 0 0
\(351\) 9422.36i 1.43284i
\(352\) 0 0
\(353\) 3656.41 + 3656.41i 0.551306 + 0.551306i 0.926818 0.375511i \(-0.122533\pi\)
−0.375511 + 0.926818i \(0.622533\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1942.47 1942.47i 0.287973 0.287973i
\(358\) 0 0
\(359\) −11445.4 −1.68263 −0.841316 0.540544i \(-0.818218\pi\)
−0.841316 + 0.540544i \(0.818218\pi\)
\(360\) 0 0
\(361\) 2549.00 0.371629
\(362\) 0 0
\(363\) 4696.22 4696.22i 0.679029 0.679029i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6930.94 6930.94i −0.985810 0.985810i 0.0140910 0.999901i \(-0.495515\pi\)
−0.999901 + 0.0140910i \(0.995515\pi\)
\(368\) 0 0
\(369\) 1764.00i 0.248862i
\(370\) 0 0
\(371\) 3297.82i 0.461495i
\(372\) 0 0
\(373\) 8798.24 + 8798.24i 1.22133 + 1.22133i 0.967160 + 0.254169i \(0.0818019\pi\)
0.254169 + 0.967160i \(0.418198\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9940.87 + 9940.87i −1.35804 + 1.35804i
\(378\) 0 0
\(379\) −872.954 −0.118313 −0.0591565 0.998249i \(-0.518841\pi\)
−0.0591565 + 0.998249i \(0.518841\pi\)
\(380\) 0 0
\(381\) −238.000 −0.0320029
\(382\) 0 0
\(383\) −1941.98 + 1941.98i −0.259088 + 0.259088i −0.824683 0.565595i \(-0.808647\pi\)
0.565595 + 0.824683i \(0.308647\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1414.23 + 1414.23i 0.185760 + 0.185760i
\(388\) 0 0
\(389\) 11880.0i 1.54843i −0.632922 0.774216i \(-0.718144\pi\)
0.632922 0.774216i \(-0.281856\pi\)
\(390\) 0 0
\(391\) 9893.47i 1.27963i
\(392\) 0 0
\(393\) 7598.48 + 7598.48i 0.975299 + 0.975299i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −57.1314 + 57.1314i −0.00722253 + 0.00722253i −0.710709 0.703486i \(-0.751626\pi\)
0.703486 + 0.710709i \(0.251626\pi\)
\(398\) 0 0
\(399\) −3297.82 −0.413779
\(400\) 0 0
\(401\) −498.000 −0.0620173 −0.0310086 0.999519i \(-0.509872\pi\)
−0.0310086 + 0.999519i \(0.509872\pi\)
\(402\) 0 0
\(403\) −11082.9 + 11082.9i −1.36992 + 1.36992i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7700.00i 0.930906i 0.885073 + 0.465453i \(0.154109\pi\)
−0.885073 + 0.465453i \(0.845891\pi\)
\(410\) 0 0
\(411\) 6595.65i 0.791580i
\(412\) 0 0
\(413\) −3599.28 3599.28i −0.428835 0.428835i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8398.32 8398.32i 0.986253 0.986253i
\(418\) 0 0
\(419\) −3976.79 −0.463673 −0.231836 0.972755i \(-0.574473\pi\)
−0.231836 + 0.972755i \(0.574473\pi\)
\(420\) 0 0
\(421\) 11768.0 1.36232 0.681161 0.732134i \(-0.261476\pi\)
0.681161 + 0.732134i \(0.261476\pi\)
\(422\) 0 0
\(423\) −1991.46 + 1991.46i −0.228908 + 0.228908i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 230.894 + 230.894i 0.0261680 + 0.0261680i
\(428\) 0 0
\(429\) 6528.00i 0.734673i
\(430\) 0 0
\(431\) 17542.2i 1.96051i 0.197745 + 0.980254i \(0.436638\pi\)
−0.197745 + 0.980254i \(0.563362\pi\)
\(432\) 0 0
