Defining parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.bb (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 200 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1216 | 0 | 1216 |
Cusp forms | 1184 | 0 | 1184 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{6}^{\mathrm{old}}(400, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)