Properties

Label 400.6.y
Level 400400
Weight 66
Character orbit 400.y
Rep. character χ400(129,)\chi_{400}(129,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 296296
Sturm bound 360360

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 400.y (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 360360

Dimensions

The following table gives the dimensions of various subspaces of M6(400,[χ])M_{6}(400, [\chi]).

Total New Old
Modular forms 1224 304 920
Cusp forms 1176 296 880
Eisenstein series 48 8 40

Trace form

296q+5q323q5+5829q9723q115q131187q155q17+2169q19+726q219565q23+581q25+5q274285q29+5769q315q332908q35+823276q99+O(q100) 296 q + 5 q^{3} - 23 q^{5} + 5829 q^{9} - 723 q^{11} - 5 q^{13} - 1187 q^{15} - 5 q^{17} + 2169 q^{19} + 726 q^{21} - 9565 q^{23} + 581 q^{25} + 5 q^{27} - 4285 q^{29} + 5769 q^{31} - 5 q^{33} - 2908 q^{35}+ \cdots - 823276 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(400,[χ])S_{6}^{\mathrm{new}}(400, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S6old(400,[χ])S_{6}^{\mathrm{old}}(400, [\chi]) into lower level spaces

S6old(400,[χ]) S_{6}^{\mathrm{old}}(400, [\chi]) \simeq S6new(25,[χ])S_{6}^{\mathrm{new}}(25, [\chi])5^{\oplus 5}\oplusS6new(50,[χ])S_{6}^{\mathrm{new}}(50, [\chi])4^{\oplus 4}\oplusS6new(100,[χ])S_{6}^{\mathrm{new}}(100, [\chi])3^{\oplus 3}\oplusS6new(200,[χ])S_{6}^{\mathrm{new}}(200, [\chi])2^{\oplus 2}