\(433\) −7598.48 7598.48i −0.843325 0.843325i 0.145965 0.989290i \(-0.453371\pi\)
−0.989290 + 0.145965i \(0.953371\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8398.32 + 8398.32i −0.919328 + 0.919328i
\(438\) 0 0
\(439\) 1745.91 0.189812 0.0949062 0.995486i \(-0.469745\pi\)
0.0949062 + 0.995486i \(0.469745\pi\)
\(440\) 0 0
\(441\) −2163.00 −0.233560
\(442\) 0 0
\(443\) −1471.95 + 1471.95i −0.157865 + 0.157865i −0.781620 0.623755i \(-0.785606\pi\)
0.623755 + 0.781620i \(0.285606\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3067.59 3067.59i −0.324591 0.324591i
\(448\) 0 0
\(449\) 15252.0i 1.60309i −0.597936 0.801544i \(-0.704012\pi\)
0.597936 0.801544i \(-0.295988\pi\)
\(450\) 0 0
\(451\) 3491.81i 0.364575i
\(452\) 0 0
\(453\) 3542.15 + 3542.15i 0.367383 + 0.367383i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6398.72 6398.72i 0.654966 0.654966i −0.299219 0.954185i \(-0.596726\pi\)
0.954185 + 0.299219i \(0.0967260\pi\)
\(458\) 0 0
\(459\) 9422.36 0.958165
\(460\) 0 0
\(461\) −15582.0 −1.57424 −0.787122 0.616798i \(-0.788430\pi\)
−0.787122 + 0.616798i \(0.788430\pi\)
\(462\) 0 0
\(463\) 11919.9 11919.9i 1.19647 1.19647i 0.221251 0.975217i \(-0.428986\pi\)
0.975217 0.221251i \(-0.0710140\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3005.74 + 3005.74i 0.297836 + 0.297836i 0.840166 0.542330i \(-0.182458\pi\)
−0.542330 + 0.840166i \(0.682458\pi\)
\(468\) 0 0
\(469\) 2618.00i 0.257757i
\(470\) 0 0
\(471\) 6595.65i 0.645247i
\(472\) 0 0
\(473\) 2799.44 + 2799.44i 0.272132 + 0.272132i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2799.44 2799.44i 0.268716 0.268716i
\(478\) 0 0
\(479\) −387.979 −0.0370088 −0.0185044 0.999829i \(-0.505890\pi\)
−0.0185044 + 0.999829i \(0.505890\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2943.90 2943.90i 0.277333 0.277333i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1356.50 1356.50i −0.126220 0.126220i 0.641175 0.767395i \(-0.278447\pi\)
−0.767395 + 0.641175i \(0.778447\pi\)
\(488\) 0 0
\(489\) 11186.0i 1.03445i
\(490\) 0 0
\(491\) 14369.1i 1.32071i 0.750954 + 0.660354i \(0.229594\pi\)
−0.750954 + 0.660354i \(0.770406\pi\)
\(492\) 0 0
\(493\) −9940.87 9940.87i −0.908142 0.908142i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1599.68 1599.68i 0.144377 0.144377i
\(498\) 0 0
\(499\) 7357.75 0.660077 0.330038 0.943968i \(-0.392938\pi\)
0.330038 + 0.943968i \(0.392938\pi\)
\(500\) 0 0
\(501\) 10506.0 0.936873
\(502\) 0 0
\(503\) 12579.6 12579.6i 1.11510 1.11510i 0.122653 0.992450i \(-0.460860\pi\)
0.992450 0.122653i \(-0.0391401\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 17857.2 + 17857.2i 1.56423 + 1.56423i
\(508\) 0 0
\(509\) 20370.0i 1.77384i 0.461923 + 0.886920i \(0.347159\pi\)
−0.461923 + 0.886920i \(0.652841\pi\)
\(510\) 0 0
\(511\) 3297.82i 0.285493i
\(512\) 0 0
