Defining parameters
Level: | \( N \) | \(=\) | \( 4000 = 2^{5} \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 4000.bf (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 100 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(600\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(4000, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 232 | 16 | 216 |
Cusp forms | 72 | 16 | 56 |
Eisenstein series | 160 | 0 | 160 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 16 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(4000, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
4000.1.bf.a | $8$ | $1.996$ | \(\Q(\zeta_{20})\) | $A_{5}$ | None | None | \(0\) | \(-2\) | \(0\) | \(4\) | \(q-\zeta_{20}^{2}q^{3}+(-\zeta_{20}^{4}+\zeta_{20}^{6})q^{7}+\cdots\) |
4000.1.bf.b | $8$ | $1.996$ | \(\Q(\zeta_{20})\) | $A_{5}$ | None | None | \(0\) | \(2\) | \(0\) | \(-4\) | \(q+\zeta_{20}^{2}q^{3}+(\zeta_{20}^{4}-\zeta_{20}^{6})q^{7}+(-\zeta_{20}^{3}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(4000, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(4000, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(2000, [\chi])\)\(^{\oplus 2}\)