Properties

Label 4000.1.bf
Level $4000$
Weight $1$
Character orbit 4000.bf
Rep. character $\chi_{4000}(799,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $2$
Sturm bound $600$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 4000.bf (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(600\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(4000, [\chi])\).

Total New Old
Modular forms 232 16 216
Cusp forms 72 16 56
Eisenstein series 160 0 160

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 16

Trace form

\( 16 q + 8 q^{21} + 12 q^{29} + 8 q^{49} - 4 q^{61} - 4 q^{69} + 4 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(4000, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4000.1.bf.a 4000.bf 100.h $8$ $1.996$ \(\Q(\zeta_{20})\) $A_{5}$ None None 800.1.bh.a \(0\) \(-2\) \(0\) \(4\) \(q-\zeta_{20}^{2}q^{3}+(-\zeta_{20}^{4}+\zeta_{20}^{6})q^{7}+\cdots\)
4000.1.bf.b 4000.bf 100.h $8$ $1.996$ \(\Q(\zeta_{20})\) $A_{5}$ None None 800.1.bh.a \(0\) \(2\) \(0\) \(-4\) \(q+\zeta_{20}^{2}q^{3}+(\zeta_{20}^{4}-\zeta_{20}^{6})q^{7}+(-\zeta_{20}^{3}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(4000, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(4000, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(2000, [\chi])\)\(^{\oplus 2}\)