\(513\) −7998.40 7998.40i −0.688378 0.688378i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3942.07 + 3942.07i −0.335342 + 0.335342i
\(518\) 0 0
\(519\) 23555.9 1.99227
\(520\) 0 0
\(521\) −18438.0 −1.55045 −0.775224 0.631686i \(-0.782363\pi\)
−0.775224 + 0.631686i \(0.782363\pi\)
\(522\) 0 0
\(523\) −3904.58 + 3904.58i −0.326454 + 0.326454i −0.851236 0.524782i \(-0.824147\pi\)
0.524782 + 0.851236i \(0.324147\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11082.9 11082.9i −0.916089 0.916089i
\(528\) 0 0
\(529\) 2827.00i 0.232350i
\(530\) 0 0
\(531\) 6110.68i 0.499399i
\(532\) 0 0
\(533\) −14397.1 14397.1i −1.17000 1.17000i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7598.48 7598.48i 0.610612 0.610612i
\(538\) 0 0
\(539\) −4281.63 −0.342157
\(540\) 0 0
\(541\) 6322.00 0.502410 0.251205 0.967934i \(-0.419173\pi\)
0.251205 + 0.967934i \(0.419173\pi\)
\(542\) 0 0
\(543\) −12756.9 + 12756.9i −1.00820 + 1.00820i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1587.40 1587.40i −0.124081 0.124081i 0.642340 0.766420i \(-0.277964\pi\)
−0.766420 + 0.642340i \(0.777964\pi\)
\(548\) 0 0
\(549\) 392.000i 0.0304739i
\(550\) 0 0
\(551\) 16877.1i 1.30488i
\(552\) 0 0
\(553\) −2856.57 2856.57i −0.219663 0.219663i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12797.4 12797.4i 0.973510 0.973510i −0.0261483 0.999658i \(-0.508324\pi\)
0.999658 + 0.0261483i \(0.00832422\pi\)
\(558\) 0 0
\(559\) 23084.8 1.74666
\(560\) 0 0
\(561\) −6528.00 −0.491288
\(562\) 0 0
\(563\) 729.790 729.790i 0.0546305 0.0546305i −0.679264 0.733894i \(-0.737701\pi\)
0.733894 + 0.679264i \(0.237701\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3582.98 + 3582.98i 0.265381 + 0.265381i
\(568\) 0 0
\(569\) 5196.00i 0.382825i 0.981510 + 0.191413i \(0.0613069\pi\)
−0.981510 + 0.191413i \(0.938693\pi\)
\(570\) 0 0
\(571\) 5528.71i 0.405200i −0.979262 0.202600i \(-0.935061\pi\)
0.979262 0.202600i \(-0.0649391\pi\)
\(572\) 0 0
\(573\) 16453.9 + 16453.9i 1.19960 + 1.19960i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17253.7 + 17253.7i −1.24485 + 1.24485i −0.286890 + 0.957963i \(0.592621\pi\)
−0.957963 + 0.286890i \(0.907379\pi\)
\(578\) 0 0
\(579\) 23084.8 1.65694
\(580\) 0 0
\(581\) −3978.00 −0.284054
\(582\) 0 0
\(583\) 5541.45 5541.45i 0.393660 0.393660i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13989.7 13989.7i −0.983674 0.983674i 0.0161949 0.999869i \(-0.494845\pi\)
−0.999869 + 0.0161949i \(0.994845\pi\)
\(588\) 0 0
\(589\) 18816.0i 1.31630i
\(590\) 0 0
\(591\) 3297.82i 0.229534i
\(592\) 0 0
\(593\) 9255.29 + 9255.29i 0.640926 + 0.640926i 0.950783 0.309857i \(-0.100281\pi\)
−0.309857 + 0.950783i \(0.600281\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12797.4 12797.4i 0.877327 0.877327i
\(598\) 0 0
\(599\) −10586.3 −0.722111 −0.361055 0.932544i \(-0.617583\pi\)
−0.361055 + 0.932544i \(0.617583\pi\)
\(600\) 0 0
\(601\) −17612.0 −1.19536 −0.597678 0.801737i \(-0.703910\pi\)
−0.597678 + 0.801737i \(0.703910\pi\)
\(602\) 0 0
\(603\) 2222.35 2222.35i 0.150085 0.150085i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13338.2 + 13338.2i 0.891899 + 0.891899i 0.994702 0.102803i \(-0.0327810\pi\)
−0.102803 + 0.994702i \(0.532781\pi\)
\(608\) 0 0
\(609\) 5916.00i 0.393643i
\(610\) 0 0
\(611\) 32507.1i 2.15237i
\(612\) 0 0
\(613\) 5198.96 + 5198.96i 0.342551 + 0.342551i 0.857326 0.514774i \(-0.172124\pi\)
−0.514774 + 0.857326i \(0.672124\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12397.5 + 12397.5i −0.808923 + 0.808923i −0.984471 0.175548i \(-0.943830\pi\)
0.175548 + 0.984471i \(0.443830\pi\)
\(618\) 0 0
\(619\) 19108.0 1.24073 0.620367 0.784311i \(-0.286984\pi\)
0.620367 + 0.784311i \(0.286984\pi\)
\(620\) 0 0
\(621\) 14280.0 0.922764
\(622\) 0 0
\(623\) −173.170 + 173.170i −0.0111363 + 0.0111363i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5541.45 + 5541.45i 0.352958 + 0.352958i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 4572.61i 0.288483i 0.989543 + 0.144242i \(0.0460742\pi\)
−0.989543 + 0.144242i \(0.953926\pi\)
\(632\) 0 0
\(633\) 742.709 + 742.709i 0.0466351 + 0.0466351i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −17653.6 + 17653.6i −1.09806 + 1.09806i
\(638\) 0 0
\(639\) −2715.86 −0.168134
\(640\) 0 0
\(641\) −10404.0 −0.641082 −0.320541 0.947235i \(-0.603865\pi\)
−0.320541 + 0.947235i \(0.603865\pi\)
\(642\) 0 0
\(643\) −1034.90 + 1034.90i −0.0634719 + 0.0634719i −0.738130 0.674658i \(-0.764291\pi\)
0.674658 + 0.738130i \(0.264291\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3500.52 3500.52i −0.212704 0.212704i 0.592711 0.805415i \(-0.298058\pi\)
−0.805415 + 0.592711i \(0.798058\pi\)
\(648\) 0 0
\(649\) 12096.0i 0.731602i
\(650\) 0 0
\(651\) 6595.65i 0.397087i
\(652\) 0 0
\(653\) 11597.7 + 11597.7i 0.695026 + 0.695026i 0.963333 0.268307i \(-0.0864642\pi\)
−0.268307 + 0.963333i \(0.586464\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2799.44 2799.44i 0.166235 0.166235i
\(658\) 0 0
\(659\) −762.102 −0.0450490 −0.0225245 0.999746i \(-0.507170\pi\)
−0.0225245 + 0.999746i \(0.507170\pi\)
\(660\) 0 0
\(661\) 18592.0 1.09402 0.547008 0.837127i \(-0.315767\pi\)
0.547008 + 0.837127i \(0.315767\pi\)
\(662\) 0 0
\(663\) −26915.6 + 26915.6i −1.57665 + 1.57665i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15065.8 15065.8i −0.874589 0.874589i
\(668\) 0 0
\(669\) 30974.0i 1.79002i
\(670\) 0 0
\(671\) 775.959i 0.0446432i
\(672\) 0 0
\(673\) 9998.00 + 9998.00i 0.572652 + 0.572652i 0.932869 0.360217i \(-0.117297\pi\)
−0.360217 + 0.932869i \(0.617297\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7141.43 + 7141.43i −0.405417 + 0.405417i −0.880137 0.474720i \(-0.842549\pi\)
0.474720 + 0.880137i \(0.342549\pi\)
\(678\) 0 0
\(679\) 6124.53 0.346153
\(680\) 0 0
\(681\) −28050.0 −1.57838
\(682\) 0 0
\(683\) −5974.38 + 5974.38i −0.334705 + 0.334705i −0.854370 0.519665i \(-0.826057\pi\)
0.519665 + 0.854370i \(0.326057\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −8947.14 8947.14i −0.496877 0.496877i
\(688\) 0 0
\(689\) 45696.0i 2.52667i
\(690\) 0 0
\(691\) 29001.5i 1.59662i −0.602244 0.798312i \(-0.705726\pi\)
0.602244 0.798312i \(-0.294274\pi\)
\(692\) 0 0
\(693\) −399.920 399.920i −0.0219217 0.0219217i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14397.1 14397.1i 0.782396 0.782396i
\(698\) 0 0
\(699\) −9893.47 −0.535344
\(700\) 0 0
\(701\) 3408.00 0.183621 0.0918105 0.995776i \(-0.470735\pi\)
0.0918105 + 0.995776i \(0.470735\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4329.26 4329.26i −0.230295 0.230295i
\(708\) 0 0
\(709\) 16486.0i 0.873265i −0.899640 0.436632i \(-0.856171\pi\)
0.899640 0.436632i \(-0.143829\pi\)
\(710\) 0 0
\(711\) 4849.74i 0.255808i
\(712\) 0 0
\(713\) −16796.6 16796.6i −0.882243 0.882243i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11540.5 + 11540.5i −0.601101 + 0.601101i
\(718\) 0 0
\(719\) 2521.87 0.130806 0.0654032 0.997859i \(-0.479167\pi\)
0.0654032 + 0.997859i \(0.479167\pi\)
\(720\) 0 0
\(721\) 7174.00 0.370560
\(722\) 0 0
\(723\) 24359.3 24359.3i 1.25302 1.25302i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1653.37 + 1653.37i 0.0843465 + 0.0843465i 0.748021 0.663675i \(-0.231004\pi\)
−0.663675 + 0.748021i \(0.731004\pi\)
\(728\) 0 0
\(729\) 12277.0i 0.623736i
\(730\) 0 0
\(731\) 23084.8i 1.16802i
\(732\) 0 0
\(733\) −6055.93 6055.93i −0.305158 0.305158i 0.537870 0.843028i \(-0.319229\pi\)
−0.843028 + 0.537870i \(0.819229\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4399.12 4399.12i 0.219869 0.219869i
\(738\) 0 0
\(739\) −25204.8 −1.25463 −0.627316 0.778764i \(-0.715847\pi\)
−0.627316 + 0.778764i \(0.715847\pi\)
\(740\) 0 0
\(741\) 45696.0 2.26543
\(742\) 0 0
\(743\) 1125.61 1125.61i 0.0555781 0.0555781i −0.678771 0.734350i \(-0.737487\pi\)
0.734350 + 0.678771i \(0.237487\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3376.82 + 3376.82i 0.165397 + 0.165397i
\(748\) 0 0
\(749\) 10710.0i 0.522476i
\(750\) 0 0
\(751\) 11140.6i 0.541311i −0.962676 0.270655i \(-0.912760\pi\)
0.962676 0.270655i \(-0.0872404\pi\)
\(752\) 0 0
\(753\) 14797.0 + 14797.0i 0.716114 + 0.716114i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8798.24 8798.24i 0.422427 0.422427i −0.463611 0.886039i \(-0.653447\pi\)
0.886039 + 0.463611i \(0.153447\pi\)
\(758\) 0 0
\(759\) −9893.47 −0.473136
\(760\) 0 0
\(761\) −19110.0 −0.910298 −0.455149 0.890415i \(-0.650414\pi\)
−0.455149 + 0.890415i \(0.650414\pi\)
\(762\) 0 0
\(763\) 1121.48 1121.48i 0.0532116 0.0532116i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 49873.1 + 49873.1i 2.34787 + 2.34787i
\(768\) 0 0
\(769\) 17458.0i 0.818663i −0.912386 0.409331i \(-0.865762\pi\)
0.912386 0.409331i \(-0.134238\pi\)
\(770\) 0 0
\(771\) 39573.9i 1.84853i
\(772\) 0 0
\(773\) −12054.7 12054.7i −0.560904 0.560904i 0.368660 0.929564i \(-0.379817\pi\)
−0.929564 + 0.368660i \(0.879817\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24442.7 −1.12420
\(780\) 0 0
\(781\) −5376.00 −0.246310
\(782\) 0 0
\(783\) 14348.4 14348.4i 0.654879 0.654879i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −10443.8 10443.8i −0.473040 0.473040i 0.429857 0.902897i \(-0.358564\pi\)
−0.902897 + 0.429857i \(0.858564\pi\)
\(788\) 0 0
\(789\) 30702.0i 1.38532i
\(790\) 0 0
\(791\) 6595.65i 0.296478i
\(792\) 0 0
\(793\) −3199.36 3199.36i −0.143269 0.143269i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3256.49 3256.49i 0.144731 0.144731i −0.631028 0.775760i \(-0.717367\pi\)
0.775760 + 0.631028i \(0.217367\pi\)
\(798\) 0 0
\(799\) −32507.1 −1.43932
\(800\) 0 0
\(801\) 294.000 0.0129688
\(802\) 0 0
\(803\) 5541.45 5541.45i 0.243529 0.243529i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11775.6 11775.6i −0.513656 0.513656i
\(808\) 0 0
\(809\) 12762.0i 0.554621i −0.960780 0.277310i \(-0.910557\pi\)
0.960780 0.277310i \(-0.0894430\pi\)
\(810\) 0 0
\(811\) 1842.90i 0.0797941i −0.999204 0.0398971i \(-0.987297\pi\)
0.999204 0.0398971i \(-0.0127030\pi\)
\(812\) 0 0
\(813\) −24795.0 24795.0i −1.06962 1.06962i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 19596.1 19596.1i 0.839143 0.839143i
\(818\) 0 0
\(819\) −3297.82 −0.140702
\(820\) 0 0
\(821\) 18768.0 0.797817 0.398908 0.916991i \(-0.369389\pi\)
0.398908 + 0.916991i \(0.369389\pi\)
\(822\) 0 0
\(823\) −16306.9 + 16306.9i −0.690671 + 0.690671i −0.962380 0.271709i \(-0.912411\pi\)
0.271709 + 0.962380i \(0.412411\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14113.4 14113.4i −0.593435 0.593435i 0.345123 0.938558i \(-0.387837\pi\)
−0.938558 + 0.345123i \(0.887837\pi\)
\(828\) 0 0
\(829\) 19208.0i 0.804730i 0.915479 + 0.402365i \(0.131812\pi\)
−0.915479 + 0.402365i \(0.868188\pi\)
\(830\) 0 0
\(831\) 13191.3i 0.550663i
\(832\) 0 0
\(833\) −17653.6 17653.6i −0.734287 0.734287i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 15996.8 15996.8i 0.660610 0.660610i
\(838\) 0 0
\(839\) −38216.0 −1.57254 −0.786270 0.617883i \(-0.787991\pi\)
−0.786270 + 0.617883i \(0.787991\pi\)
\(840\) 0 0
\(841\) −5887.00 −0.241379
\(842\) 0 0
\(843\) 2622.30 2622.30i 0.107137 0.107137i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4696.22 + 4696.22i 0.190512 + 0.190512i
\(848\) 0 0
\(849\) 46682.0i 1.88707i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −5198.96 5198.96i −0.208686 0.208686i 0.595023 0.803709i \(-0.297143\pi\)
−0.803709 + 0.595023i \(0.797143\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3999.20 + 3999.20i −0.159405 + 0.159405i −0.782303 0.622898i \(-0.785955\pi\)
0.622898 + 0.782303i \(0.285955\pi\)
\(858\) 0 0
\(859\) 4946.74 0.196485 0.0982424 0.995163i \(-0.468678\pi\)
0.0982424 + 0.995163i \(0.468678\pi\)
\(860\) 0 0
\(861\) 8568.00 0.339137
\(862\) 0 0
\(863\) 7013.40 7013.40i 0.276638 0.276638i −0.555127 0.831766i \(-0.687330\pi\)
0.831766 + 0.555127i \(0.187330\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6658.82 6658.82i −0.260836 0.260836i
\(868\) 0 0
\(869\) 9600.00i 0.374750i
\(870\) 0 0
\(871\) 36276.1i 1.41121i
\(872\) 0 0
\(873\) −5198.96 5198.96i −0.201556 0.201556i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11997.6 11997.6i 0.461950 0.461950i −0.437344 0.899294i \(-0.644081\pi\)
0.899294 + 0.437344i \(0.144081\pi\)
\(878\) 0 0
\(879\) −16018.0 −0.614646
\(880\) 0 0
\(881\) 13020.0 0.497906 0.248953 0.968516i \(-0.419914\pi\)
0.248953 + 0.968516i \(0.419914\pi\)
\(882\) 0 0
\(883\) 9668.68 9668.68i 0.368490 0.368490i −0.498436 0.866926i \(-0.666092\pi\)
0.866926 + 0.498436i \(0.166092\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13297.0 + 13297.0i 0.503348 + 0.503348i 0.912477 0.409128i \(-0.134167\pi\)
−0.409128 + 0.912477i \(0.634167\pi\)
\(888\) 0 0
\(889\) 238.000i 0.00897892i
\(890\) 0 0
\(891\) 12041.2i 0.452745i
\(892\) 0 0
\(893\) 27594.5 + 27594.5i 1.03406 + 1.03406i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −40791.8 + 40791.8i −1.51839 + 1.51839i
\(898\) 0 0
\(899\) −33754.2 −1.25224
\(900\) 0 0
\(901\) 45696.0 1.68963
\(902\) 0 0
\(903\) −6869.09 + 6869.09i −0.253144 + 0.253144i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9322.34 + 9322.34i 0.341283 + 0.341283i 0.856849 0.515567i \(-0.172419\pi\)
−0.515567 + 0.856849i \(0.672419\pi\)
\(908\) 0 0
\(909\) 7350.00i 0.268189i
\(910\) 0 0
\(911\) 2133.89i 0.0776057i 0.999247 + 0.0388029i \(0.0123544\pi\)
−0.999247 + 0.0388029i \(0.987646\pi\)
\(912\) 0 0
\(913\) 6684.38 + 6684.38i 0.242301 + 0.242301i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7598.48 + 7598.48i −0.273636 + 0.273636i
\(918\) 0 0
\(919\) 22613.7 0.811704 0.405852 0.913939i \(-0.366975\pi\)
0.405852 + 0.913939i \(0.366975\pi\)
\(920\) 0 0
\(921\) −10982.0 −0.392909
\(922\) 0 0
\(923\) −22165.8 + 22165.8i −0.790462 + 0.790462i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6089.83 6089.83i −0.215767 0.215767i
\(928\) 0 0
\(929\) 33684.0i 1.18960i −0.803875 0.594799i \(-0.797232\pi\)
0.803875 0.594799i \(-0.202768\pi\)
\(930\) 0 0
\(931\) 29971.4i 1.05507i
\(932\) 0 0
\(933\) 19996.0 + 19996.0i 0.701650 + 0.701650i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20738.7 + 20738.7i −0.723057 + 0.723057i −0.969227 0.246170i \(-0.920828\pi\)
0.246170 + 0.969227i \(0.420828\pi\)
\(938\) 0 0
\(939\) −22613.7 −0.785909
\(940\) 0 0
\(941\) −33054.0 −1.14509 −0.572545 0.819873i \(-0.694044\pi\)
−0.572545 + 0.819873i \(0.694044\pi\)
\(942\) 0 0
\(943\) 21819.5 21819.5i 0.753489 0.753489i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8398.77 + 8398.77i 0.288198 + 0.288198i 0.836367 0.548170i \(-0.184675\pi\)
−0.548170 + 0.836367i \(0.684675\pi\)
\(948\) 0 0
\(949\) 45696.0i 1.56307i
\(950\) 0 0
\(951\) 9893.47i 0.337348i
\(952\) 0 0
\(953\) 15197.0 + 15197.0i 0.516556 + 0.516556i 0.916528 0.399972i \(-0.130980\pi\)
−0.399972 + 0.916528i \(0.630980\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −9940.87 + 9940.87i −0.335781 + 0.335781i
\(958\) 0 0
\(959\) 6595.65 0.222090
\(960\) 0 0
\(961\) −7841.00 −0.263200
\(962\) 0 0
\(963\) 9091.45 9091.45i 0.304224 0.304224i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −25484.9 25484.9i −0.847507 0.847507i 0.142314 0.989822i \(-0.454546\pi\)
−0.989822 + 0.142314i \(0.954546\pi\)
\(968\) 0 0
\(969\) 45696.0i 1.51493i
\(970\) 0 0
\(971\) 52668.2i 1.74068i −0.492449 0.870341i \(-0.663898\pi\)
0.492449 0.870341i \(-0.336102\pi\)
\(972\) 0 0
\(973\) 8398.32 + 8398.32i 0.276709 + 0.276709i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40391.9 40391.9i 1.32267 1.32267i 0.411069 0.911604i \(-0.365155\pi\)
0.911604 0.411069i \(-0.134845\pi\)
\(978\) 0 0
\(979\) 581.969 0.0189988
\(980\) 0 0
\(981\) −1904.00 −0.0619674
\(982\) 0 0
\(983\) −22104.0 + 22104.0i −0.717200 + 0.717200i −0.968031 0.250831i \(-0.919296\pi\)
0.250831 + 0.968031i \(0.419296\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9672.81 9672.81i −0.311944 0.311944i
\(988\) 0 0
\(989\) 34986.0i 1.12486i
\(990\) 0 0
\(991\) 18235.0i 0.584515i 0.956340 + 0.292258i \(0.0944065\pi\)
−0.956340 + 0.292258i \(0.905593\pi\)
\(992\) 0 0
\(993\) −23595.3 23595.3i −0.754052 0.754052i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −12854.6 + 12854.6i −0.408333 + 0.408333i −0.881157 0.472824i \(-0.843235\pi\)
0.472824 + 0.881157i \(0.343235\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.n.d.143.3 yes 8
4.3 odd 2 inner 400.4.n.d.143.2 yes 8
5.2 odd 4 inner 400.4.n.d.207.1 yes 8
5.3 odd 4 inner 400.4.n.d.207.3 yes 8
5.4 even 2 inner 400.4.n.d.143.1 8
20.3 even 4 inner 400.4.n.d.207.2 yes 8
20.7 even 4 inner 400.4.n.d.207.4 yes 8
20.19 odd 2 inner 400.4.n.d.143.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.4.n.d.143.1 8 5.4 even 2 inner
400.4.n.d.143.2 yes 8 4.3 odd 2 inner
400.4.n.d.143.3 yes 8 1.1 even 1 trivial
400.4.n.d.143.4 yes 8 20.19 odd 2 inner
400.4.n.d.207.1 yes 8 5.2 odd 4 inner
400.4.n.d.207.2 yes 8 20.3 even 4 inner
400.4.n.d.207.3 yes 8 5.3 odd 4 inner
400.4.n.d.207.4 yes 8 20.7 even 4 inner